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The Synthesis of Function
Generating Mechanisms
for Periodic Curves Using
Large Numbers of
Double-Crank Linkages
This paper presents a methodology for synthesizing planar linkages to approximate any
prescribed periodic function. The mechanisms selected for this task are the slider-crank
and the geared five-bar with connecting rod and sliding output (GFBS), where any num-
ber of double-crank (or drag-link) four-bars are used as drivers. A slider-crank mecha-
nism, when comparing the input crank rotation to the output slider displacement,
produces a sinusoid-like function. Instead of directly driving the input crank, a drag-link
four-bar may be added to drive the crank from its output via a rigid connection between
the two. Driving the input of the added four-bar results in a function that modifies the
sinusoid-like curve. This process can be continued through the addition of more
drag-link mechanisms to the device, progressively altering the curve toward any periodic
function with a single maximum. For periodic functions with multiple maxima, a GFBS is
used as the terminal linkage added to the chain of drag-link mechanisms. The synthesis
process starts by analyzing one period of the function to design either the terminal slider-
crank or terminal GFBS. MATLAB’s fmincon command is then utilized as the four-bars are
added to reduce the structural error between the desired function and the input–output
function of the mechanism. Mechanisms have been synthesized in this fashion to include
a large number of links that are capable of closely producing functions with a variety of
intriguing features. [DOI: 10.1115/1.4035985]

1 Introduction

Erdman et al. [1] defined the function generation as the correla-
tion of an input motion with an output motion of a mechanism.
An input–output function is plotted with the input angle along the
horizontal axis and the output motion along the vertical axis. The
fundamentals of function generation, particularly its use in design-
ing slider-crank and four-bar linkages, are presented in most
machine theory texts [2–4]. A slider-crank is not capable of error-
free generation of an arbitrary function as it is able to achieve, at
most, five precision points. In practice, precision points are chosen
along the desired function to produce a list of N discrete input ver-
sus output values. As solutions to the five precision point problem
typically divide between circuits or lack a fully rotating input,
Almandeel et al. [5] introduced a defect-free approach to achieve
four precision points. For more than five arbitrary points, struc-
tural error is a certainty [6]. Structural error is defined as the dif-
ference between the desired function f(x) and the function g(x)
generated by the mechanism [7,8]. Freudenstein developed a clas-
sic technique for locating more than five precision points while
minimizing structural error in four-bar mechanisms [8].

More than five precision points are achievable with no struc-
tural error through the introduction of mechanical adjustments
and, hence, additional design parameters in the mechanism. Naik
and Amarnath [9] synthesized adjustable four-bar function gener-
ators utilizing five-bar loop closure equations. McGovern and
Sandor [10] synthesized adjustable linkages for function genera-
tion by modifying the fixed pivot locations. Soong and Chang [11]
presented a methodology to synthesize four-bar function genera-
tion mechanisms to achieve any number of precision points

utilizing variable length driving links. Another approach to
achieve more than five precision points is to use a mechanism
with more links, providing additional design parameters. Subbian
and Flugrad [12] used a continuation method to synthesize eight-
bars to produce six precision points. McLarnan [13] used an itera-
tive solution technique to design Watt and Stephenson six-bar
linkages to achieve eight precision points. Dhingra et al. [14]
employed continuation with m-homogenization to reduce the
number of tracked solutions to design the same. Dhingra and
Mani [15] applied symbolic computing to synthesize Watt and
Stephenson mechanisms, deriving closed-form solutions and han-
dling as many as 11 finitely separated precision points. Links may
also be added to a mechanism via the introduction of a drag-link
four-bar. A drag-link is the special case of four-bar mechanisms
with the ground link being the shortest and the other links dimen-
sioned such that both the input and output links fully rotate. A
variety of uses including altering the outputs of cam-follower,
quick-return, and dwell mechanisms is presented by Al-Dwairi
and the references therein [16].

A third approach to introduce design parameters is through the
use of gears within the mechanism. Geared five-bar mechanisms
(GFBMs) were investigated for their use in function generation by
Oleksa and Tesar [17] and Erdman and Sandor [18]. Subbian and
Flugrad [12] synthesized geared five-bars to produce seven preci-
sion points. Sultan and Kalim [19] synthesized geared five-bar
slider-crank mechanisms in which the gears are mounted on the
moving pivots. For the kinematic properties of GFBMs with arbi-
trary gear ratios, see Freudenstein and Primrose [20,21].

Mechanisms that follow a desired path have been a long-
standing objective of machine design. The theory of mechanisms
for the generation of arbitrary plane curves was presented by Arto-
bolevskii [22], where he addressed the generation of mechanisms
for tracing algebraic curves and transcendental curves. The syn-
thesis of mechanisms was studied for algebraic curves up to fourth
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degree. The method applied was called geometro-algebraic
because of the combination of geometric construction and the ana-
lytical theory of curves. The book also included the history of the
development of the theory of mechanisms for the generation of
curves. Liu and McCarthy have used Fourier expansion to create
mechanisms to trace general curves [23]. Mechanisms including up
to 32 elements comprised of links, cams, gears, and cables were syn-
thesized for a Fourier expansion of a heart shape and Batman logo.

Motivated by producing general curves with linkages, the
authors set out to decompose closed curves into single-axis com-
ponents and synthesize function generating linkages that approxi-
mate any periodic function. Links have an advantage over cams
due to their lower manufacturing cost, higher wear resistance, and
better high-speed capability. The nonlinear design challenge asso-
ciated with function generating mechanisms makes them an ideal
application for optimization algorithms. Several methods can
already be seen in the citations above. In addition, Southerland and
Roth [24] utilized an improved least-squares method, Chen and
Chan [25] applied Marquardt’s compromise technique, Sargana-
chari et al. [26] a variable topology approach, Shariati and Norouzi
[27] used a gradient-based Sequential Quadratic Programming
method, and Akcali and Dittrich used Galerkin’s method [28].

This paper presents a technique for reducing the structural error
in function generating mechanisms via the addition of large num-
bers of four-bars. The two terminal mechanisms in the chains
under consideration are the slider-crank and the geared five-bar
with connecting rod and sliding output (GFBS). A specific appli-
cation may place practical limits on the number of four-bars that
can be used. The technique presented allows for the designer to
assess the benefit of each additional four-bar. While achievable
for each example presented, techniques for the detailed mechani-
cal design of the links, including interference, are not addressed
here. The remainder of the paper is organized as follows. Section 2
details the design of fully rotatable slider-crank mechanisms to
provide an initial mechanism that approximates any single maxi-
mum periodic function. Section 3 presents the design of the GFBS
to match the number of maxima in any desired periodic function.
Section 4 reviews drag-link mechanisms. The methodology for
adding drag-links to either terminal mechanism or optimizing
dimensions is presented in Sec. 5. Section 6 includes a variety of
example synthesis problems and Sec. 7 concludes the paper.

2 The Terminal Slider-Crank Mechanism

Given any prescribed periodic function of crank angle h versus
the desired slider position Sd ¼ f ðhÞ with a single maximum, a
slider-crank can be designed to provide an initial approximation
to the desired function. The vector loop of the slider-crank shown
in Fig. 1 is

as
cos ðh� dsÞ
sin ðh� dsÞ

� �
þ bs

cos ws

sin ws

� �
þ �S� S0

cs

� �
¼ 0 (1)

where as and bs are link lengths, and cs is the distance between the
fixed crank pivot and the horizontal axis of sliding, which can be

positively valued (downward, as shown) or negative (upward).
Additionally, S is the slider position (positive to the right) and is
measured from an arbitrary location given by S0. Note that the
value of S0 can be manipulated to shift the output displacement
values of the mechanism vertically on a plot of S as a function of
h. The angles h and ws are joint variables, and ds is an offset angle
that shifts the plot of the input–output function left or right.

Given a set of physical parameters for a slider-crank, xs ¼
fas; bs; cs; ds; S0g; and h, the loop closure in Eq. (1) produces the
generated slider position as

S ¼ gðh; xsÞ ¼ �Ds � S06

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

s � Fs

q
(2)

where Ds ¼ �as cosðh�dsÞ and Fs ¼ D2
s þ ½csþas sinðh�dsÞ�2

� b2
s . A generated input–output curve may be created by using

Eq. (2) and displaying the value of S as a function of h.
Note from Eq. (2) that solutions for S occur as two real values

or a complex pair. A complex solution is associated with a linkage
that is unable to be positioned at the designated h. The link actu-
ated with as is fully rotatable [3] if the dimensions conform to

hsðxsÞ ¼
as � bs þ cs

as � bs � cs

� �
< 0 (3)

With linkage dimensions given by Eq. (3), S in Eq. (2) always pro-
duces two real values. This work only examines the larger value
of S, as similar results could be expected when optimizing on the
smaller value. Accordingly, driving h over the range of 2p pro-
duces one period of a repeating curve with a single maximum per
period.

The general function generation of a slider-crank is to deter-
mine linkage parameters xs that minimize the structural error
jf ðhÞ � gðh; xsÞj subject to rotatability constraints hs < 0. How-
ever, the approach taken as a first step in this work determines xs

to achieve ðh; SÞ at the minimum and maximum of the desired per-
iodic function. Subsequent optimization processes are used to
determine the suitable dimensions for driving double-crank link-
ages that will minimize structural error.

For the initial design, S0 is assumed to be zero. Therefore, given
a desired function with a period of 2p and a single maximum,
(�h; �S) denotes the location of the period’s maximum. Likewise,
(h; S) corresponds to the period’s minimum. Should the desired
function have a horizontal line segment as a maximum or mini-
mum, the midpoint may be used for either of the values. Given a
slider-crank with a fully rotating input, �S is achieved when h�
ds ¼ ws and S when ws ¼ h� ds þ p. Substituting these condi-
tions into Eq. (1)

as

cos ð�h � dsÞ

sin ð�h � dsÞ

8<
:

9=
;þ bs

cos ð�h � dsÞ

sin ð�h � dsÞ

8<
:

9=
;þ

��S

cs

8<
:

9=
; ¼ 0

as

cos ðh� dsÞ

sin ðh� dsÞ

8<
:

9=
;þ bs

cos ðh� ds þ pÞ

sin ðh� ds þ pÞ

8<
:

9=
;þ

�S

cs

8<
:

9=
; ¼ 0

(4)

Solving Eq. (4)

ds ¼ tan�1 �Bs6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

s � 4AsCs

p
2Cs

 !
(5)

where

As ¼ �S sin �h cos h� S sin h cos �h

Bs ¼ ð�S � SÞðsin �h sin h� cos �h cos hÞ
Cs ¼ S cos h sin �h � �S cos �h sin h

(6)

Fig. 1 The vector loop of the offset slider-crank mechanism
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Having ds, the remaining link length values are

cs ¼ �
�S sin �h � ds

� �
cos �h � ds

� � ¼ � S sin h� dsð Þ
cos h� dsð Þ

as ¼
1

2

�S

cos �h � ds

� �þ S

cos h� dsð Þ

 !

bs ¼
1

2

�S

cos �h � ds

� �� S

cos h� dsð Þ

 !
(7)

Given that the value of B2
s � 4AsCs � 0 in Eq. (5), ds has two

potential values. Both are checked and the one resulting in the
mechanism that matches �h; �S; h, and S is selected.

The value B2
s � 4AsCs can be negative when the difference

between �h and h is small (relative to the corresponding difference
between �S and S). If B2

s � 4AsCs < 0, Eqs. (5) and (7) produce
complex values. The minimum allowable difference Dh between
�h and h that produces real mechanism parameters occurs when
B2

s � 4AsCs ¼ 0 and is

Dh ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Cm þ Am

2Am

r !
(8)

where

Am ¼
�S

2 þ S2 þ 2�SS

2
; Cm ¼

�S
2 þ S2 � 6�SS

2
(9)

After determining Dh; �h and h are adjusted equally such that
j�h � hj ¼ Dh. Equation (8) produces two potential values for Dh.
The value closest to �h � h is selected, as the other value will be
substantially different. Another consideration is that the values of
as and bs determined by Eq. (7) may be negative. The mechanism
is still physically realizable noting that the line segment between
the joints is 180 deg different from the joint values in the equation.
The values determined for cs, as, and bs will always define a fully
rotating input link due to the constraints enforced in the develop-
ment of Eq. (4).

3 The Terminal Geared Five-Bar With Connecting

Rod and Sliding Output

Multiple maxima per period cannot be achieved with a slider-
crank. A GFBS is shown in Fig. 2 and can create a single period
of a crank angle h versus slider position S plot with any number of
maxima due to the gears being able to have any rational number
ratio.

The two vector loops needed to analyze the GFBS are

ag

cos ðh� dgÞ
sin ðh� dgÞ

( )
þ bg

cos wg

sin wg

( )
� cg

cos /g

sin /g

( )

� dg

cos bg

sin bg

( )
�

fg

0

( )
¼ 0 (10)

and

ag

cos ðh� dgÞ
sin ðh� dgÞ

( )
þ bg

cos wg

sin wg

( )
þ hg

cos cg

sin cg

( )

�
fg þ Sþ S0

tg

( )
¼ 0 (11)

where ag, bg, cg, dg, and fg are positively valued link lengths and
tg, the distance between the fixed crank pivot and the horizontal
axis of sliding, can be positively valued (upward, as shown) or
negative (downward). Additionally, S is the slider position (posi-
tive to the right) and is measured from an arbitrary location given
by S0. Note that the value of S0 can be manipulated to shift the
output displacement values of the mechanism vertically on a plot
of S as a function of hg. The angles h, wg, /g, bg, and cg are joint
variables, and dg is an offset angle that shifts the plot of the
input–output function left or right.

The motion of links ag and dg conform to an additional relation-
ship due to the geared relationship

bg ¼ kðh� dgÞ þ bg0
(12)

where bg0
is an initial angular offset of link dg and k is the gear

ratio, which can be any positive or negative rational number.
Given a set of physical parameters for a GFBS, xg ¼

fag; bg; cg; dg; fg; hg; dg; tg; S0;bg0
;N1;N2g; and h, the unknown

joint variables are the angles wg, /g, bg, cg, and the slider dis-
placement S. The value of angle wg is

wg ¼ 2 tan�1
�Mg6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

g � 4LgNg

q
2Lg

0
@

1
A

(13)

where

Lg ¼ Kg � Gg; Mg ¼ 2Hg; Ng ¼ Gg þ Kg (14)

and

Gg ¼ 2bgðag cos ðh� dgÞ � dg cos bg � fgÞ
Hg ¼ 2bgðag sin ðh� dgÞ � dg sin bgÞ
Kg ¼ a2

g þ b2
g � c2

g þ d2
g þ fg

2 � 2agfg cos ðh� dÞ
�2dgða cos ðh� dgÞ � fgÞcos bg � 2agdg sin ðh� dgÞsin bg

(15)

Only the “þ” term in the numerator of Eq. (13) is used as similar
results could be expected when optimizing on the other value. With
wg from Eq. (13), Eq. (11) includes the two unknowns cg and the
quantity Sþ S0. Solving for the generated slider position as

S ¼ gðh; xgÞ ¼ Dg � S06
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

g � Cg

q
(16)

where Dg ¼ ag cos ðh� dgÞ þ bg cos wg � fg and Cg ¼ D2
g

þðag sin ðh� dgÞ þ bg sin wg � tgÞ2 � h2
g. Likewise, an expression

for cg could be generated, but is unused in the analysis.
To ensure full rotation of link ag, a sufficiency condition pre-

sented by Ting [29] is used. The link lengths ag, bg, cg, dg, and fg
Fig. 2 The vector loop of the geared five-bar mechanism with
a connecting rod and a sliding output
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are arranged in an ascending order. The ordered link lengths are
then labeled L1, L2, L3, L4, and L5. The shortest two links, ag and
dg by design in this case, make a complete revolution if

hg1
ðxgÞ ¼

L1 þ L2 þ L5 � L3 � L4

Cg � D2
g

" #
< 0 (17)

If the first condition of Eq. (17) is not true, the chance of a fully
rotating link is dependent on k and bg0

and is not considered. The
second condition ensures that Eq. (16) produces real values of S.
The input–output curve may be obtained from Eq. (16) and dis-
playing the value of S as a function of hg. With an input link that
fully rotates, S in Eq. (16) has two real values with the larger one
corresponding to the slider being to the right (as shown in Fig. 2)
and is used in this work.

The gear ratio k dictates p, the number of maxima generated
per period, and the number of rotations needed by gear 1 to create
a single period. The gear ratio of the GFBS is k ¼ N1=N2 where
N1 and N2 are the numbers of teeth on gears 1 and 2, respectively.
The ratio can be either negative via a direct meshing of the gears
or positive via the use of an idler. The number of maxima is pre-
dicted by reducing the fraction N1=N2 by eliminating common
factors. For example, 32/14 reduces to 16/7 and this is denoted as
~N1= ~N2. The input gear must be rotated 2p ~N2 radians to create one
period of the output. Typically, the resulting period will have
maxf ~N1; ~N2g as the number of maxima. If a single period of the
desired curve has p¼ 4 maxima, the values of ~N1 : ~N2 considered
include 4 : 1; 4 : 3; 3 : 4; 1 : 4 and all of their negatives. Note
that 4 : 2 and 2 : 4 are not included because these reduce to 2 : 1
and 1 : 2, respectively. Finally, in the case of 4 : 3 (or �4 : 3),
gear 1 needs to be driven 6p radians to produce a single period.
Due to the nonlinearities in the GFBS, the predicted number of
maxima is not always produced in a single period. One reason is
that inflection points can appear, lowering the number of maxima.
Additionally, certain combinations of design variables can add
either extra inflection points or extra maxima to the counts gener-
ated above. Despite these special circumstances, the gear ratio
constraints for the synthesis process is posed as

hg2
ðxgÞ ¼ p�maxf ~N1; ~N2g

k� N1=N2

� �
¼ 0 (18)

The generated number of maxima is verified when postprocessing
the optimization results.

4 The Additional Double-Crank Mechanisms

The addition of a double-crank mechanism (also known as a
drag-link) as the input to either the terminal slider-crank or the ter-
minal GFBS will change the shape of the input–output function,
but not alter the number of maxima or their values. The shape of
the input–output function will continue to be altered as more
drag-link mechanisms are added in a series. The vector loop of the
ith drag-link mechanism is shown in Fig. 3.

ai

cos ðh� diÞ
sin ðh� diÞ

( )
þ hi

cos wi

sin wi

( )
�

qi

0

( )
� bi

cos /i

sin /i

( )
¼ 0

(19)

where ai, hi, qi, and bi are positively valued link lengths. Addition-
ally, h, wi, and /i are joint variables, and di is an offset angle that
shifts the actual input–output function left or right. For the drag-
links, only the ratio of the link lengths affects the input–output
relationship.

To eliminate scaling issues within the optimization, a fixed link
length of qi¼ 1 is set. Given a set of physical parameters for the
ith drag-link, yi ¼ fai; bi; hi; dig; and the input angle h, the gener-
ated output angle is

/i ¼ g h; yi

� �
¼ tan�1 Bi

Ai

	 

6cos�1 �Ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
i þ B2

i

p
 !

(20)

where

Di ¼ qd � ad cos ðhi � diÞ; Ei ¼ �ai sin ðhi � diÞ
Ci ¼ D2

d þ Ei
2 þ hi

2 � bi
2

Ai ¼ 2Dihi;Bi ¼ 2Eihi

(21)

Either the “þ” or “�” in Eq. (20) must be used over the entire
rotation of hi to address a single assembly. As only drag-links are
desired, linkage dimensions are constrained to [30]

hiðyiÞ ¼
qi � ai þ hi � bi

qi � ai � hi þ bi

qi þ ai � hi � bi

2
4

3
5 < 0 (22)

5 Synthesis Methodology

The methodology for reducing structural error in function gen-
erating mechanisms via the addition of large numbers of four-bar
mechanisms is now detailed.

(1) In the case of the desired periodic function having a single
maximum per period (p¼ 1), a slider-crank may be used as
the terminal mechanism because of its simplicity, as shown
in Fig. 4. If a period includes two or more maxima (p> 1),
a GFBS is used, noting that it can also be implemented
when p¼ 1. The function generating mechanism that termi-
nates with a GFBS is shown in Fig. 5.
(a) For the slider-crank, the terminal mechanism is synthe-

sized to achieve the desired minimum and maximum
via Eqs. (5)–(7).

(b) For the GFBS, the terminal mechanism is synthesized
by determining linkage parameters xg that minimize
the structural error. In this work, structural error e is
defined as the sum of the differences between the
desired function f ðhÞ and the generated function
gðh; xgÞ. That is, for M point-to-point comparisons of
the desired and generated functions

e ¼
XM

j¼0

jf ðhjÞ � gðhj; xgÞj (23)

The synthesis is performed by minimizing e, subject to
the assembly and rotatability constraints hg1

< 0. Since
only a small number of ~N1 and ~N2 satisfy hg2

¼ 0, every
possible gear ratio combination is successively selected
prior to the optimization. Arbitrarily selecting link

Fig. 3 The vector loop of the drag-link mechanism
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lengths is sufficient as they merely serve as initial values
for the optimization. Each optimization is performed
using MATLAB’s fmincon command, as discussed at the
end of this section.

(2) With a terminal mechanism synthesized, a dyad is added
between the ground and input link of the terminal linkage.
The dyad is sized such that it operates as a drag-link mecha-
nism. While the output, S remains the same, the input h to
the serial mechanism is transferred to the drag-link and /1

becomes the input to the slider-crank or GFBS terminal
mechanism. With i¼ 1, Eqs. (20) and (21) are used to gener-
ate /1 given the rotation of h. For a slider-crank terminal
mechanism, the values of /1 are then used as the h input in
Eq. (2). For the GFBS terminal mechanism, the values of /1

replace h input in Eq. (16). Arbitrary link lengths that are
consistent with Eq. (22) serve as initial values for the
optimization.

(3) MATLAB’s fmincon command is utilized to determine all
physical parameters in the drag-link driven mechanism y1

and make adjustments to the terminal mechanism, xs for
the slider-crank or xg for the GFSB. For the slider-crank
terminal linkage, the optimization problem is to minimize
e ¼

PM
j¼0 jf ðhjÞ � gðhj; xg; y1Þj, subject to hs < 0 and

h11
< 0. Using the GFBS terminal linkage, the optimization

problem is to minimize e ¼
PM

j¼0 jf ðhjÞ � gðhj; xg; y1Þj,
subject to hg1

< 0 and h1 < 0, after selecting values of ~N1

and ~N2 consistent with hg2
¼ 0. In seeking linkage dimen-

sions that produce the lowest structural error, multiple opti-
mizations are conducted, each with different arbitrarily
selected sets of initial link lengths. From this multiple start-
ing point optimization, the linkage with the lowest
structural error is chosen.

(4) If the structural error in the previous step is unsatisfactory,
a second drag-link mechanism is added. The serial mecha-
nism input h is transferred to the second drag link, provid-
ing an output /2, which serves as an input to the first drag

link through the offset d1. As with the first drag link, the
initial link lengths y2 are arbitrarily selected to be consist-
ent with Eq. (22). MATLAB’s fmincon command is used to
adjust all physical parameters in the drag-link driven mech-
anism, including those in the previous step. For example, a
slider-crank terminal linkage has the synthesis task of mini-
mizing e ¼

PM
j¼0 jf ðhjÞ � gðhj; xg; y1; y2Þj, subject to

hs < 0; h1 < 0, and h2 < 0.
(5) Drag-links may continue to be added until a threshold on

structural error is met or until the structural error ceases to
decrease.

Fig. 4 The chain of drag-link mechanisms added to a terminal slider-crank
mechanism

Fig. 5 The chain of drag-link mechanisms added to a GFBS

Fig. 6 The desired function, the slider-crank output, and the
curve generated using the proposed method resulting in the
addition of nine drag-link mechanisms
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To ideally select the design variables for all of the mechanisms
in this work, an optimization is performed using MATLAB’s fmincon
command. This command minimizes a user-defined multivariable
function subject to constraints. The design variables are all of the

physical parameters of the mechanism and the objective function
is the resulting structural error. In this work, the structural error is
assessed at M ¼ 500 equally spaced points in the period. Con-
straints are implemented as identified in each case above. Bounds
are also specified on the relative lengths of the design variables
(longest link <10� shortest link). The output of the optimization
command will include all design variables needed to generate
either a single maximum or multiple maxima periodic function.

6 Synthesis Examples

Several examples are now presented. The examples are chosen
to display the effectiveness and potential challenges of the synthe-
sis method presented.

Fig. 7 A slider-crank driven by nine drag-link mechanisms to
produce the desired function shown in Fig. 6

Table 1 The link dimensions of the slider-crank and nine drag-
link mechanisms that best matches the desired function shown
in Fig. 6

Slider-Crank mechanism

Link cs as bs d (deg)

0.8256 1.9034 3.1842 �158.1364

Drag-Link mechanisms

Link ad hd bd d (deg)

1 3.1626 3.9508 5.7241 8.4454
2 3.6965 5.9911 4.7324 79.4692
3 3.4518 3.8735 1.4245 7.8839
4 2.3454 4.2599 4.8043 �118.4705
5 2.6122 5.4712 3.9040 �4.5436
6 5.2887 4.7877 1.5033 9.3392
7 2.0996 4.1597 5.2169 17.6929
8 2.8971 4.7291 5.2511 �28.1208
9 5.0892 3.0994 4.8498 60.8997

Fig. 8 The desired function and the input–output functions
generated for several GFBS cases

Table 2 The link dimensions of the three GFBS mechanisms
whose outputs are shown in Fig. 8

GFBS

Nonoptimized Optimized Optimized with four-bars

ag 1.0000 4.1447 0.6241
bg 10.0000 7.6886 2.5865
cg 7.0000 11.1973 5.9633
dg 1.0000 1.1135 6.0201
fg 6.0000 10.0000 1.0964
tg 5.0000 3.2192 �0.5451
hg 12.0000 8.8759 4.4309
d (deg) 0.0000 �29.4558 18.5466
/ (deg) 0.0000 112.8727 84.4024
S0 11.1000 �3.9915 0.2915

Table 3 The link dimensions of the seven added drag-link
mechanisms producing the best fit shown in Fig. 8

Drag-Link mechanisms

Link ad hd bd d (deg)

1 6.0138 6.3820 4.7460 �166.7536
2 2.6158 2.6117 1.2544 122.5442
3 4.1903 4.3246 1.3602 �103.9288
4 3.4136 5.0002 5.4217 99.0472
5 2.0490 2.0896 1.4143 23.7720
6 3.4522 6.7110 5.8004 28.6250
7 6.5917 5.6978 5.0575 109.7787

Fig. 9 The desired function having four maxima using a gear
ratio of 24:1
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6.1 A Function With a Single Maximum per Period—
Slider-Crank Terminal Chain. A chain of drag-link mechanisms
driving a terminal slider-crank was synthesized to generate the
desired curve shown in Fig. 6. The function defining the curve is
Sd ¼ 0:0333hþ 3:0000 for 0 deg � h2 � 60 deg, Sd ¼ 5.0000 for
60 deg < h � 110 deg, Sd ¼ �0:0286h2 þ 8:1429 for
110 deg < h � 250 deg, Sd ¼ 1.0000 for 250 deg < h � 300 deg,

and Sd ¼ 0:0333h2 � 9:0000 for 300 deg < h � 360 deg. The
“slider-crank only” curve shows the match of the initial approxi-
mation of the terminal slider-crank using Eqs. (5)–(7). The associ-
ated structural error was 102.0421, from Eq. (23) for M¼ 500
equally spaced points over the range of motion of the input link
needed to create one period from the output. The structural error
was progressively decreased through the addition of nine drag-
link mechanisms. The structural error associated with the nine
mechanisms was 0.1041. A design model of the full mechanism is
shown in Fig. 7. An ad hoc approach to layering the links was
used judiciously to avoid interference. Table 1 shows the lengths
of all the links in the system, including the dimensions of all nine
four-bars and the slider-crank mechanism where S0¼ 0.0020.

6.2 A Function With a Single Maximum per Period—
GFBS Terminal Chain. The same desired function as in the pre-
vious example was attempted with a GFBS and a chain of drag-
link four-bars. Due to the single maximum, the two gear ratios
considered were 1 : 1 and �1 : 1. The ratio �1 : 1 was selected
due to the better initial match found between the GFBS and the
desired function. An initial mechanism, in this case the
“nonoptimized GFBS” is included in Fig. 8. An initial mecha-
nism is included in many of the examples to indicate the
improvement attributed to the methodology. Optimizing
the GFBS alone resulted in a structural error of 1.2498 and
obtained a shape quite close to the desired function. Note that
the methodology continued to adjust the link lengths of the
GFBS, producing an additional maxima that improved the struc-
tural error.

Fig. 10 The desired function having four maxima using a gear
ratio of 25:1. The arrow emphasizes the additional extreme due
to the selected gear ratio.

Fig. 11 (a) The desired piecewise-linear periodic function using the terminal slider-crank. (b) The desired
piecewise-linear periodic function using the terminal GFBS. (c) A periodic function with two maxima. (d) Ten
maxima periodic function.
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Recall that the single slider-crank had a structural error of
102.0421 as compared to the optimized GFBS of 1.2498. The struc-
tural error of the slider-crank alone should not be compared to the
GFBS because it has fewer independent design parameters. The
slider-crank has five independent variables (as, bs, cs, ds, and S0),
while the GFBS has 11 independent variables (ag, bg, cg, dg, fg, hg,
tg, bg0

, dg, k, and S0). A comparison was done between the GFBS
alone and a slider-crank with one drag link attached. The number
of the independent variables for the slider-crank with one drag link
is nine and produced a structural error of 0.8817, less than the struc-
tural error using the GFBS alone. The addition of drag-links contin-
ued to improve the error gradually. A chain of seven drag links
were added to the terminal GFBS producing a structural error of
0.1125. Note that the structural error using the slider-crank as the
terminal chain driven by nine drag links in the previous example
was 0.1041, less than the structural error using the GFBS and seven
drag links. After many observations, the authors were unable to
detect tendencies. When comparing design parameters, neither the
slider crank nor the GFBS consistently outperformed the other.
Table 2 shows the values of all the physical parameters in the three
GFBS mechanisms and Table 3 shows the dimensions of the seven
drag links for the mechanism with the lowest structural error.

6.3 Four Maxima Periodic Function. The curve with four
maxima shown in Fig. 9 is the desired periodic function for this exam-
ple. The function defining the curve is Sd ¼ sinðh2Þ þ sinð2h2Þ þ
sinð4h2Þ for 0 deg � h2 � 360 deg. The eight choices under consid-
eration for the gear ratio were 61 : 4; 63 : 4;64 : 1, and 64 : 3.
The ratio of �4 : 1 was found to produce the best initial guess.
Because of this choice of ratio ð �N1 ¼ 4; �N2 ¼ 1Þ, a single period
was produced by 2p �N2 ¼ 1 rotation of the input of the mecha-
nism. Note that the optimized GFBS includes five maxima. As
the GFBS parameters are included in the general optimization
methodology, one of the maxima is eliminated. The structural
error after optimizing the GFBS alone was 92.7699. After the
addition of nine drag-links, the structural error was reduced to
7.4919. Since the structural error in this example was not small
enough as in the previous examples, where the best structural
error was found to be less than one, a �5:1 gear ratio was
attempted in order to produce a lower structural error. The struc-
tural error obtained was reduced to 3.0724. However, another
maxima was added as shown in Fig. 10.

6.4 Other Examples. A variety of additional examples are pre-
sented to show the utility of the method. A piecewise-linear function
was addressed using the slider-crank and the result can be seen in
Fig. 11(a). The same function was also obtained with a GFBS and is
shown in Fig. 11(b). The input–output function produced by a GFBS
and nine drag-links that combines linear sections with continuous but
nondifferentiable curves is depicted in Fig. 11(c). Finally, a function
with ten maxima was addressed in Fig. 11(d).

7 Conclusions

Function generating mechanisms were synthesized with the
goal of reducing structural error versus a desired output. This
paper addressed the challenge of minimizing the structural error
with respect to any desired periodic function. The synthesized
mechanisms were allowed to include any number of links. Two
basic architectures were considered. The first architecture
included any number of drag-link four-bar mechanisms driving
each other in succession terminating with a slider-crank mecha-
nism. The second architecture included any number of drag-links
driving a GFBS. The slider-crank as a terminal linkage was only used
to address functions with a single maximum in the period, whereas
the GFBS can be used to create one or more maxima. As expected,
an increase in the number of links yielded an improvement in match-
ing the periodic function and reducing structural error. Conditions
were implemented throughout to ensure fully rotating inputs, produc-
ing double-crank mechanisms. This guaranteed the periodic output of

the architectures. Finally, a variety of examples were included to
demonstrate the methodology presented, including functions com-
posed of piecewise linear segments.
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