
A LOCAL CHARACTERIZATION OF VC-MINIMALITY

URI ANDREWS AND VINCENT GUINGONA

Abstract. We show VC-minimality is Π0
4-complete. In partic-

ular, we give a local characterization of VC-minimality. We also
show dp-smallness is Π1

1-complete.

1. Introduction

VC-minimality is a notion of simplicity of a first order theory which
simultaneously generalizes weak o-minimality and C-minimality. Until
now, VC-minimality has been a very difficult notion to work with. This
difficulty is due to the complexity of the definition of VC-minimality. In
particular, the definition is Σ1

1, i.e., it requires an existential quantifier
over sets of formulae. As such, it is quite difficult to verify that a theory
is not VC-minimal. Instead, most instances of proofs that a theory is
not VC-minimal actually show that the theory fails to satisfy one of
several weaker principles such as convex orderability, dp-smallness, or
dp-minimality. In this paper, we answer the following question:

Question 1.1. How hard is it to determine whether or not a theory is
VC-minimal?

Index sets are a tool used to quantify the complexity of notions. Let
P be a property of objects in a class K. Then the index set of P is the
set

I(P ) := {i | i is an index for a recursive C ∈ K with the property P}.

By restricting to the recursive C ∈ K, the complexity of this set comes
from the complexity of the notion P , not the inherent complexity in
the object C.
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The question is formalized as asking to characterize the complexity
of the index set I(VC-minimal theories). We show that in fact VC-
minimality is far simpler than expected, being Π0

4-complete, and we give
a simple characterization. This characterization makes VC-minimality
far easier work with. We hope that it will spur further research in
the area. Our characterization, which holds for theories in countable
languages, is ‘local’ in the sense that it gives a condition that must
hold for each formula.

We show that the related notion of dp-smallness is, in fact, far more
complicated, and is Π1

1-complete. In this vain, we also answer a ques-
tion from [6] by giving examples of dp-small theories in countable lan-
guages which are not convexly orderable.

We leave the following question open:

Open Question 1.2. What is the complexity of convex orderability?

2. Background

Let X be a set, C ⊆ P(X). We say C is directed if, for all A,B ∈ C,
at least one of the following holds:

• A ⊆ B,
• B ⊆ A, or
• A ∩B = ∅.

For simplicity of notation, for A,B ⊆ X, we write A ⊥ B to denote
that {A,B} is not directed. That is,

• A \B 6= ∅,
• B \ A 6= ∅, and
• A ∩B 6= ∅.

Remark 2.1 (Swiss Cheese Decomposition). Suppose C ⊆ P(X) is di-
rected. If A ∈ C and Bi ∈ C for i < n with Bi ⊆ A for all i < n and
Bi ∩Bj = ∅ for all i 6= j, then we call S = A \ (B0 ∪ ...∪Bn−1) a swiss
cheese, A is the wheel of S and the Bi’s are the holes of S. If D ⊆ X is
a (finite) boolean combination of elements of C, then there exists swiss
cheeses S0, ..., Sm−1 such that

• Si ∩ Sj = ∅ for all i 6= j,
• no wheel of some Si is equal to a hole of some Sj, and
• D = S0 ∪ ... ∪ Sm−1.

We call such S0, ..., Sm−1 a swiss cheese decomposition ofD. See Lemma
2.1 of [4] for more details. By Theorem 3.1 of [4], there is a means of
canonically choosing a decomposition, so we may consider “the” swiss
cheese decomposition of D.



A LOCAL CHARACTERIZATION OF VC-MINIMALITY 3

Lemma 2.2 (Union of Chains). If C ⊆ P(X) is directed, C0 ⊆ C is a
chain, and A :=

⋃
C0, then C ∪ {A} is directed.

Proof. Fix B ∈ C. We must show that either A ∩ B = ∅, A ⊆ B, or
B ⊆ A. If any B′ ∈ C0 contains B, then B ⊆ A, and we are done.
Similarly, if every B′ ∈ C0 is disjoint from B, then A ∩ B = ∅. The
remaining case is where some B′ ∈ C0 intersects B, but none contains
B. Thus this B′ is contained in B. As C0 is a chain, every element
intersects B and none contains B, so every member of the chain is
contained in B. Thus A ⊆ B. �

Definition 2.3. Fix a language L, an L-theory T , and a monster model
U |= T .

• We say a set of partitioned L-formulae Ψ = {ψi(x; yi) | i ∈ I}
is directed if the set CΨ := {ψi(U ; b) | i ∈ I, b ∈ Uyi} is directed
(in the ambient set Ux).
• We say that the theory T is VC-minimal if, there exists a di-

rected set of formulae Ψ (in the free variable x with |x| = 1)
such that, every (parameter) definable set A ⊆ U is a (finite)
boolean combination of elements from CΨ.
• In this case, we call Ψ a generating family for T .

If C ⊆ P(X) is directed, then C ∪ {{a} | a ∈ X} is directed. There-
fore, without loss of generality, we may assume the formula x = y is in
the generating family of any VC-minimal theory.

An L-structure M is called convexly orderable if there exists a linear
order E on M (not necessarily definable) such that, for all L-formulas
ϕ(x; y) with |x| = 1, there exists k < ω such that, for all b ∈ My,
ϕ(M ; b) is a union of at most k E-convex subsets of M . By Proposition
2.3 of [7], if M is convexly orderable and N ≡ M , then N is convexly
orderable, so convex orderability is a property of theories.

3. Devastation and Immortality

The following is a technical definition which plays an important role
in our local characterization of VC-minimality.

Definition 3.1 (Devastation, Immortality). Suppose that ψ(x; y) is
a partitioned L-formula and ϕ(x) is an L(U)-formula, both with a
common free variable, x. We say that ϕ devastates ψ if there exists a
sequence 〈ci : i < ω〉 of elements in Uy such that, for all i < j < ω,

• |= ∃x(ψ(x; ci) ∧ ¬ψ(x; cj) ∧ ϕ(x)), and
• |= ∃x(ψ(x; ci) ∧ ¬ψ(x; cj) ∧ ¬ϕ(x)).
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If there exists no L(U)-formula ϕ(x) which devastates ψ(x; y), then we
say that ψ(x; y) is immortal.

Remark 3.2. If ϕ(x; y) is an L-formula such that, for all d ∈ Uy, ϕ(x; d)
does not devastate ψ(x; z), then by compactness there exists k < ω
such that, for all d ∈ Uy, there does not exist 〈ci : i < k〉 from Uz so
that for all i < j < k,

• |= ∃x(ψ(x; ci) ∧ ¬ψ(x; cj) ∧ ϕ(x, d)), and
• |= ∃x(ψ(x; ci) ∧ ¬ψ(x; cj) ∧ ¬ϕ(x, d)).

It follows that immortality of ψ(x, y) in a recursive theory T is a Π0
2

condition.
If ϕ(x) devastates ψ(x; y) witnessed by 〈ci : i < ω〉, then by Ramsey’s

theorem and compactness, we may assume 〈ci : i < ω〉 is indiscernible.

Lemma 3.3 (Directed and Devastated). Suppose ϕ(x) is an L(U)-
formula, and ψ(x; y) is a directed L-formula. Then ϕ(x) devastates
ψ(x; y) if and only if there exists an indiscernible sequence 〈ci : i < ω〉
in Uy such that one of the following hold:

(1) for all i < ω, |= ∀x(ψ(x; ci+1) → ψ(x; ci)), |= ∃x(ψ(x; ci) ∧
¬ψ(x; ci+1) ∧ ϕ(x)), and |= ∃x(ψ(x; ci) ∧ ¬ψ(x; ci+1) ∧ ¬ϕ(x));
or

(2) for all i < ω, |= ¬∃x(ψ(x; ci+1)∧ψ(x; ci)), |= ∃x(ψ(x; ci)∧ϕ(x)),
and |= ∃x(ψ(x; ci) ∧ ¬ϕ(x)).

Proof. If (1) or (2) hold, then clearly ϕ(x) devastates ψ(x; y). Con-
versely, if ϕ(x) devastates ψ(x; y), then by Remark 3.2 we can as-
sume the witness 〈ci : i < ω〉 is indiscernible. Therefore, we have
either that, for all i < ω, ψ(U ; ci+1) ⊆ ψ(U ; ci) or, for all i < j < ω,
ψ(U ; ci) ∩ ψ(U ; cj) = ∅. Now (1) or (2) follow from each case. �

Definition 3.4. If ϕ(x; y) is any formula and a is any parameter, we
refer to ϕ(x; a) as an instance of ϕ.

Definition 3.5 (Instance Sums). Fix L-formulae ϕ(x; y) and ψ(x; z).
Then their instance sum is the following formula

(ϕ⊕ ψ)(x; y, z, w0, w1) := (w0 = w1 → ϕ(x; y)) ∧ (w0 6= w1 → ψ(x; z)).

Remark 3.6 (On Instance Sums). If ϕ(x; y) and ψ(x; z) are L-formulae,
then each instance of (ϕ⊕ψ) is T -equivalent to either an instance of ϕ
or an instance of ψ. Conversely, each instance of ϕ and each instance
of ψ is T -equivalent to an instance of (ϕ⊕ ψ).

If ϕ(x; y) and ψ(x; z) are immortal L-formulae, then (ϕ ⊕ ψ) is im-
mortal. If δ(x) devastates (ϕ ⊕ ψ), then by the pigeonhole principle,
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either δ devastates ϕ or δ devastates ψ. This contradicts the assump-
tion that both formulae are immortal.

If {ϕ(x; y), ψ(x; z)} is directed, then (ϕ⊕ ψ) is directed.

Lemma 3.7 (Balls are Immortal). If T is VC-minimal and ψ(x; z) is
in the generating family of T , then ψ is immortal.

Proof. Suppose, by means of contradiction, that ψ(x; z) is in the gen-
erating family of T but ψ is not immortal. Therefore, there exists an
L(U)-formula ϕ(x) which devastates ψ. Then by Lemma 3.3, there are
ai, bi ∈ Ux and ci ∈ Uz such that, for all i < j < ω,

• ai ∈ ϕ(U) ∩ ψ(U ; ci) \ ψ(U ; cj), and
• bi ∈ ¬ϕ(U) ∩ ψ(U ; ci) \ ψ(U ; cj).

Since T is VC-minimal, ϕ(U) has a swiss cheese decomposition, namely
S0, ..., Sm−1 as in Remark 2.1. Therefore, by the pigeonhole principle,
for some j < m we have infinitely many i < ω such that ai ∈ Sj. Let
S = Sj and, without loss of generality, suppose all ai ∈ S. Let A be
the wheel and B0, ..., Bm−1 be the holes of S (if S has no holes, we get
a contradiction, since ψ(U ; ci) 6⊆ S for any i < ω). By the pigeonhole
principle again, there exists j < m and infinitely many i < ω such that
bi ∈ Bj. Let B = Bj. For each i ≥ 1: since bi ∈ B, B ∩ ψ(x, ci) 6= ∅.
Since bi−1 ∈ B, B 6⊆ ψ(x, ci). Thus ψ(x, ci) ⊆ B. But now ai ∈ B, so
ai /∈ S, which contradicts our choice of S. �

4. Local characterization of VC-minimality

Theorem 4.1 (Local Characterization of VC-Minimality). For a the-
ory T in a countable language L, the following are equivalent:

(1) T is VC-minimal,
(2) for all L-formulae ϕ(x; y), there exists an immortal directed L-

formula ψ(x; z) such that each instance of ϕ is T -equivalent to
a (finite) boolean combination of instances of ψ.

Since compactness shows that if every instance of ϕ is equivalent to
a boolean combination of instances of ψ, then there is an n so that
every instance of ϕ is a boolean combination of ≤ n instances of ψ,
this shows that the index set of VC-minimal theories is Π0

4.

Remark 4.2. Our restriction to a countable language is necessary. Con-
sider the example in the language L = {Pi | i < ω1} with ℵ1-many
unary predicates and let T be the L-theory which says that, for all
finite disjoint I, J ⊆ ω1, there are infinitely many x such that∧

i∈I

Pi(x) ∧
∧
j∈J

¬Pj(x).
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This theory has quantifier elimination and is superstable. One can
easily check it satisfies condition (2) of Theorem 4.1, but this is not
VC-minimal (see Example 2.10 of [7] for more details).

Lemma 4.3 (Main Construction Lemma). If ϕ(x; y) and ψ(x; z) are
each a directed immortal formula (not assuming {ϕ, ψ} is directed),
then there exists δ(x;w) an immortal formula such that

• {ψ, δ} is directed, and
• each instance of ϕ is a finite boolean combination of instances

of ψ and δ.

As the proof of the Main Construction Lemma is somewhat involved
and combinatorial, we leave it to Section 8. We now consider the proof
of Theorem 4.1, given the Main Construction Lemma.

Proof of Theorem 4.1. (1) ⇒ (2): Suppose T is VC-minimal and fix a
L-formula ϕ(x; y). By compactness, there exists a directed family of
finitely many L-formulae {ψi(x; zi) | i < k} such that each instance of
ϕ is T -equivalent to a boolean combination of instances of the ψi’s. By
taking instance sums, we may assume that k = 1. By Lemma 3.7, ψ is
immortal.

(2)⇒ (1): We construct Ψ the generating family by induction. First,
since L is countable, there exists an enumeration {ϕi(x; yi) | i < ω} of
the L-formulae with x (where |x| = 1) as a free variable. Let Ψ0 = ∅ and
suppose that we have Ψi a finite directed set of immortal L-formulae
constructed so that, for all j < i, each instance of ϕj is T -equivalent
to a boolean combination of instances of elements from Ψj+1. Suppose
further that Ψj ⊆ Ψj+1 for all j < i. Now consider ϕi(x; yi) and let
ψ(x; z) be given as in (2) (hence ψ is immortal and directed). Let
ψ′(x; z′) be the instance sum of Ψi, which is immortal and directed by
Remark 3.6. By Lemma 4.3, there exists δ(x;w) an immortal L-formula
such that {δ, ψ′} is directed and each instance of ψ is T -equivalent to a
boolean combination of instances of ψ′ and δ. Therefore, each instance
of ϕ is T -equivalent to a boolean combination of instances of ψ′ and
δ. Let Ψi+1 := Ψi ∪ {δ}, which is a finite directed set of immortal
L-formulae. Finally, let Ψ = ∪iΨi. �

5. Stable VC-Minimal Theories

Lemma 5.1. Suppose T is VC-minimal and stable. Then, there exists
Ψ := {Ei(x, y) | i ∈ I} a directed set of equivalence relations (on x
with |x| = 1) that is a generating family for T .
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Proof. Since T is VC-minimal, let Ψ′ be a generating family for T . Now
fix ψ(x; y) ∈ Ψ′ and p ∈ Sy(∅). Suppose, by means of contradiction,
that the type

p(y0) ∪ p(y1) ∪ {ψ(U ; y0) ( ψ(U ; y1)}
is consistent. Take 〈b0, b1〉 a witness to this and take σ ∈ Aut(U)
sending b0 to b1. Let bn = σn(b0) (in particular, this is consistent
with the naming of b1). Then, 〈bi : i < ω〉 and ψ is a witness to
the strict order property, a contradiction to the fact that T is stable.
Therefore, there exists δ(y) ∈ p(y) such that, for all b0, b1 ∈ Uyi with
|= δ(b0) ∧ δ(b1), either ψ(U ; b0) = ψ(U ; b1) or ψ(U ; b0) ∩ ψ(U ; b1) = ∅.
In other words, the formula

Eψ,p(x0, x1) := (∃y)(δ(y) ∧ ψ(x0; y) ∧ ψ(x1; y)) ∨ (x0 = x1)

is a ∅-definable equivalence relation. Now take

Ψ := {Eψ,p | ψ(x; y) ∈ Ψ′, p ∈ Sy(∅)}.
We claim that Ψ is a generating family for T . To show this, we simply
show CΨ = CΨ′ . For A ∈ CΨ′ , A = ψ(U ; b) for some ψ(x; y) ∈ Ψ′,
b ∈ Uy. Then, for any a ∈ A, one can check that A = Eψ,tp(b)(U ; a).
Conversely, take A ∈ CΨ, so A = Eψ,p(U , a) for some ψ(x; y) ∈ Ψ′,
p ∈ S(∅), and a ∈ U . Let δ(y) ∈ p(y) be the associated formula. If
there exists b ∈ Uy such that |= δ(b)∧ ψ(a; b), then ψ(U ; b) = A, hence
A ∈ CΨ′ . On the other hand, if there exists no such b, then A = {a}
so, since (x = y) ∈ Ψ′, A ∈ CΨ′ . �

So, without loss of generality, when dealing with a VC-minimal stable
theory, we may assume the generating family is a set of equivalence
relations on the home sort. As a corollary of Theorem 4.1, we get the
following characterization of stable VC-minimal theories.

Theorem 5.2. Suppose T is a stable theory in a countable language.
The following are equivalent:

(1) T is VC-minimal,
(2) For each formula ϕ(x; y), there exists finitely many refining

definable equivalence relations {Ej(x0, x1) | j < m}, each of
which is immortal, such that, for all b ∈ Uy, ϕ(U ; b) is a (finite)
boolean combination of instances of the Ej’s.

6. Π0
4-completeness of VC-minimality

We now show that the characterization of VC-minimality given in
Theorem 4.1 is the simplest possible.

Theorem 6.1. The index set of VC-minimal theories is Π0
4-hard.
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Figure 1. Example construction where 1 enters Wg(i,j)

at stage 3.

Ej
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j
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jV1
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Proof. We describe a recursive function f , which, on a given input i,
outputs a theory Ti so that Ti is always ℵ0-stable, and Ti is VC-minimal
if and only if i ∈ S for a Π0

4-complete set S. We have S written as
∀j(Wg(i,j) is co-finite) for a fixed recursive function g.

Our theory will be in the language L := {Ej | j ∈ ω} ∪ {Uj | j ∈
ω}∪ {V j

k , Z
j
k | j, k ∈ ω} where each Ej is binary and all other relations

are unary.
Ti begins with the following axioms:

• The Uj defines disjoint infinite sets.
• Each Ej is an equivalence relation on Uj with infinitely many

infinite classes.
• The V j

k defines disjoint subsets of Uj.

• If x ∈ V j
k , y ∈ V j

l for k 6= l, then ¬Ej(x, y).
• For each j, k ∈ ω: There are infinitely many Ej-classes which

do not intersect V j
k .

• For each j, k ∈ ω: For each Ej-class A which intersects V j
k , both

A ∩ V j
k and Ar V j

k are infinite.

• For each j, k ∈ ω: x ∈ Zj
k if and only if x /∈ V j

k and there is a y

so that Ej(x, y) ∧ y ∈ V j
k .

At stage s, for each k ≤ s, we add the following axioms to Ti:

• If k /∈ W s
g(i,j), then add an axiom stating that there are at least

s Ej-classes which intersect V j
k .

• If k enters Wg(i,j) at stage s, add an axiom stating that there

are exactly s Ej-classes which intersect V j
k .

See Figure 1 for details.
The following is an easy exercise.
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Lemma 6.2. For every i, Ti is a complete ℵ0-stable theory with quan-
tifier elimination.

Lemma 6.3. If ∀j(Wg(i,j) is co-finite), then Ti is VC-minimal.

Proof. For each j, let Sj be the set ω rWg(i,j). Each Sj is finite, by
assumption. Define Xj to be the set of elements in Uj, but not in any

V j
k or Zj

k for k ∈ Sj. Let Φ be the family composed of the following
families of definable sets:

• {Uj | j ∈ ω}
• {V j

k , Z
j
k | k ∈ Sj, j ∈ ω}

• {Xj | j ∈ ω}
• {Ej(x, y) ∧ x ∈ V j

k | k ∈ Sj}
• {Ej(x, y) ∧ x ∈ Zj

k | k ∈ Sj}
• {Ej(x, y) ∧ x ∈ Xj}
• {Ej(x, y) ∧ V j

l (x) | l /∈ Sj}
• {Ej(x, y) ∧ Zj

l (x) | l /∈ Sj}
It is immediate that Φ is directed. For l /∈ Sj, V j

l is a finite union of

instances of {Ej(x, y) ∧ V j
l (x)}. Similarly for Zj

l . Each Ej-class is the
union of elements of Φ given by the fourth, fifth, and sixth lines. By
quantifier elimination, every definable set is a boolean combination of
instances from Φ. Thus Φ witnesses VC-minimality of Ti.

�

Lemma 6.4. If ∃j(Wg(i,j) is co-infinite), then Ti is non-VC-minimal.

Proof. Fix j so Wg(i,j) is co-infinite. Let ψ be a directed formula so that
every instance of Ej is a boolean combination of instances of ψ. By
Lemma 5.1, ψ can be assumed to be comprised of equivalence relations.
By quantifier elimination, ψ is comprised of Ej-classes (off of a set

defined by finitely many exceptional V j
k and Zj

k). Let k /∈ Wg(i,j) not be

one of those finitely many exceptional k. Thus V j
k intersects infinitely

many Ej-classes. This shows that V j
k devastates ψ. Thus ψ cannot be

contained in any family witnessing VC-minimality of Ti by Lemma 3.7,
and thus Ti is non-VC-minimal.

�

�

Corollary 6.5. The index set of VC-minimal theories is Π0
4-complete.

Remark 6.6. One should note that all the theories Ti constructed in
Theorem 6.1 are, in fact, convexly orderable. This gives us a large list
of examples of theories that are ℵ0-stable and convexly orderable but
not VC-minimal.
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Figure 2. Example construction of a particular tree.
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7. Complexity of dp-smallness

Definition 7.1. We say a theory T is dp-small if there does not exist
an L-formula ϕ(x; y), a sequence 〈bi : i < ω〉, and L(U)-formulae ψj(x)
(where x is of the home sort) such that, for all i, j < ω, the following
partial type is consistent with T :

{ϕ(x; bi), ψj(x)} ∪ {¬ϕ(x; bi′) | i′ 6= i} ∪ {¬ψj′(x) | j′ 6= j}.

A theory being not dp-small is clearly a Σ1
1 condition, hence the

index of dp-small theories is Π1
1.

Theorem 7.2. The index set of dp-small theories is Π1
1-complete.

Proof. We use the fact that {T ⊂ ω<ω | T is a recursive tree with no path}
is Π1

1-complete (see Theorem 5.14 of [3]). Given a (recursive index
for a) tree T ⊆ ω<ω, we produce a theory so that the tree T has a
path if and only if the theory is not dp-small. We fix the language
L := {E} ∪ {Uσ | σ ∈ ω<ω} where E is binary and each Uσ is unary.

The theory is axiomatized as follows:

• E is an equivalence relation with infinitely many infinite classes.
• ∀xU∅(x)
• If σ and τ are incomparable, then Uσ ∩ Uτ = ∅.
• If σ ≺ τ , then Uτ ⊆ Uσ.
• If τ /∈ T , then Uτ = ∅
• If τ = σ_〈i〉, and τ ∈ T , then there is an infinite set S of E-

equivalence classes so that for each E-equivalence class A ∈ S,
Uτ ∩ A is an infinite co-infinite subset of Uσ ∩ A. Further,
there are infinitely many E-equivalence classes which intersect
Uσ which do not intersect Uτ .

See Figure 2 for an example.
It is straightforward to verify that the theory produced is complete

for any T and is dp-small if and only if T has no infinite path.
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�

To conclude this section, we use the ideas behind the construction
in Theorem 6.1 to provide an answer to a question from [6].

Example 7.3. We give an example of a theory in a countable language
that is dp-small but not convexly orderable, answering a question from
[6]. This theory happens to be ℵ0-stable. Let L = {E} ∪ {Ui,j | j ≤
i < ω}, where E is a binary relation and each Ui,j is a unary relation.
Let T be the L-theory which says

• E is an equivalence relation with infinitely many infinite classes;
• the Ui,j are pairwise disjoint;
• for all i < ω, Ui,0∪...∪Ui,i is a union of infinitely many E-classes;
• if an E-class intersects Ui,j, it does so with infinitely many

points and it intersects each Ui,j′ for j′ ≤ i; and
• if an E-class intersects Ui,j, it does not intersect Ui′,j for i′ 6= i.

This is ℵ0-stable and has quantifier elimination.
Suppose, by means of contradiction, that it were convexly orderable,

say with C on M |= T . Then, there exists k < ω such that, for all
a ∈ M , E(M ; a) is a union of at most k C-convex sets. Look at U2k,j

for j ≤ 2k. Again, by convex orderability, there exists ` < ω such that
each U2k,j(M) is a union of a most ` C-convex sets. Let Bj,m for m < `
be the mth C-convex component of U2k,j(M) (some may be empty).
By the pigeonhole principle, there exists m0, ...,mk < ` and an infinite
collection of E-classes A0, A1, ... such that Bj,mj

∩ At 6= ∅ for all j ≤ k
and t < ω. As the Bj,mj

are C-convex and pairwise disjoint, and each
intersect A0 and M \ A0, we must have that A0 is a union of at least
k + 1 C-convex sets. This is a contradiction.

However, this theory is dp-small. Suppose, by means of contradic-
tion, that ϕ(x; y) together with ψ`(x) for ` < ω is a witness to non-dp-
smallness. That is, there exists 〈bi : i < ω〉 such that, for all i, ` < ω,
the partial type

{ϕ(x; bi), ψ`(x)} ∪ {¬ϕ(x; bi′) | i′ 6= i} ∪ {¬ψ`′(x) | `′ 6= `}
is consistent. By quantifier elimination, we may assume ϕ is E with
perhaps a restriction to some Ui,j and that the ψ`(x) are of the form
Ui,j perhaps restricted to an E-class. One checks such formulae cannot
make the above partial type consistent.

8. The Main Construction Lemma

Suppose M is a countable model of a theory T in a countable lan-
guage. In this seciton, for simplicity of exposition, for a formula ϕ(x; y)
and b ∈My, we will write ϕb to mean ϕ(M ; b).
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Figure 3. Example of θ0, θ1, θ2, and θ3.
φa

θa 

0

θa,z 

1

ψz

 

ψz'

θa,z' 

2

ψz'' θa,z'' 

3

Lemma 8.1 (Unions and Intersections of chains). Suppose ρ(x; y) and
τ(x; z) are so that for any y, z, ρy 6⊥ τz. Let χ be any union of a chain
of instances of ρ or intersection of a chain of instances of ρ. Then for
every z, τz 6⊥ χ.

Proof. We first suppose χ is a union of a chain of instances of ρ. Sup-
pose z is so that τz ⊥ χ. Let a be in the intersection and b be in χr τz.
Let ρw be in the chain so that it contains a and b. Then ρw ⊥ τz, which
is a contradiction.

Now suppose χ is an intersection of a chain of instances of ρ. Suppose
z is so that τz ⊥ χ. Let a be any element of τz rχ and choose w so ρw
does not contain a. Then ρw ⊥ τz, which is a contradiction. �

Lemma 8.2 (Main Construction Lemma). If ϕ(x; y) and ψ(x; z) are
each a directed immortal formula (not assuming {ϕ, ψ} is directed),
then there exists δ(x;w) an immortal formula such that

• {ψ, δ} is directed, and
• each instance of ϕ is a finite boolean combination of instances

of ψ and δ.

Proof. We begin by defining the following formulae:

• θ0
a := {x ∈ ϕa | ∀z(x ∈ ψz → ψz 6⊥ ϕa)}

• If ϕa ⊥ ψz, then define θ1
a,z :=

⋃
{ψy | ψy r ϕa = ψz r ϕa}.

Otherwise, θ1
a,z := ∅.

• If ϕa ⊥ ψz, then define θ2
a,z :=

⋂
{ψy | ψy r ϕa = ψz r ϕa}.

Otherwise, θ2
a,z := ∅.

• θ3
a,z := (θ2

a,z ∩ ϕa) r
⋃
{ψz′ | (ψz′ ⊥ ϕa) ∧ ψz′ ∩ ϕa ( θ2

a,z ∩ ϕa}
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See Figure 3 for an example.
We intend to show that {ψ(x; y), θ0(x; a), θ1(x; a, z), θ2(x; a, z), θ3(x; a, z)}

is directed, each θi is immortal, and that each instance of ϕ is a boolean
combination of instances from this family.

Lemma 8.3. {ψ(x; y), θ0(x; a), θ1(x; a, z), θ2(x; a, z), θ3(x; a, z)} is di-
rected

Proof. For each pair of formulae from {ψ(x; y), θ0(x; a), θ1(x; a, z), θ2(x; a, z), θ3(x; a, z)},
we argue that no two instances can be ⊥.

ψ, θ0: If x ∈ ψy ∩ θ0
a, then ψy 6⊥ ϕa. If ψy ⊃ ϕa, then θ0

a ⊆ ϕa ⊆ ψy.
So we suppose ψy ⊆ ϕa. Take any x′ ∈ ψy. If x were in some
ψy′ where ψy′ ⊥ ϕa, then x ∈ ψy ⊆ ψy′ , contradicting x ∈ θ0

a.
Thus ψy ⊆ θ0

a.
ψ, θ1: This follows from Lemma 8.1 since any instance of θ1 is a union

of a chain of instances of ψ and ψ is directed.
ψ, θ2: This follows from Lemma 8.1 since any instance of θ2 is an

intersection of a chain of instances of ψ and ψ is directed.
ψ, θ3: Let ψy intersect θ3

a,z. If ψy ⊇ ψzrϕa, then ψy ⊇ θ2
a,z ⊇ θ3

a,z. So,
we may assume ψyrϕa ( ψzrϕa. If for some w, ψw ⊥ ϕa and
ψw ⊇ ψy and ψw ⊂ θ2

a,z, then ψy is explicitly excluded from θ3
a,z

and the intersection is empty. Otherwise, ψy ⊆ θ2
a,z ∩ ϕa and it

is contained in θ3
a,z.

θ0, θ0: We may assume ϕa′ ⊆ ϕa. If there is no x ∈ θ0
a′ and y so x ∈ ψy

and ψy ⊥ ϕa, then θ0
a′ ⊆ θ0

a. Otherwise, this ψy must contain
ϕa′ , since ψy 6⊥ ϕa′ . Thus θ0

a′ ⊆ ϕa′ and ϕa′ ∩ θ0
a = ∅.

θ0, θ3: Let x ∈ θ0
a ∩ θ3

a′,v. Let S be the set of v′ so that ψv r ϕa′ =
ψv′ r ϕa′ . Then x ∈ ψv′ for every v′ ∈ S. So ψv′ 6⊥ ϕa for each
v′ ∈ S. If ψv′ ⊆ ϕa for any v′ ∈ S, then ψv′ ⊆ θ0

a (see ψ, θ0),
so θ3

a′,v ⊆ ψv ⊆ θ0
a. So we assume ϕa ⊆ ψv′ for each such v′.

Thus ϕa ⊆ θ2
a′,v. Thus ϕa ⊂ ϕa′ . If there is a z so that θ0

a ⊆ ψz
and ψz ⊥ ϕa′ and ψz ∩ ϕa′ ( θ2

a′,v ∩ ϕa′ , then θ0
a ∩ θ3

a′,v = ∅.
Otherwise, θ0

a ⊆ θ3
a′,v.

θ1, anything: Since no instance of ψ is ⊥ to any instance of a θi, this follows
by Lemma 8.1.

θ2, anything: Since no instance of ψ is ⊥ to any instance of a θi, this follows
by Lemma 8.1.

θ3
a,z, θ

3
a′,z′ : As θ3

a,z ⊆ ϕa, we may assume ϕa ⊇ ϕa′ . Similarly, we may

assume either θ2
a,z ⊆ θ2

a′,z′ or vice versa. We start with the first

case: θ2
a,z ⊆ θ2

a′,z′ . Let S be the set of w so that ψw r ϕa =
ψz r ϕa. Then for every w ∈ S, since ψw ⊥ ϕa, it follows that
ψw ⊥ ϕa′ . Since {ψ, θ2} is directed, either ψw is a proper subset
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of θ2
a′,z′ and is thus excluded from θ3

a′,z′ or ψw contains θ2
a′,z′ .

In the first case, θ3
a,z is disjoint from θ3

a′,z′ , so we suppose the

second case holds for every w ∈ S. Thus θ2
a,z ⊇ θ2

a′,z′ . It remains

to check that any ψy contained in θ2
a,z excluded from θ3

a,z is also

excluded from θ3
a′,z′ . If ψy ⊥ ϕa, then ψy ⊥ ϕa′ and if it defines

a proper subset of θ2
a′,z′ ∩ϕa′ , then it defines a proper subset of

θ2
a,z ∩ ϕa, as needed.

Now we consider the second case: θ2
a′,z′ ( θ2

a,z. If θ2
a′,z′ ∩

ϕa ( θ2
a,z ∩ϕa, then using a small enough instance of ψw′ where

ψw′ r ϕa′ = ψz′ r ϕa′ , we see that θ2
a′,z′ is excluded from θ3

a,z.

Thus we may assume θ2
a′,z′ ∩ ϕa = θ2

a,z ∩ ϕa. It remains to see

that any instance of ψy omitted from θ3
a,z is also omitted from

θ3
a′,z′ . Since ϕa′ ⊆ ϕa, if ψy intersects θ2

a′,z′ and ψy ⊥ ϕa, then

ψy ⊥ ϕa′ . Thus if ψy is omitted in the definition of θ3
a,z, it is

also omitted in the definition of θ3
a′,z′ . Thus θ3

a,z ⊆ θ3
a′,z′ .

�

Lemma 8.4. Suppose ρ(x; y) is an immortal formula, and that each
instance of χ(x; z) is a union of a chain of instances of ρ. Then χ is
immortal.

Suppose ρ(x; y) is an immortal formula, and that each instance of
χ(x; z) is an intersection of a chain of instances of ρ. Then χ is im-
mortal.

Proof. First we consider the case where every instance of χ(x; z) is a
union of a chain of instances of ρ. Suppose towards a contradiction
that γ(x) devastates χ witnessed by the indiscernible 〈ci : i < ω〉. For
all i < j < ω, χci rχcj intersects both γ and ¬γ. Since each χ instance
is a union of a chain of instances of ρ, there exists di for each i < ω
so that ρdi ⊆ χci and for all i < j, ρdi r χcj intersects both γ and ¬γ.
This witnesses that γ devastates ρ, contrary to the assumption of ρ’s
immortality.

Now we consider the case where every instance of χ(x; z) is an inter-
section of a chain of instances of ρ. Suppose towards a contradiction
that γ(x) devastates χ witnessed by the indiscernible 〈ci : i < ω〉. For
all i < j < ω, χci rχcj intersects both γ and ¬γ. Since each χ instance
is an intersection of a chain of instances of ρ, there exists di for each
i < ω so that χci ⊆ ρdi and for all i < j, ρdi r ρdj intersects both
γ and ¬γ. This witnesses again that γ devastates ρ, contrary to the
assumption of ρ’s immortality.

�
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Lemma 8.5. θ0 is immortal.

Proof. Towards a contradiction, suppose γ devastates θ0 and consider
the indiscernible sequence 〈ai : i < ω〉 witnessing this as in Lemma 3.3.
If ϕa0 ∩ ϕa1 = ∅, then γ devastates ϕ by indiscernibility, contradicting
the immortality of ϕ. If ϕa0 ⊆ ϕa1 , then one of two cases holds:

(i) There exists z such that ϕa0 ⊆ ψz and ψz ⊥ ϕa1 . In this case,
θ0
a1
∩ ϕa0 = ∅, hence θ0

a0
and θ0

a1
are disjoint and θ0

a1
⊆ (ϕa1 \

ϕa0). Therefore, by indiscernibility, γ devastates ϕ, contrary to
assumption.

(ii) There exists no such z. Then ϕa0 ⊆ θ0
a1

, hence θ0
a0
⊆ θ0

a1
, but

this contradicts the choice of the ai’s in Lemma 3.3.

Similarly, if ϕa1 ⊆ ϕa0 and there exists z such that ϕa1 ⊆ ψz and
ψz ⊥ ϕa0 , then this contradicts the immortality of ϕ. Therefore, we
must have that ϕa1 ⊆ ϕa0 and no such z exists. Hence θ0

a1
⊆ θ0

a0
.

As γ does not devastate ϕ, we must have that (ϕa0 \ϕa1) is contained
in either γ or ¬γ. Without loss of generality, suppose it is contained
in γ. Then, by indiscernibility, (ϕai \ ϕai+1

) ⊆ γ for all i < ω.
Notice that ¬γ ∩ (θ0

a0
\ θ0

a1
) 6= ∅ by assumption, so choose x in this

set. As x /∈ θ0
a1

, there exists z such that x ∈ ψz and ψz ⊥ ϕa1 , hence
ψz ∩ θ0

a1
= ∅. However, since x ∈ θ0

a0
and {ψ, θ0} is directed, we must

have that ψz ⊆ θ0
a0

. Therefore, ψz ⊆ (θ0
a0
\ θ0

a1
). Moreover, as ψz ⊥ ϕa1

and ψz ⊆ ϕa0 , we have that ψz ∩ (ϕa0 \ ϕa1) 6= ∅. Hence, ψz ∩ γ 6= ∅.
By indiscernibility, there are zi such that

• ψzi ∩ ¬γ 6= ∅,
• ψzi ∩ γ 6= ∅, and
• ψzi ⊆ (θ0

ai
\ θ0

ai+1
).

In particular, the ψzi ’s are disjoint. Hence, γ devastates ψ, contrary to
immortality of ψ.

�

Lemma 8.6. θ1 is immortal

Proof. This follows from Lemma 8.4. �

Lemma 8.7. θ2 is immortal

Proof. This follows from Lemma 8.4. �

Lemma 8.8. θ3 is immortal.

Proof. For this proof, let

θ4
a,b,z := (θ2

a,z ∩ ϕb) r
⋃
{ψz′ | (ψz′ ⊥ ϕb) ∧ ψz′ ∩ ϕb ( θ2

a,z ∩ ϕb}.

In particular, θ4
a,a,z = θ3

a,z, so it suffices to show θ4 is immortal.
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By means of contradiction, suppose γ devastates θ4, and consider the
indiscernible sequence 〈〈ai, bi, zi〉 : i < ω〉 witnessing this as in Lemma
3.3. Fix any i 6= j. Since θ2 is directed, we have three cases:

(i) θ2
ai,zi
∩ θ2

aj ,zj
= ∅,

(ii) θ2
ai,zi
⊆ θ2

aj ,zj
, or

(iii) θ2
aj ,zj
⊆ θ2

ai,zi
.

For Case (i), since γ devastates θ4 and θ4
ai,bi,zi

⊆ θ2
ai,zi

, we have that

γ devastates θ2 by indiscernibility. Case (ii) and (iii) are symmetric, so
let us suppose that Case (ii) holds. In almost the exact same way as
one shows that ψy 6⊥ θ3

a,z for any a, y, z, one can show that ψy 6⊥ θ4
a,b,z

for any a, b, y, z. Hence, θ2
c,y 6⊥ θ4

a,b,z for any a, b, c, y, z by Lemma 8.1.
Thus, there are three subcases:

(a) θ2
ai,zi
∩ θ4

aj ,bj ,zj
= ∅,

(b) θ2
ai,zi
⊆ θ4

aj ,bj ,zj
, or

(c) θ4
aj ,bj ,zj

⊆ θ2
ai,zi

.

In Case (a), (θ4
aj ,bj ,zj

\θ4
ai,bi,zi

) ⊆ (θ2
aj ,zj
\θ2

ai,zi
), therefore γ devastates

θ2 by indiscernibility. In Case (b), fix k < i < j or k > i > j. Then,
by indiscernibility, θ2

ak,dk
⊆ θ4

ai,bi,zi
and, by definition, θ4

aj ,bj ,zj
⊆ θ2

aj ,zj
.

Hence,
(θ4
aj ,bj ,zj

\ θ4
ai,bi,zi

) ⊆ (θ2
aj ,zj
\ θ2

ak,dk
).

Therefore, γ devastates θ2 by indiscernibility. Hence Case (c) must
hold. Together, (ii) and (c) imply θ4

ai,bj ,zi
= θ4

aj ,bj ,zj
. Hence, by indis-

cernibility, we may assume there are a and z such that, for all i < ω,
θ4
a,bi,z

= θ4
ai,bi,zi

. We now consider the sequence 〈〈a, bi, z〉 : i < ω〉 which

witnesses that θ4 is devastated by γ.
If ϕb0 ∩ ϕb1 = ∅, then, as θ4

a,bi,z
⊆ ϕbi for all i, γ devastates ϕ. So we

may assume that ϕb1 ⊆ ϕb0 (note that, if ϕb0 ⊆ ϕb1 , then θ4
a,b0,z

⊆ θ4
a,b1,z

,

contrary to this sequence witnessing devastation of θ4). If both γ and
¬γ intersect ϕb0\ϕb1 , then γ devastates ϕ. So, without loss of generality
(and by indiscernibility), we may assume ϕbi \ ϕbi+1

⊆ γ for all i < ω.
In particular, note that ¬γ must intersect

⋂
i<ω ϕbi .

Since ¬γ intersects θ4
a,b0,z

\ θ4
a,b1,z

, there exists w such that

• ψw intersects ¬γ,
• ψw ⊆ θ2

a,z,
• ψw ⊥ ϕb1 , and
• ψw ⊆ ϕb0 .

In particular, ψw intersects (ϕb0 \ ϕb1), hence also γ. For all i < ω, ψw
does not contain (ϕbi \ ϕbi+1

) as otherwise θ4
a,bi,z

= θ4
a,bi+1,z

, contrary
to the choice of bi. On the other hand, for all but finitely many i, ψw
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does not intersect (ϕbi \ϕbi+1
), as otherwise ψw would devastate ϕ. By

removing finitely many and reindexing, we may assume ψw is disjoint
from (ϕbi \ ϕbi+1

) for all i > 1.
By indiscernibility, for each i < ω, there exists wi such that

• ψwi
intersects γ and ¬γ,

• ψwi
intersects (ϕb2i \ ϕb2i+1

), and
• ψwi

is disjoint from (ϕb2k \ ϕb2k+1
) for all k 6= i

(the last condition is clear for k > i and, for k < i, note that ψwi
⊆

ϕb2i , hence ψwi
is disjoint from (ϕb2k \ ϕb2k+1

)). In particular, since ψ
is directed, the last two conditions imply that the ψwi

’s are disjoint.
Hence, by the first condition, γ devastates ψ, contrary to immortality
of ψ.

�

Lemma 8.9. For any c, ϕc is a boolean combination of instances from
{ψ, θ0, θ1, θ2, θ3}.

Proof. Every element in ϕc is either in θ0
c or is in some θ1

c,z. We first

note that there is a finite set of instances of θ1
c,z which suffices to cover

(ϕc r θ0
c ). Otherwise, we could choose more and more instances of θ1

c,z

which would witness that ϕc devastates θ1.
We now define a sequence of sets whose union will be ϕc. Set Y0 = θ0

c .
Suppose we have defined the sets Yj for j < i. Suppose further that
there is a finite set Si−1 of elements so that (

⋃
w∈Si−1

θ1
c,w ∩ϕc) = (ϕcr⋃

j<i Yj). Now we define

Yi :=
⋃

w∈Si−1

((θ1
c,w r θ2

c,w) ∪ θ3
c,w).

To complete the recursive definition of the sequence of sets Yi for i <
ω, we need to see that there is a finite set Si so that (

⋃
w∈Si

θ1
c,w ∩

ϕc) = (ϕcr
⋃
j≤i Yj). We build Si as follows: Having selected elements

a0, . . . ak−1 so that (
⋃
j<k θ

1
c,aj
∩ϕc) ( (ϕcr

⋃
j≤i Yj), we need to select

an element ak. Fix an element x ∈ ϕc r (
⋃
j≤i Yj ∪

⋃
j<k θ

1
c,aj

) and let

ak be an element so x ∈ θ1
c,ak

. By directedness of {θ0, θ1, θ3}, θ1
c,ak
⊆

ϕcr (
⋃
j≤i Yj ∪

⋃
j<k θ

1
c,aj

). This process must stop, yielding a finite set

Si, as otherwise ϕc devastates θ1.
It remains to see that for some i,

⋃
j≤i Yj = ϕc. Otherwise there

is an infinite sequence of bi for i ∈ ω so that bi ∈ Si for each i and
θ1
c,bi+1

⊆ θ1
c,bi

, and this sequence witnesses that ϕ devastates θ1.

As each Yj is a boolean combination of instances from {ψ, θ0, θ1, θ2, θ3},
ϕc is a boolean combination of instances from {ψ, θ0, θ1, θ2, θ3}. �
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