
Vertical and Horizontal Percentage Aggregations

Carlos Ordonez
Teradata, NCR

San Diego, CA 92127, USA

ABSTRACT
Existing SQL aggregate functions present important limi-
tations to compute percentages. This article proposes two
SQL aggregate functions to compute percentages address-
ing such limitations. The first function returns one row for
each percentage in vertical form like standard SQL aggrega-
tions. The second function returns each set of percentages
adding 100% on the same row in horizontal form. These
novel aggregate functions are used as a framework to in-
troduce the concept of percentage queries and to generate
efficient SQL code. Experiments study different percentage
query optimization strategies and compare evaluation time
of percentage queries taking advantage of our proposed ag-
gregations against queries using available OLAP extensions.
The proposed percentage aggregations are easy to use, have
wide applicability and can be efficiently evaluated.

1. INTRODUCTION
This article studies aggregations involving percentages us-

ing the SQL language. SQL has been growing over the years
to become a fairly comprehensive and complex database lan-
guage. Nowadays SQL is the standard language used in rela-
tional databases. Percentages are essential to analyze data.
Percentages help understanding statistical information at a
basic level. Percentages are used to compare quantities in a
common scale. Even further, in some applications percent-
ages are used as an intermediate step for more complex anal-
ysis. Unfortunately traditional SQL aggregate functions are
cumbersome and inefficient to compute percentages given
the amount of SQL code that needs to be written and the
inability of the query optimizer to efficiently evaluate such
aggregations. Therefore, we propose two simple percentage
aggregate functions and important recommendations to ef-
ficiently evaluate them. This article can be used as a guide
to generate SQL code or as a proposal to extend SQL with
new aggregations.

Our proposed aggregations are intended to be used in On-
Line Analytical Processing (OLAP) [1, 7] and Data Mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

environments. Literature on computing aggregate functions
is extensive. An important extension is the CUBE operator
proposed in [4]. There has been a lot of research following
that direction [5, 9]. Optimizing view selection for data
warehouses [10] and indexing for efficient access in OLAP
applications are important related problems.

The article is organized as follows. Section 2 presents def-
initions related to OLAP aggregations. Section 3 introduces
two aggregate functions to compute percentages, in vertical
and horizontal form respectively, and explains how to gener-
ate efficient SQL code to evaluate them. Section 4 contains
experiments focusing on query optimization with large data
sets. Section 5 discusses related approaches. Section 6 con-
cludes the article.

2. DEFINITIONS
Let F be a relation having a primary key represented by

a row identifier (RID), d categorical attributes and one nu-
merical attribute: F (RID,D1, . . . , Dd, A). Relation F is
represented in SQL as a table having a primary key, d cate-
gorical columns and one numerical column. We will manip-
ulate F as a cube with d dimensions and one measure [4].
Categorical attributes (dimensions) are used to group rows
to aggregate the numerical attribute (measure). Attribute
A represents some mathematical expression involving mea-
sures. In general F can be a temporary table resulting from
some query or a view.

3. PERCENTAGE AGGREGATIONS
This section introduces two SQL aggregate functions to

compute percentages in a multidimensional fashion. The
first aggregation is called vertical percentage and the second
one is called horizontal percentage. The vertical percentage
aggregation computes one percentage per row like standard
SQL aggregations, and the horizontal percentage aggrega-
tion returns each set of percentages adding 100% as one
row. Queries using percentage aggregations are called per-
centage queries. We discuss issues about percentage queries
and potential solutions. We study the problem of optimizing
percentage queries.

3.1 Vertical Percentage Aggregations
We introduce the V pct(A BY Dj+1, . . . , Dk) aggregate

function. The first argument is the expression to aggre-
gate represented by A. The second one represents the list of
grouping columns to compute individual percentages. This
allows computing percentages based on any subset of the
columns used in the GROUP BY clause. The following SQL

statement has the goal of computing the percentage that
the sum of A grouped by D1, D2, . . . , Dk, represents with
respect to the total sum of A grouped by D1, D2, ..., Dj ,
where j ≤ k ≤ d. The grouping attributes to obtain totals
can be given in a different order, but we keep the same order
to keep notation consistent.

SELECT D1, . . . , Dj , . . . , Dk, V pct(A BY Dj+1, . . . , Dk)
FROM F GROUP BY D1, . . . , Dk;

We propose the following rules to use the V pct() aggregate
function. (1) The GROUP BY clause is required; the reason
behind this rule is two-level aggregations are required. (2)
The BY clause, inside the function call, is optional. But if
it is present then there must be a GROUP BY clause and
its columns must be a proper subset of the columns refer-
enced in GROUP BY. In particular the BY clause can have
as many as k − 1 columns. If the list D1, . . . , Dj is empty
percentages are computed with respect to the total sum of
A for all rows. (3) Vertical percentage aggregations can be
combined with other aggregations in the same statement.
Other SELECT aggregate terms may use other SQL aggre-
gate functions based on the same GROUP BY clause. (4)
When V pct() is used more than once, in different terms, it
can be used with different sub-grouping columns. Columns
used in each call must be a subset of the columns used in
the GROUP BY clause.

The V pct() function has a similar behavior to the stan-
dard aggregate functions: sum(), average(), count(), max()
and min() aggregations that have only one argument. The
order for columns given in the GROUP BY, or BY clauses
is irrelevant. However, for clarity purposes the ”GROUP
BY” and ”BY” columns appear in the same order so that
common columns appear in the same position. The order of
result rows does not affect correctness of results, but they
can be returned in the order given by GROUP BY by de-
fault. In this manner rows making up 100% can be displayed
together only if there is one vertical percentage aggregation
or all vertical aggregate terms have percent aggregations on
the same columns. The V pct() function returns a real num-
ber in [0,1] or NULL when dividing by zero or doing oper-
ations with null values. If there are null values the sum()
aggregate function determines the sums to be used. That
is, V pct() preserves the semantics of sum(), which skips null
values. If no BY clause is present then all rows in F are used
to compute totals. If the GROUP BY and BY clauses have
the same grouping columns then each row will have 100%
as result. Percentages are computed based on row counts
based on the grouping columns given.

Example. Assume we have a table F with sales informa-
tion as shown in Table 1. Consider the following SQL query
that gets what percentage of sales each city contributed to
its state.

SELECT state,city,Vpct(salesAmt BY city)

FROM sales GROUP BY state,city;

The result table is shown on Table 2. Even though the
order of rows does not affect validity of results it is better
to display rows for each state contiguously.

Issues with vertical percentages
Computing percentages may seem straightforward. How-
ever, there are two important issues: missing rows and divi-
sion by zero.

RID state city salesAmt
1 CA San Francisco 13
2 CA San Francisco 3
3 CA San Francisco 67
4 CA Los Angeles 23
5 TX Houston 5
6 TX Houston 35
7 TX Houston 10
8 TX Houston 14
9 TX Dallas 53

10 TX Dallas 32

Table 1: An example of fact table F

state city salesAmt
CA Los Angeles 22%
CA San Francisco 78%
TX Dallas 57%
TX Houston 43%

Table 2: V pct(salesAmt) on table F

Missing rows. This happens when there are no rows for
some subset of the grouping columns based on the k− j BY
columns. That is, some cell of the k-dimensional cube has
no rows. The resulting percentage should be zero, but no
number appears since there is no result row. An example
of this problem is having zero transactions some day of the
week for some store, and desiring sales percentages for all
days of the week for every store. This is a problem when
results need to be graphed or exported to other tools where
a uniform output (e.g. per week) is required. Also, result
interpretation can be harder since the number of result rows
adding to 100% may be different from group to group. It
may be difficult to compare two percentage groups if the
corresponding keys for each row do not match.

There are two alternatives to solve it. (1) Pre-processing.
Insert missing rows in F when tables are joined, one per
missing subgroup as given in the BY clause. This solves
the problem for measures (like salary, quantity) but it also
causes F to produce an incorrect row count % using V pct(1).
Also it may turn query evaluation inefficient if there are
many grouping columns given the potential high number of
combinations of attribute values. (2) Post-processing. In-
sert missing rows in the final result table. This requires get-
ting all distinct combinations of dimensions Dj+1, . . . , Dk

columns from F . The first option is preferred when there
are many different percentage queries being generated from
F . But it makes computation slower if the the cube has high
dimensionality. The second option allows faster processing
and it is preferred when there are a few different percentage
queries on F . We want to point out that the user may not
always want to insert missing rows. Therefore, the proposed
solutions are optional.

Division by zero. This is the case when sum(A) = 0
for some group given by D1, . . . , Dj . This is simpler than
the previous issue. This can never happen with V pct(1),
unless missing rows are inserted. This is solved by setting
the result to null whenever the total used to divide is zero.
This makes V pct() consistent with sum(). Even further, if
a division involves null values the result is also null.

Optimizing vertical percentage queries
The V pct() function can be classified as algebraic [4] because
it can be computed using a 2-valued function returning the
sum() for each group on the k grouping columns and the
sum() for each group on the j grouping columns respectively
and using another function to divide both sums. In the fol-
lowing paragraphs assume the result table with vertical per-
centages is FV . If there are m terms with different grouping
columns then m + 1 aggregations must be computed. We
concentrate on percentage queries with one aggregate term
(i.e. m = 1). In order to evaluate percentage queries with
one aggregate term we need to compute aggregations at two
different grouping levels in two temporary tables Fj and Fk;
one with the k columns used in the GROUP BY clause (Fk),
and another one with the j columns used in the BY clause
(Fj), being a subset of the columns used in GROUP BY;
j ≤ k. The table Fk stores the quantities to be divided
and Fj has the totals needed to perform divisions. There
are basically two strategies to compute the query. The first
one is computing both aggregations from F . The second
one is computing the aggregation at the finest aggregation
level, storing it in Fj and then computing the higher aggre-
gation level from Fj . If Fj is much smaller than F this can
save significant time. There is a third way to evaluate the
query in a single SQL statement using derived tables, but
it is a rephrasal of the first strategy. If m > 1 then partial
aggregations need to be computed bottom-up based on the
dimension lattice to speed up computation.

The finest level of aggregation Fk can only be computed
from F (easy to prove):

INSERT INTO Fk SELECT D1, D2, . . . , Dk, sum(A)
FROM F GROUP BY D1, . . . , Dk;

The coarser level of aggregation can be computed from F
or from Fk since sum() is distributive. So it can be com-
puted from partial aggregates [4]. This is crucial when F is
much larger than Fk.

INSERT INTO Fj SELECT D1, D2, . . . , Dj , sum(A)
FROM {Fk|F} GROUP BY D1, D2, . . . , Dj ;

When the totals of A at the two different aggregation lev-
els have been computed we just need to divide them to get
FV . Remember that it is necessary to check if the divider is
different from zero. There are two strategies to compute FV .
In the first strategy the actual percentages can be computed
joining Fj and Fk on their common subkey D1, . . . , Dj , di-
viding their corresponding A and inserting the results into
a third temporary table FV .

INSERT INTO FV SELECT Fk.D1, . . . , Fk.Dk,
CASE WHEN Fj .A <> 0 THEN Fk.A/Fj .A
ELSE NULL END

FROM Fj , Fk WHERE Fj .D1 = Fk.D1, .., Fj .Dj = Fk.Dj ;

In the second strategy percentages can be obtained by
dividing Fk.A by the totals in Fj .A joining on D1, . . . , Dj .
Then Fk becomes FV . This alternative avoids creating a
third temporary table, which may be an important feature
if disk space is limited.

UPDATE Fk SET A=CASE
WHEN Fj .A <> 0 THEN Fk.A/Fj .A ELSE NULL END

WHERE Fk.D1 = Fj .D1, .., Fk.Dj = Fj .Dj ; /*FV = Fk*/

Two sequential scans on F are needed if both aggregations
are done based on F ; these scans can be synchronized to
have effectively one scan. Only one scan on F is needed
if Fj is computed from Fk. An additional scan on Fk is
needed to perform the division using UPDATE. Since F is
accessed sequentially no index is needed. Identical indexes
on D1, . . . , Dj can improve performance to join Fj and Fk

in order to perform divisions. Index maintenance can slow
down Fj and Fk computation but the time improvement
when computing percentages is worth the cost.

3.2 Horizontal Percentage Aggregations
We introduce a second kind of percentage aggregation that

is useful in situations where the user needs to get results in
horizontal form or wants to combine percentages with aggre-
gations based on the j grouping columns. As seen in Section
3.1 vertical percentages can be combined with other aggre-
gate functions using the same grouping columns D1, . . . , Dk.
But what if it is necessary to combine percentages with ag-
gregates grouped by D1, . . . , Dj? It is clear vertical percent-
ages are not compatible with such aggregations. Another
problem is vertical percentages are hard to read when there
are many percentage rows. In general it may be easier to
understand percentages for the same group if they are on the
same row. For visualization purposes and further analysis
it may be more convenient to have all percentages adding
100% in one row. Finally, percentages may be the input for
a data mining algorithm, which in general requires having
the input data set with one observation per row and all di-
mensions (features) as columns. A primitive to transpose
(sometimes called denormalize) tables may prove useful for
this purposes, but this feature is not generally available in
SQL. Having these issues in mind we propose a new function
that takes care of computing percentages and transposing
results to be on the same row at the same time. We call this
function a horizontal percentage aggregate function. Com-
putationally, horizontal percentage queries have the same
power as vertical percentage queries but syntax, evaluation
and optimization are different.

The framework for horizontal percentages is similar to
the framework for vertical percentages. We introduce the
Hpct(A BY Dj+1, . . . , Dk) aggregate function, which must
have at least one argument to aggregate represented by A.
The remaining represents the list of grouping columns to
compute individual percentages. The totals are those given
by the columns D1, . . . , Dj in the GROUP BY clause if
present. This function returns a set of numbers for each
group. All the individual percentages adding 100% for each
group will appear on the same row in a horizontal form.
This allows computing percentages based on any subset of
columns not used in the GROUP BY clause.

SELECT D1, .., Dj , Hpct(A BY Dj+1, . . . , Dk)
FROM F GROUP BY D1, . . . , Dj ;

This is a list of rules to use the Hpct() aggregate func-
tion. (1) The GROUP BY clause is optional. (2) the BY
clause, inside the function call, is required. The column list
must be non-empty and must be disjoint from D1, . . . , Dj .
There is no limit number on the columns in the list coming
from F . If GROUP BY is not present percentages are com-
puted with respect to the total sum of A for all rows. (3)
Other SELECT aggregate terms may use other aggregate
functions (e.g. sum(), avg(), count(), max()) based on the

store salesAmt total
Mo Tu We Th Fr Sa Su sales

2 7% 6% 8% 9% 16% 24% 30% 2500
4 0% 9% 9% 9% 18% 20% 35% 4000
7 8% 8% 4% 4% 8% 35% 33% 1600

Table 3: Hpct(salesAmt) for sales table

same GROUP BY clause based on columns D1, . . . , Dj . (4)
Grouping columns may be given in any order. (5) When
Hpct() is used more than once, in different terms, it can be
used with different grouping columns to compute individ-
ual percentages. Columns used in each call must be disjoint
from the columns used in the GROUP BY clause.

Example. Consider the following SQL query based on the
sales table that gets what percentage of sales each day of
the week contributed by store in a horizontal form and their
total sales regardless of day.

SELECT store,Hpct(salesAmt BY dweek),sum(salesAmt)

FROM sales GROUP BY store;

The result table is shown on Table 3. In this case all
numbers adding 100% are on the same row. Also observe
the 0% for store 4 on Monday.

Issues with horizontal percentages
Division by zero also needs to be considered in this case.
Each division must set the result to null when the divider
(total by D1, . . . , Dj) is zero. However, the issue with miss-
ing rows disappears. This is because the output is created
column-wise instead of row-wise. But a potential problem
with horizontal percentages becomes reaching the maximum
number of columns in the DBMS. This can happen when the
columns Dj+1, . . . , Dk have a high number of distinct val-
ues or when there are several calls to Hpct() in the same
query. The only way there is to solve this limitation is by
vertically partitioning the columns so that the maximum
number of columns is not exceeded. Each partition table
has D1, . . . , Dj as its primary key.

Optimizing horizontal percentage queries
Since Hpct() returns not one value, but a set of values
for each group D1, . . . , Dj then it cannot be algebraic like
V pct() according to [4].

Let the result table containing horizontal percentages be
FH . From what we proposed for vertical percentages a
straightforward approach is to compute vertical percentages
first, and then transpose the result table to have all percent-
ages of one group on the same row. First, we need to get the
distinct value combinations based on FV (or F) and create
a table having as columns such unique combinations:

SELECT DISTINCT Dj+1, . . . , Dk FROM {FV |F};

Assume this statement returns a table with N distinct
rows where row i is a set of categorical values {vhi, . . . , vki}
and h = j + 1. Then each row is used to define one column
to store a percentage for one specific combination of dimen-
sion values. We define a table FH that has {D1, . . . , Dj} as
primary key and N columns that together make up 100%
for one group. Then we insert into FH the aggregated rows
from FV producing percentages in horizontal form:

INSERT INTO FH SELECT D1, . . . , Dj ,
sum(CASE WHEN Dh = vh1 and . . . and Dk = vk1

THEN A ELSE 0 END),
. . .
sum(CASE WHEN Dh = vhN and . . . and Dk = vkN

THEN A ELSE 0 END)
FROM FV GROUP BY D1, D2, . . . , Dj ;

In some cases this approach may be slow because it re-
quires running the entire process for FV , creating FH and
populating it. This process incurs overhead from at least five
SQL statements. An alternative approach is computing hor-
izontal percentages directly from F . The SQL statement to
compute horizontal percentages directly from F is an exten-
sion of the statement above. We need to add an aggregation
to get totals, a division operation between individual sums
and the total, and a case statement to avoid division by zero.
The code to avoid division by zero is omitted.

INSERT INTO FH SELECT D1, . . . , Dj ,
sum(CASE WHEN Dh = vh1 and . . . and Dk = vk1

THEN A ELSE 0 END)/sum(A),
. . .
sum(CASE WHEN Dh = vhN and . . . and Dk = vkN

THEN A ELSE 0 END)/sum(A)
FROM F GROUP BY D1, D2, . . . , Dj ;

Computing horizontal percentages directly from F requires
only one scan. It also has the advantage of only using one ta-
ble to compute sums instead of two tables that are required
in the vertical case.

The main drawback about horizontal percentages is that
there must be a feedback process to produce the table defini-
tion. To make statements dynamic, the SQL language would
need to provide a primitive to transpose (denormalize) and
aggregate at the same time. An important optimization
that falls outside of our control is stopping comparisons in
the CASE statements when a match is found. The query
optimizer has no way to stop comparisons since it it is not
aware the conditions in each CASE statement produce dis-
joint sets. That is, one row from F falls on exactly one col-
umn from FH . So if FH has N percentage columns in general
that requires unnecessarily evaluating N CASE statements.
Then the number of CASE evaluations could be reduced to
N/2 on average using a sequential search, or even to time
O(1) using a hash-based search. If there are m terms with
Hpct() no optimizations are possible since all aggregations
are done based on D1, . . . , Dj and then there are no interme-
diate tables to take advantage of partial aggregations. This
simplifies query optimization.

4. EXPERIMENTAL EVALUATION
The relational DBMS we used was Teradata V2R4 run-

ning on a system with one CPU running at 800MHz, 256MB
of main memory and 100 GB of disk space. We implemented
a Java program that generated SQL code to evaluate per-
centage queries given a query with the proposed aggregate
functions. Our experiments were run on a workstation con-
necting to the DBMS through the JDBC interface.

We analyzed optimization strategies for percentage queries
on two large synthetic data sets. Each dimension was uni-
formly distributed. The dimension (Di) cardinality appears
in parenthesis and n stands for the number of rows. Table

F D1, . . . , Dk (1) (2) (3) (4)
D1, . . . , Dj italics

employee gender 15 17 15 26
employee gender 15 15 15 25

marstatus
employee gender 16 16 16 26

educat,marstatus
employee gender,educat 15 16 27 27

age,marstatus
sales dweek 84 84 82 161
sales monthNo 84 85 85 164

dweek
sales dept 88 87 139 168

dweek,monthNo
sales dept,store 656 658 2879 976

dweek,monthNo

Table 4: Query optimizations for V pct(). (1) Best
strategy. (2) index(Fj) 6= index(Fk). (3) Update Fv

instead of insert. (4) Use partial aggregate Fj to get
Fk. Times in seconds

employee had n = 1M ; its columns were gender(2), marsta-
tus(4), educat(5), age(100). Table sales had n = 10M with
columns transactionId(10M), itemId(1000), dweek(7), mon-
thNo(12), store(100), city(20), state(5), dept(100).

4.1 Comparing Optimization Strategies
We focused on the simpler case of percentage queries hav-

ing one aggregate term. Vertical percentage queries times
analyzing each optimization individually are shown in Ta-
ble 4. The best strategy times are on the default column.
The remaining columns turn each optimization on/off leav-
ing the rest fixed. These are our findings. Having the same
index on Fk and Fj on their common subkey marginally im-
proves join performance for all queries. Computing Fj from
Fk saves significant time, particularly when |Fk| << |F |.
This is a well-known optimization [4, 5] based on the fact
that sum() is distributive. This is the case when k = 1
or k = 2 and the corresponding columns have a low selec-
tivity. If k ≥ 3 and columns are more selective then this
optimization is less important. Computing Fj and Fk from
F in parallel, in a single scan, marginally decreases time.
These times are almost always the same as those shown as
the default strategy and thus are omitted. In general queries
on sales are minimally affected by the number of grouping
columns when they have low selectivity, but a jump in time
can be observed when storeid is introduced. Doing inser-
tion instead of update to compute FV reduces time by an
order of magnitude when FV has comparable size to F ; this
overhead becomes smaller when FV is much smaller than
F . When doing insert computing Fk, Fj and FV take about
30% of time each. When doing update computing Fk and
Fj take about 20% of time and UPDATE takes 80% of time
if FV is comparable to F . Therefore, we recommend creat-
ing indexes on the common subkey of Fk and Fj , using IN-
SERT instead of UPDATE to compute FV , specially when
|FV | ≈ |F | and computing Fj from Fk.

Table 5 compares optimization strategies for horizontal
percentages. There are basically two strategies. Comput-
ing the aggregations either from F or from FV . We picked
the best strategy for FV shown as the default column in

F D1, . . . , Dk From From
D1, . . . , Dj in italics FV F

employee gender 21 14
employee gender 16 13

marstatus
employee gender 17 13

educat,marstatus
employee gender,educat 29 50

age,marstatus
sales dweek 88 89
sales monthNo 85 85

dweek
sales dept 93 195

dweek,monthNo
sales dept,store 702 4463

dweek,month

Table 5: Comparing query optimization strategies
for Hpct(). Times in seconds

Table 4. To compute percentages from F there is no need
to use sum() on two tables as was needed for V pct(). So
there is no need to do any join, or UPDATE and the index
choice is simply the default: D1, . . . , Dj . Contrary to intu-
ition it can be observed that getting percentages from FV

does not always produce the best times. This is the case for
the first three queries on employee where each query uses
columns with low selectivity. However, for the last query
on employee the number of conditions that need to be eval-
uated in the CASE statements hurts performance. This is
caused by age which has higher selectivity. For sales the
difference in performance when using dweek and monthno
for either approach is insignificant. But when we introduce
columns with higher selectivity (dept, storeid) performance
suffers. Therefore, we recommend computing FH directly
from F when there are no more than two columns in the
list Dj+1, . . . , Dk and each of them has low selectivity, and
computing FH from FV using V pct() when there are three
or more grouping columns or when the grouping columns
have high selectivity.

4.2 Comparing Percentage Aggregations
against ANSI OLAP Extensions

This section compares percentage queries using the best
evaluation strategy, as justified above, against queries using
available OLAP extensions in SQL [6]. Each group of queries
uses the same input table, the same grouping dimension
columns and the same measure column. Then each query
with the same parameters produces the same answer set. So
the basic difference is how the query is expressed in SQL,
which leads to different query evaluation plans. Queries us-
ing OLAP extensions use the sum() window function and
the OVER/PARTITION BY clauses. In this case the opti-
mizer groups rows and computes aggregates using its own
temporary tables and indexes. We have no control over these
temporary tables.

Table 6 shows average times for several queries compar-
ing the two proposed approaches and the SQL OLAP ex-
tensions. We picked the best evaluation strategy for vertical
percentages and the best strategy for horizontal percent-
ages. As can be seen in all cases our proposed aggregations

F D1, . . . ,Dk V pct Hpct OLAP
D1, . . . ,Dj in italics extens

employee gender 15 14 90
employee gender 15 13 64

marstatus
employee gender 16 13 122

educat,marstatus
employee gender,educat 17 29 85

age,marstatus
sales dweek 87 89 2708
sales monthNo dweek 85 85 2881
sales dept 88 93 3897

dweek,monthNo
sales dept,store 656 702 4512

dweek,month

Table 6: Comparing percentage aggregations versus
OLAP extensions. Times in seconds

run in less time than OLAP extensions. In some cases the
times for our approaches are one order of magnitude better
than the OLAP-based approach. Therefore, even though
OLAP extensions allow computing percentages in a single
statement it is clear they are inefficient. Needless to say,
the query optimizer can take advantage of the evaluation
strategy proposed in this article should SQL code generators
use existing SQL OLAP extensions to evaluate percentage
queries. Comparing performance-wise vertical versus hori-
zontal percentages there is no clear winner. But given the
more succinct and uniform output format, the small differ-
ence in performance and its suitability to be used by Data
Mining tools we advocate the use of Hpct() over V pct().

5. RELATED APPROACHES
Some SQL extensions to help Data Mining tasks are pro-

posed in [2]. These include a primitive to compute samples
and another one to transpose the columns of a table. Mi-
crosoft SQL provides pivot and unpivot operators that turn
columns into rows and viceversa [3]. Our work goes beyond
by combining pivoting and aggregating, which automates an
essential task in OLAP and Data Mining applications. SQL
extensions to perform spreadsheet-like operations with ar-
ray capabilities are introduced in [8]. Those extensions are
not adequate to compute percentage aggregations because
they have the purpose of avoiding joins to express formu-
las, but are not optimized to handle two-level aggregations
or perform transposition. The optimizations and proposed
code generation framework discussed in this work can be
combined with that approach.

6. CONCLUSIONS
This article proposed two aggregate functions to compute

percentages. The first function returns one row for each
computed percentage and it is called a vertical percentage
aggregation. The second function returns each set of per-
centages adding 100% on the same row in horizontal form
and it is called a horizontal percentage aggregation. The
proposed aggregations are used as a framework to study
percentage queries. Two practical issues when computing
vertical percentage queries were identified: missing rows and
division by zero. We discussed alternatives to tackle them.
Horizontal percentages do not present the missing row issue.
We studied how to efficiently evaluate percentage queries

with several optimizations including indexing, computation
from partial aggregates, using either row insertion or update
to produce the result table, and reusing vertical percentages
to get horizontal percentages. Experiments study percent-
age query optimization strategies and compare our proposed
percentage aggregations against queries using OLAP aggre-
gations. Both proposed aggregations are significantly faster
than existing OLAP aggregate functions showing about an
order of magnitude improvement.

There are many opportunities for future work. Combining
horizontal and vertical percentage aggregations on the same
query creates new challenges for query optimization. Hor-
izontal percentage aggregations provide a starting point to
extend standard aggregations to return results in horizontal
form. Optimizing vertical percentage queries with different
groupings in each term seems similar to association mining
using bottom-up search. Reducing the number of compar-
isons needed to compute horizontal percentage aggregations
may lead to changing the algorithm to parse and evaluate
a set of aggregations when they are combined with ”case”
statements with disjoint conditions. A set of percentage
queries on the same table may be efficiently evaluated using
shared summaries. We need to study the use of indexes, dif-
ferent physical organization and data structures to optimize
queries in an intensive database environment where users
concurrently submit percentage queries.

7. REFERENCES
[1] S. Chaudhuri and U. Dayal. An overview of data

warehousing and OLAP technology. SIGMOD Record,
26(1):65–74, 1997.

[2] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and
P. Lohman. Non-stop SQL/MX primitives for
knowledge discovery. In ACM KDD Conference, pages
425–429, 1999.

[3] G. Graefe, U. Fayyad, and S. Chaudhuri. On the
efficient gathering of sufficient statistics for
classification from large SQL databases. In ACM KDD
Conference, pages 204–208, 1998.

[4] J. Gray, A. Bosworth, A. Layman, and H. Piharesh. A
relational aggregation operator generalizing group-by,
cross-tab and sub-total. In ICDE Conference, 1996.

[5] J. Han, J. Pei, G. Dong, and K. Wang. Efficient
computation of iceberg cubes with complex measures.
In ACM SIGMOD Conference, pages 1–12, 2001.

[6] ISO-ANSI. Amendment 1: On-Line Analytical
Processing, SQL/OLAP, pages 46–55. ANSI, 1999.

[7] J. Widom. Research poblems in data warehousing. In
ACM CIKM Conference, pages 25–30, 1995.

[8] A. Witkowski, S. Bellamkonda, T. Bozkaya,
G. Dorman, N. Folkert, A. Gupta, L. Sheng, and
S. Subramanian. Spreadsheets in RDBMS for OLAP.
In ACM SIGMOD Conference, pages 52–63, 2003.

[9] M. Zaharioudakis, M. Cochrane, R. Lapis,
H. Piharesh, and M. Urata. Answering complex SQL
queries using automatic summary tables. In ACM
SIGMOD Conference, pages 105–116, 2000.

[10] Y. Zhuge, H. Garcia-Molina, and J. Hammer. View
maintenance in a warehousing environment. In ACM
SIGMOD Conference, pages 316–327, 1995.

Horizontal Aggregations for Building Tabular Data Sets

Carlos Ordonez
Teradata, NCR

San Diego, CA 92127, USA

ABSTRACT
In a data mining project, a significant portion of time is
devoted to building a data set suitable for analysis. In a re-
lational database environment, building such data set usu-
ally requires joining tables and aggregating columns with
SQL queries. Existing SQL aggregations are limited since
they return a single number per aggregated group, produc-
ing one row for each computed number. These aggrega-
tions help, but a significant effort is still required to build
data sets suitable for data mining purposes, where a tabu-
lar format is generally required. This work proposes very
simple, yet powerful, extensions to SQL aggregate func-
tions to produce aggregations in tabular form, returning a
set of numbers instead of one number per row. We call
this new class of functions horizontal aggregations. Hor-
izontal aggregations help building answer sets in tabular
form (e.g. point-dimension, observation-variable, instance-
feature), which is the standard form needed by most data
mining algorithms. Two common data preparation tasks are
explained, including transposition/aggregation and trans-
forming categorical attributes into binary dimensions. We
propose two strategies to evaluate horizontal aggregations
using standard SQL. The first strategy is based only on re-
lational operators and the second one uses the ”case” con-
struct. Experiments with large data sets study the proposed
query optimization strategies.

1. INTRODUCTION
In general a data mining project consists of four major

phases. The first phase involves extracting, cleaning and
transforming data for analysis. This phase, called data
preparation, is the main theme of this work. In the second
phase a data mining algorithm analyzes the prepared data
set. Most research work in data mining has concentrated on
proposing efficient algorithms without paying much atten-
tion to building the data set itself. The third phase validates
results, creates reports and tunes parameters. The first, sec-
ond and third phases are repeated until satisfactory results

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DMKD’04 June 13, 2004, Paris, France
Copyright 2004 ACM 1-58113-908-X/04/06 ...$5.00.

are obtained. During the fourth phase statistical results are
deployed on new data sets. This assumes a good predictive
or descriptive model has already been built. In a relational
database environment with normalized tables, a significant
effort is required to prepare a summary data set in order to
use it as input for a data mining algorithm. Most algorithms
from data mining, statistics and machine learning require a
data set to be in tabular form. That is the case with clus-
tering [14, 15], regression [7] and factor analysis [19]. Asso-
ciation rules are an exception, where a data set typically has
a sparse representation as transactions [1]. However, there
exist algorithms than can directly cluster transactions [12,
16]. Each research discipline uses different terminology. In
data mining the common terms are point-dimension. Statis-
tics literature generally uses observation-variable. Machine
learning research uses instance-feature. The basic idea is the
same: having a 2-dimensional array given by a table with
rows and columns. This is precisely the terminology used in
relational databases, but we will make a distinction on the
actual tabular structure that is appropriate for most data
mining algorithms. The goal of this article is to introduce
new aggregate functions that can be used in queries to build
data sets in tabular form. We will show that building a data
set in tabular form is an interesting problem.

1.1 Motivation
As mentioned before, in a relational database environ-

ment building a suitable data set for data mining purposes
is a time-consuming task. This task generally requires writ-
ing long SQL statements or customizing SQL if it is au-
tomatically generated by some tool. There are two main
ingredients in such SQL code: joins and aggregations. We
concentrate on the second one. The most widely-known ag-
gregation is the sum of a column over groups of rows. Some
other aggregations return the average, maximum, minimum
or row count over groups of rows. There also exist non-
standard extensions to compute statistical functions like lin-
ear regression, quantiles and variance. There is even a fam-
ily of OLAP-oriented functions that use windows and row
partitioning. Unfortunately, all these aggregations present
limitations to build data sets for data mining purposes. The
main reason is that, in general, data that are stored in a re-
lational database (or a data warehouse to be more specific)
come from On-Line Transaction Processing (OLTP) systems
where database schemas are highly normalized. But data
mining, statistical or machine learning algorithms generally
require data in a summarized form that needs to be ag-
gregated from normalized tables. Normalization is a well
known technique used to avoid anomalies and reduce re-

35

dundancy when updating a database [5]. When a database
schema is normalized, database changes (insert or updates)
tend to be localized in a single table (or a few tables). This
helps making changes one row at a time faster and en-
forcing correctness constraints, but it introduces the later
need to gather (join) and summarize (aggregate) informa-
tion (columns) scattered in several tables when the user
queries the database. Based on current available functions
and clauses in SQL there is a significant effort to compute
aggregations when they are desired in a tabular (horizontal)
form, suitable to be used by a data mining algorithm. Such
effort is due to the amount and complexity of SQL code that
needs to be written and tested. To be more specific, data
mining algorithms generally require the input data set to be
in a tabular form having each point/observation/instance as
a row and each dimension/variable/feature as a column.

There are further practical reasons supporting the need to
get aggregation results in a tabular (horizontal) form. Stan-
dard aggregations are hard to interpret when there are many
result rows, especially when grouping attributes have high
cardinalities. To perform analysis of exported tables into
spreadsheets it may be more convenient to have aggrega-
tions on the same group in one row (e.g. to produce graphs
or to compare subsets of the result set). Many OLAP tools
generate code to transpose results (sometimes called pivot).
This task may be more efficient if the SQL language provides
features to aggregate and transpose combined together.

With such limitations in mind, we propose a new class
of aggregate functions that aggregate numeric expressions
and transpose results to produce a data set in tabular form.
Functions in this class are called horizontal aggregations.

1.2 Article Organization
The article is organized as follows. Section 2 introduces

definitions and examples. Section 3 introduces horizontal
aggregations. Section 4 discusses experiments focusing on
code generation and query optimization. Related work is
discussed in Section 5. Section 6 contains conclusions and
directions for future work.

2. DEFINITIONS
This section defines the table that will be used to explain

SQL queries throughout this work. Let F be a relation hav-
ing a simple primary key represented by a row identifier
(RID), d categorical attributes and one numeric attribute:
F (RID, D1, . . . , Dd, A). In SQL F is a table with one col-
umn used as primary key, d categorical columns and one
numeric column used to get aggregations. Table F will be
manipulated as a cube with d dimensions and one measure
[10]. That is, each categorical column is a dimension and
the numeric column is a measure. Dimension columns are
used to group rows to aggregate the measure column. We
assume F has a star schema to simplify exposition. Dimen-
sion lookup tables will be based on simple foreign/primary
keys. That is, one dimension column Dj will be a foreign
key linked to a lookup table that has Dj as primary key.
Table F represents a temporary table or a view based on
some complex SQL query joining several tables.

2.1 Motivating Examples
To illustrate definitions and provide examples of F , we

will use a table transactionLine that represents the trans-
action table from a chain of stores and a table employee

representing people in a company. Table transactionLine
has dimensions grouped in three taxonomies (product hier-
archy, location, time), used to group rows, and three mea-
sures represented by itemQty, costAmt and salesAmt, to
pass as arguments to aggregate functions. Table employee
has department, gender, salary and related contents.

We want to compute queries like ”summarize sales for
each store showing the sales of each day of the week”; ”com-
pute the total number of items sold in each department for
each store”. These queries can be answered with standard
SQL, but additional code needs to be written or generated
to return results in tabular (horizontal) form. Consider the
following two queries.

SELECT storeId,dayofweekNo,sum(salesAmt)
FROM transactionLine GROUP BY 1,2;

SELECT storeId,deptId,sum(itemqty)
FROM transactionLine GROUP BY 1,2;

If there are 100 stores, 20 store departments and stores are
open 7 days a week, the first query returns 700 rows and the
second query returns 2000 rows. It is easier to analyze 100
rows with 7 columns showing days as columns; or 100 rows
with 20 columns making departments columns, respectively.
For employee we would like to know ”how many employees of
each gender are there in department?”; or ”what is the total
salary by department and maritalStatus?”. These queries
provide the answer with standard SQL. Again, for analytical
purposes it is preferable to show counts for each gender or
salary totals for each marital status on the same row.

SELECT departmentId,gender, count(*)
FROM employee GROUP BY 1,2;

SELECT departmentId,maritalStatus,sum(salary)
FROM employee GROUP BY 1,2;

Now consider some potential data mining problems that
may be solved by a data mining/statistical package if result
sets come in tabular form. Stores can be clustered based
on sales for each day of the week. We can predict sales per
store department based on the sales in other departments
using decision trees or regression. We can find out potential
correlation of number of employees by gender within each
department. Most data mining algorithms (e.g. clustering,
decision trees, regression, correlation analysis) require result
tables from these queries to be transformed into a tabular
format at some point. There are proposals of data mining
algorithms that can work directly on data sets in transaction
form [12, 16], but they are complex and are efficient when
input points have many dimensions equal to zero.

3. HORIZONTAL AGGREGATIONS
We introduce a new class of aggregations that are similar

in spirit to SQL standard aggregations, but which return
results in horizontal form. We will refer to standard SQL
aggregations as vertical aggregations to contrast them with
the ones we propose.

3.1 Syntax and Usage Rules
We propose extending standard SQL aggregate functions

with a BY clause followed by a list of ”subgrouping” columns
to produce a set of numbers instead of one number. Let
Hagg() represent any standard aggregation (e.g. sum(),

36

count(), min(), max(), avg()). We introduce the generic
Hagg() aggregate function whose syntax in a query is as
follows.

SELECT D1, .., Dj , Hagg(A BY Dj+1, . . . , Dk)
FROM F
GROUP BY D1, . . . , Dj ;

We call Hagg() a horizontal aggregation. The function
Hagg() must have at least one argument represented by A,
followed by subgrouping columns to compute individual ag-
gregations. The result groups are determined by columns
D1, . . . , Dj in the GROUP BY clause if present. This func-
tion returns a set of numbers for each group. All the indi-
vidual aggregations for each group will appear on the same
row as a set of columns in a horizontal form. This allows
computing aggregations based on any subset of columns not
used in the GROUP BY clause. A horizontal aggregation
groups rows and aggregates column values (or expressions)
like a vertical aggregation, but returns a set of values (multi-
value) for each group.

We propose the following rules to use horizontal aggre-
gations in order to get valid results. (1) the GROUP BY
clause is optional. That is, the list D1, . . . , Dj may be
empty. The reason being that the user may want to get
global aggregations only. If the GROUP BY clause is not
present then there is only one result row. Equivalently, rows
can be grouped by a constant value (e.g. D1 = 0) to al-
ways include a GROUP BY clause in code generation. (2)
the BY clause, inside the function call, and therefore the
list Dj+1, . . . , Dk are required, Also, to avoid singleton sets,
{D1, . . . , Dj}∩{Dj+1 , . . . , Dk} = ∅. (3) horizontal aggrega-
tions may be combined with vertical aggregations or other
horizontal aggregations on the same query provided both
refer to the same grouping based on {D1, . . . , Dj}. (4) the
argument to aggregate represented by A is required; A can
be a column name or an arithmetic expression. In the case
of count() A can be * or the ”DISTINCT” keyword followed
by a list of column names. (5) when Hagg() is used more
than once, in different terms, it can be used with different
grouping columns to compute individual aggregations. But
according to (2) columns used in each term must be disjoint
from {D1, . . . , Dj}.

3.2 Examples
In a data mining project most of the effort is spent in

preparing and cleaning a data set. A big part of this effort
involves deriving metrics and coding categorical attributes
from the data set in question and storing them in a tabular
(observation, record) form for analysis so that they can be
used by a data mining algorithm.

Assume we want to summarize sales information with one
store per row. In more detail, we want to know the number
of transactions by store for each day of the week, the total
sales for each department of the store and total sales. The
following query provides the answer.

SELECT
storeId,
sum(salesAmt BY dayofweekName),
count(distinct transactionid BY dayofweekNo),
sum(salesAmt BY deptIdName),
sum(salesAmt)

FROM transactionLine
,DimDayOfWeek,DimDepartment,DimMonth

WHERE transactionLine.dayOfWeekNo

=DimDayOfWeek.dayOfWeekNo
AND
transactionLine.deptId
=DimDepartment.deptId

GROUP BY storeId;

This query produces a result table like the one shown
in Table 1. Observe each horizontal aggregation effectively
returns a set of columns as result and there is call to a
standard vertical aggregation with no subgrouping columns.
For the first horizontal aggregation we show day names and
for the second one we show the number of day of the week.
These columns can be used for linear regression, clustering
or factor analysis. We can analyze correlation of sales based
on daily sales. Total sales can be predicted based on volume
of items sold each day of the week. Stores can be clustered
based on similar sales for each day of the week or similar
sales in the same department.

Consider a more complex example where we want to know
for each store sub-department how sales compare for each
region-month showing total sales for each region/month com-
bination. Sub-departments can be clustered based on sim-
ilar sales amounts for each region/month combination. We
assume all stores in all regions have the same departments,
but local preferences lead to different buying patterns. This
query provides the required data set:

SELECT subdeptid,
sum(salesAmt BY regionNo,monthNo)

FROM transactionLine
GROUP BY subdeptId;

We turn our attention to another common data prepara-
tion task, coding categorical attributes as binary attributes.
The idea is to create a binary dimension for each distinct
value of a categorical attribute. This is accomplished by
simply calling max(1 BY..) grouping by the appropriate
columns. The following query produces a vector showing
a 1 for the departments where the customer made a pur-
chase, and 0 otherwise. The clause to switch nulls to 0 is
optional.

SELECT
transactionId,
max(1 BY deptId DEFAULT 0)

FROM transactionLine
GROUP BY transactionId;

The following query on employees creates a binary flag for
gender and maritalStatus combined together to try to an-
alyze potential relationships with salary. The output looks
like Table 2.

SELECT
employeeId,
sum(1 BY gender,maritalStatus DEFAULT 0),
sum(salary)

FROM employee
GROUP BY 1;

3.3 Result Table Definition
In the following sections we discuss how to automatically

generate efficient SQL code to evaluate horizontal aggrega-
tions. Modifying the internal data structures and mecha-
nisms of the query optimizer is outside the scope of this
article, but we give some pointers. We start by discussing

37

store salesAmt countTransactionId,dayOfWeekNo salesAmt total
Id Mon Tue Wed Thu Fri Sat Sun 1 2 3 4 5 6 7 dairy meat drinks sales
1 500 200 120 140 90 230 160 20 2 15 50 50 60 30 700 260 480 1440
2 200 100 400 100 900 100 200 8 9 5 10 40 20 40 300 500 1200 2000
3 100 100 100 200 200 200 200 5 6 4 13 44 16 50 350 350 400 1100
4 200 300 200 300 200 300 200 24 21 24 23 29 26 20 700 700 300 1700

Table 1: A tabular data set, suitable for data mining, obtained from table transactionLine

Employee Gender&Marital Salary
Id M&Single M&Married F&Single F&married
1 1 0 0 0 30k
2 0 0 1 0 50k
3 0 0 0 1 40k
4 1 0 0 0 45k

Table 2: Binary codes for gender/maritalStatus from table employee

the structure of the result table and then query optimization
strategies to populate it. The proposed strategies produce
the same result table.

Let the result table be FH . The horizontal aggregation
function Hagg() returns not a single value, but a set of val-
ues for each group D1, . . . , Dj . Therefore, the result table
FH must have as primary key the set of grouping columns
{D1, . . . , Dj} and as non-key columns all existing combi-
nations of values Dj+1, . . . , Dk. We get the distinct value
combinations of Dj+1, . . . , Dk using the following statement.
To simplify writing let h = j + 1 (we will use h sometimes
to refer to Dj+1).

SELECT DISTINCT Dh, .., Dk FROM F ;

Assume this statement returns a table with N distinct
rows. Then each row is used to define one column to store
an aggregation for one specific combination of dimension
values. Table FH that has {D1, . . . , Dj} as primary key and
N columns corresponding to each subgroup. Therefore, FH

has j + N columns in total.

CREATE TABLE FH(
D1 int, . . . ,,Dj int

,”Dh = vh1 .. Dk = vk1” real
,”Dh = vh2 .. Dk = vk2” real
..
,”Dh = vhN .. Dk = vkN” real

) PRIMARY KEY(D1, . . . , Dj);

3.4 Query Optimization
We propose two basic strategies to evaluate horizontal ag-

gregations. The first strategy relies only on relational oper-
ations. That is, only doing select, project, join and aggre-
gation queries; we call it the SPJ strategy. The second form
relies on the SQL ”case” construct; we call it the CASE
strategy. Each table has an index on its primary key for
efficient join processing. We do not consider additional in-
dexing mechanisms to accelerate query evaluation.

SPJ strategy
The SPJ strategy is interesting from a theoretical point of
view because it is based on relational operators only. The
basic idea is to create one table with a vertical aggregation
for each result column, and then join all those tables to

produce FH . We aggregate from F into N projected tables
with N selection/projection/join/aggregation queries. Each
table FI corresponds to one subgrouping combination and
has {D1, . . . , Dj} as primary key and an aggregation on A as
the only non-key column. We introduce an additional table
F0, that will be outer joined with projected tables to get
a complete result set. We propose two basic sub-strategies
to compute FH . The first one directly aggregates from F .
The second one computes the equivalent vertical aggregation
in a temporary table FV grouping by D1, . . . , Dk. Then
horizontal aggregations can be indirectly computed from FV

since standard aggregations are distributive [10].
We now introduce the indirect aggregation based on the

intermediate table FV , that will be used for both the SPJ
and the CASE strategy. Let FV be a table containing the
vertical aggregation, based on D1, . . . , Dk. Let V agg() rep-
resent the desired equivalent aggregation for Hagg(). The
statement to compute FV is straightforward:

INSERT INTO FV

SELECT D1, D2, . . . , Dk, V agg(A)
FROM F
GROUP BY D1, D2, . . . , Dk;

Table F0 defines the number of result rows, and builds the
primary key. F0 is populated so that it contains every exist-
ing combination of D1, . . . , Dj . Table F0 has {D1, . . . , Dj}
as primary key and it does not have any non-key column.

INSERT INTO F0

SELECT DISTINCT D1, . . . , Dj FROM {F |FV };

In the following discussion I ∈ {1, . . . , N} and h = j + 1;
we use h to make writing clear, mainly to define boolean
expressions. We need to get all distinct combinations of
subgrouping columns Dh, . . . , Dk, to create the name of re-
sult columns, to compute the number of result columns (N)
and to generate the boolean expressions for where clauses.
Each where clause consists of a conjunction of k − h + 1
equalities based on Dh, . . . , Dk.

SELECT DISTINCT Dh, . . . , Dk FROM {F |FV };

Tables F1, . . . , FN contain individual aggregations for each
combination of Dh, . . . , Dk. The primary key of table FI is
{D1, . . . , Dj}.

38

INSERT INTO FI

SELECT D1, . . . , Dj , sum(A)
FROM {F |FV }
WHERE Dh = vhI and .. and Dk = vkI

GROUP BY D1, . . . , Dj ;

Then each table FI aggregates only those rows that cor-
respond to the Ith unique combination of Dh, . . . , Dk, given
by the where clause. A possible optimization is synchroniz-
ing scans to compute the N tables concurrently.

Finally, to get FH we just need to do N left outer joins
with the N +1 tables so that all individual aggregations are
properly assembled as a set of N numbers for each group.
Outer joins set result columns to null for missing combina-
tions for the given group. In general, nulls should be the
default value for groups with missing combinations. We be-
lieve it would be incorrect to set the result to zero or some
other number by default if there are no qualifying rows. Such
approach should be considered on a per-case basis.

INSERT INTO FH

SELECT
F0.D1, F0.D2, . . . , F0.Dj ,
F1.A, F2.A, . . . , FN .A

FROM F0

LEFT OUTER JOIN F1

ON F0.D1 = F1.D1 and. . . and F0.Dj = F1.Dj

LEFT OUTER JOIN F2

ON F1.D1 = F2.D1 and. . . and F1.Dj = F2.Dj

. . .
LEFT OUTER JOIN FN

ON FN−1.D1 = FN .D1 and. . . and FN−1.Dj = FN .Dj ;

This statement may look complex, but it is easy to see that
each left outer join is based on the same columns D1, . . . , Dj .
To avoid ambiguity in column references, D1, . . . , Dj are
qualified with F0. Result column I is qualified with ta-
ble FI . Since F0 has M rows each left outer join produces
a partial table with M rows and one additional column.
Then at the end, FH will have M rows and N aggregation
columns. The statement above is equivalent to an update-
based strategy. Table FH can be initialized inserting M rows
with key D1, . . . , Dj and nulls on the N result aggregation
columns. Then FH is iteratively updated from FI joining
on D1, . . . , Dj . This strategy basically incurs twice I/O do-
ing updates instead of insertion. We claim reordering the N
projected tables to join cannot accelerate processing because
each partial table always has M rows. Another claim is that
it is not possible to correctly compute horizontal aggrega-
tions without using outer joins. In other words, natural joins
would produce an incomplete result set.

CASE strategy
For this strategy we use the ”case” programming construct
available in SQL. The case statement returns a value selected
from a set of values based on boolean expressions. From a
relational database theory point of view this is equivalent
to doing a simple projection/aggregation query where each
non-key value is given by a function that returns a number
based on some conjunction of conditions. We propose two
basic sub-strategies to compute FH . In a similar manner
to SPJ, the first one directly aggregates from F and the
second one computes the vertical aggregation in a tempo-
rary table FV and then horizontal aggregations are indirectly
computed from FV .

We now present the direct aggregation strategy. Horizon-
tal aggregation queries can be evaluated by directly aggre-
gating from F and transposing rows at the same time to
produce FH . First, we need to get the unique combinations
of Dh, . . . , Dk that define the matching boolean expression
for result columns. Recall that h = j + 1 represents the first
column to define a horizontal aggregation value. The SQL
code to compute horizontal aggregations directly from F is
as follows. Observe V agg() is a standard SQL aggregation
that has a ”case” statement as argument. Horizontal ag-
gregations need to set the result to null when there are no
qualifying rows for the specific horizontal group to be con-
sistent with the SPJ strategy and also with the extended
relational model [6].

SELECT DISTINCT Dh, . . . , Dk FROM F ;

INSERT INTO FH SELECT D1, . . . , Dj

,Vagg(CASE WHEN Dh = vh1 and . . . and Dk = vk1

THEN A ELSE null END)
..
,Vagg(CASE WHEN Dh = vhN and . . . and Dk = vkN

THEN A ELSE null END)
FROM F
GROUP BY D1, D2, . . . , Dj ;

This statement computes aggregations in only one scan
on F . The main difficulty is that there must be a feedback
process to produce the ”case” boolean expressions. To make
this statement dynamic, the SQL language would need to
provide a primitive to transpose and aggregate.

Based on FV we just need to transpose rows so that we
get groups based on D1, . . . , Dj . Query evaluation needs
to combine the desired aggregation with ”case” statements
for each distinct combination of values of Dj+1, . . . , Dk. As
explained above, horizontal aggregations need to set the re-
sult to null when there are no qualifying rows for the spe-
cific horizontal group. The boolean expression for each case
statement has a conjunction of k − h + 1 equalities. The
following statements compute FH :

SELECT DISTINCT Dh, . . . , Dk FROM FV ;

INSERT INTO FH SELECT D1,..,Dj

,sum(CASE WHEN Dh = vh1 and .. and Dk = vk1

THEN A ELSE null END)
..
,sum(CASE WHEN Dh = vhN and .. and Dk = vkN

THEN A ELSE null END)
FROM FV

GROUP BY D1, D2, . . . , Dj ;

As can be seen, the code is similar to the code presented
before, the main difference being that we have a call to
sum() in each term, which preserves whatever values were
previously computed by the vertical aggregation. It has the
disadvantage of using two tables instead of one as required
by the direct strategy. For very large tables F computing
FV first, may be more efficient than the direct strategy.

3.5 Discussion
From both proposed strategies we summarize requirements

to compute horizontal aggregations. (1) Grouping rows by
D1, . . . , Dj in one or several queries. (2) Getting all distinct
combinations of Dh, . . . , Dk to know the number and names
of result columns, and match an input row with a result col-
umn. (3) Setting result columns to null when there are no

39

qualifying rows. (4) Computing vertical aggregations either
directly from F or indirectly from FV . These requirements
can be used as a guideline to modify the query optimizer or
to develop more efficient query evaluation algorithms.

The correct way to treat missing combinations for one
group is to set the result column to null. But in some cases
it may make sense to change nulls to zero, as was the case to
code categorical attributes into binary dimensions. Some as-
pects about both CASE sub-strategies are worth discussing.
The boolean expressions in each term produce disjoint sub-
sets. The queries above can be significantly accelerated us-
ing a smarter evaluation because each input row falls on
only one result column and the rest remain unaffected. Un-
fortunately, the SQL parser does not know this fact and
it unnecessarily evaluates N boolean expressions. This re-
quires O(N) time complexity for each row, making in total
N × (k − h + 1) comparisons. The parser/optimizer can
reduce the number to conjunctions to evaluate to only one
using a hash table that maps one conjunction to one result
column. Then the complexity for one row can go from O(N)
down to O(1).

If an input query has m terms having a mix of horizon-
tal aggregations and some of them share similar subgroup-
ing columns Dh, . . . , Dk the parser/optimizer can avoid re-
dundant comparisons by reordering operations. If a pair of
horizontal aggregations does not share the same set of sub-
grouping columns further optimization seems not possible,
but this is an aspect worth investigating.

Horizontal aggregations should not be used when the set
of columns {Dj+1, . . . , Dk} have many distinct values. For
instance, getting horizontal aggregations on transactionLine
using itemId. In theory such query would produce a very
wide and sparse table, but in practice it would cause a run-
time error because the maximum number of columns allowed
in the DBMS may be exceeded.

3.6 Practical Issues
There are two practical issues with horizontal aggrega-

tions: reaching the maximum number of columns and reach-
ing the maximum column name length if columns are au-
tomatically named. Horizontal aggregations may return a
table that goes beyond the maximum number of columns in
the DBMS when the set of columns {Dj+1, . . . , Dk} has a
large number of distinct combinations of values, when col-
umn names are long or when there are several horizontal
aggregations in the same query. This problem can be solved
by vertically partitioning FH so that each partition table
does not exceed the maximum allowed number of columns.
Evidently, each partition table must have D1, . . . , Dj as its
primary key. The second important issue is automatically
generating unique column names. If there are many sub-
grouping columns Dh, . . . , Dk or columns involve strings,
this may lead to very long column names. This can be
solved by generating column identifiers with integers, but
semantics of column content is lost. So we discourage such
approach. An alternative is the use of abbreviations. In
contrast, vertical aggregations do not exhibit these issues
because they return a single number per row and column
names involve an aggregation on one column or expression.

4. EXPERIMENTAL EVALUATION
In this section we present our experimental evaluation on

an NCR computer running the Teradata DBMS software

V2R5. The system had one node with one CPU running at
800MHz, 256MB of main memory and 1 TB of disk space.
The SQL code generator was implemented in the Java lan-
guage and connected to the server via JDBC. We used the
data sets described below. We studied the simpler type of
queries having one horizontal aggregation. Each experiment
was repeated five times. We report the average of time mea-
surements.

4.1 Data Sets
We evaluated optimization strategies for aggregation queries

with a real data set and a synthetic data set.
The real data set came from the UCI Machine Learning

Repository. This data set contained a collection of records
from the US Census. This data set had 68 columns repre-
senting a combination of numeric and categorical attributes
and had n = 200, 000 rows. This was a medium data set
with dimension of different cardinalities and skewed value
distributions.

The synthetic data set was generated as follows. We tried
to generate attributes whose cardinalities reflect a typical
transaction table from a data warehouse. Each dimension
was uniformly distributed so that every group and result
column involved a similar number of rows from F . We in-
dicate the dimension (Di) cardinality in parenthesis. Table
transactionLine had columns deptId(10), subdeptId(100),
itemId(1000), yearNo(4), monthNo(12), dayOfWeekNo(7),
regionId(4), stateId(10), cityId(20) and storeId(30). Ta-
ble transactionLine was generated with n = 1′000, 000 rows
and n = 2′000, 000 rows. This data set provided a rich set of
dimensions with different cardinalities and two sizes to test
scalability.

4.2 Query Optimization Strategies
Table 3 compares query optimization strategies for hori-

zontal aggregations showing different combinations of group-
ing dimensions. The two main factors affecting query eval-
uation time are data set size and grouping dimensions car-
dinalities. Two general conclusions from our experiments
are that the SPJ strategy is always slower and that there is
no single CASE strategy that is always the most efficient.
We can see that the SPJ strategies, for both n = 1M and
n = 2M and low N , are one order of magnitude slower than
the CASE strategies. On the other hand, when N is larger
(subgouping by subdeptId or by dayOfWeekNo,monthNo),
they are two orders of magnitude slower than their coun-
terparts. For UScensus, the difference in time between
CASE strategies is not significant. Intuitively, the indirect
strategy should be the most efficient since it summarizes
F and stores partial aggregations on FV . Nevertheless, it
can be seen that for the real data set such strategy is al-
ways slower. For transactionLine and n = 1M there is no
clear winner between the direct CASE (aggregate from F)
and the indirect (aggregate from FV) CASE strategy. For
transactionLine and n = 2M the indirect CASE strategy is
clearly the best, but without a significant difference. Com-
paring SPJ-direct (from F) and SPJ-indirect (from FV) we
can see that in cases when N is small, using FV produces
a significant speedup. But surprisingly, when N is large, it
does not.

We compare times with UScensus at n = 1M and n =
2M to find out how time increases if data set size is dou-
bled. The direct CASE strategy presents clean scalability,

40

F D1, . . . ,Dj in italics SPJ SPJ CASE CASE
Dj+1, . . . ,Dk in normal font from F from FV from F from FV

UScensus n=200k iSchool 31 31 8 10
UScensus n=200k iClass 33 34 10 12
UScensus n=200k iMarital 41 41 9 11
UScensus n=200k dAge iMarital 37 40 8 11
UScensus n=200k dAge,iClass iSchool,iSex 69 71 10 13

transactionLine n=1M regionId 48 33 10 12
transactionLine n=1M monthNo 127 102 15 13
transactionLine n=1M subdeptId 2077 1623 30 37
transactionLine n=1M monthNo dayOfWeekNo 68 56 14 13
transactionLine n=1M deptId dayOfWeekNo,monthNo 1627 1242 28 32
transactionLine n=1M deptId,storeId dayOfWeekNo,monthNo 1536 1140 27 37

transactionLine n=2M regionId 94 38 20 13
transactionLine n=2M monthNo 159 105 28 15
transactionLine n=2M subdeptId 2280 1965 39 36
transactionLine n=2M monthNo dayOfWeekNo 104 58 20 14
transactionLine n=2M deptId dayOfWeek,monthNo 1744 1458 35 34
transactionLine n=2M deptId,storeId dayOfWeekNo,monthNo 1783 1369 40 40

Table 3: Comparing query optimization strategies. Times in seconds

where times increase 50-100% for one subgrouping dimen-
sion if n is doubled. If there are more grouping/subgrouping
dimensions, scalability is more impacted by the number of
aggregation columns (N). The indirect CASE strategy is
much less impacted by data set size since times for n = 1M
are almost equal to times for n = 2M . This indicates that
computing FV plays a less important role than the transpo-
sition operation. Data set size is crucial for the SPJ strategy,
but much less important for both CASE strategies. Com-
paring the direct with the indirect CASE strategy, it seems
n is the main factor. For large n the indirect CASE strategy
gives best times and for medium/small n the direct CASE
strategy is better. Drawing a clear border where one CASE
strategy will outperform the other one is subject of further
research.

An analysis of performance looking at different dimension
cardinalities on table transactionLine follows. We can see,
from aggregations by regionId, monthNo, and subdeptId,
that increasing dimension cardinality increases time accord-
ingly. This makes evident the relationship between dimen-
sion cardinalities and N . Comparing the aggregation by
(monthNo, dayOfWeekNo) and (deptId, dayOfWeekNo, mon-
thNo), where monthNo and deptId have similar cardinalities
there is about an order of magnitude increase in time for
all strategies. Comparing the aggregation by (deptId, day-
OfWeekNo, monthNo) and (deptId,storeId, dayOfWeekNo,
monthNo), where we are increasing the number of result
rows and decreasing the number of rows that are aggregated
in each of the N result columns, we can see all strategies
performance changes little.

Our experiments indicate that the subgrouping columns
{Dj+1, . . . , Dk} and their cardinalities are very important
performance factors for any query optimization strategy.

5. RELATED WORK
Research on efficiently computing aggregations is exten-

sive. Aggregations are essential in data mining [7] and OLAP
[23] applications. The problem of integrating data mining
algorithms into a relational DBMS is related to our pro-
posal. SQL extensions to define aggregations that can help
data mining purposes are proposed in [3]. Some SQL prim-
itive operations for data mining were introduced in [4]; the

most similar one is an operation to pivot a table. There
are also pivot and unpivot operators, that transpose rows
into columns and columns into rows [9]. An extension to
compute histograms on low dimensional subspaces of high
dimensional data is proposed in [11]. SQL extensions to de-
fine aggregate functions for association rule mining are in-
troduced in [22]. Mining association rules with SQL inside a
relational DBMS is introduced in [20]. There is a special ap-
proach on the same problem using set containment and rela-
tional division to find associations [18]. Database primitives
to mine decision trees are proposed in [9, 21]. Implement-
ing a clustering algorithm in SQL is explored in [14]. There
has been work following this direction to cluster gene data
[17], with basically the same idea. Some SQL extensions
to perform spreadsheet-like operations were introduced in
[24]. Those extensions have the purpose of avoiding joins
to express formulas, but are not optimized to perform par-
tial transposition for each group of result rows. Horizontal
aggregations are closely related to horizontal percentage ag-
gregations [13]. The differences between both approaches
are that percentage aggregations require aggregating at two
grouping levels, require dividing numbers and need to take
care of numerical issues. Horizontal aggregations are sim-
pler and have more general applicability. The problem of
optimizing queries having outer joins has been studied be-
fore. Optimizing joins by reordering operations and using
transformation rules is studied in [8]. This work does not
consider the case of optimizing a query that contains several
outer joins on primary keys only. Traditional query optimiz-
ers use a tree-based execution plan, but there is work that
advocates the use of hyper-graphs to provide a more com-
prehensive set of potential plans [2]. This approach is rele-
vant to our SPJ strategy. To the best of our knowledge, the
idea of extending SQL with horizontal aggregations for data
mining purposes and optimizing such queries in a relational
DBMS had not been studied before.

6. CONCLUSIONS
We introduced a new class of aggregate functions, called

horizontal aggregations. Horizontal aggregations are useful
to build data sets in tabular form. A horizontal aggregation
returns a set of numbers instead of a single number for each

41

group. We proposed a simple extension to SQL standard
aggregate functions to compute horizontal aggregations that
only requires specifying subgrouping columns. We explained
how to evaluate horizontal aggregations with standard SQL
using two basic strategies. The first one (SPJ) relies on rela-
tional operators. The second one (CASE) relies on the SQL
case construct. The SPJ strategy is interesting from a the-
oretical point of view because it is based on select, project,
natural join and outer join queries. The CASE strategy is
important from a practical standpoint given its efficiency.
We believe it is not possible to evaluate horizontal aggrega-
tions using standard SQL without either joins or ”case” con-
structs. Our proposed horizontal aggregations can be used
as a method to automatically generate efficient SQL code
with three sets of parameters: grouping columns, subgroup-
ing columns and aggregated column. On the other hand,
if standard SQL aggregate functions are extended with the
”BY” clause, this work suggests how to modify the SQL
parser and query optimizer. The impact on syntax is min-
imal. The basic difference between vertical and horizontal
aggregations, from the user point of view, is just the inclu-
sion of subgrouping columns.

We believe the evaluation of horizontal aggregations rep-
resents an important new research problem. There are sev-
eral aspects that warrant further research. The problem of
evaluating horizontal aggregations using only relational op-
erations presents many opportunities for optimization. Us-
ing additional indexes, besides the indexes on primary keys,
is an aspect worth considering. We believe our proposed
horizontal aggregations do not introduce any conflict with
vertical aggregations, but that requires more research and
testing. In particular, we need to study the possibility of
extending OLAP aggregations to provide horizontal capa-
bilities. Horizontal aggregations tend to produce tables with
fewer rows, but with more columns. Thus query optimiza-
tion strategies typically used for vertical aggregations do not
work well for horizontal aggregations. We want to charac-
terize our query optimization strategies more precisely in
theoretical terms with I/O cost models. Some properties on
the cube [10] may be generalized to multi-valued cells.

7. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large
databases. In ACM SIGMOD Conference, pages
207–216, 1993.

[2] G. Bhargava, P. Goel, and B.R. Iyer. Hypergraph
based reorderings of outer join queries with complex
predicates. In ACM SIGMOD Conference, pages
304–315, 1995.

[3] D. Chatziantoniou. The PanQ tool and EMF SQL for
complex data management. In ACM KDD Conference,
pages 420–424, 1999.

[4] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and
P. Lohman. Non-stop SQL/MX primitives for
knowledge discovery. In ACM KDD Conference, pages
425–429, 1999.

[5] E.F. Codd. A relational model of data for large shared
data banks. ACM CACM, 13(6):377–387, 1970.

[6] E.F. Codd. Extending the database relational model
to capture more meaning. ACM TODS, 4(4):397–434,
1979.

[7] U. Fayyad and G. Piateski-Shapiro. From Data
Mining to Knowledge Discovery. MIT Press, 1995.

[8] C. Galindo-Legaria and A. Rosenthal. Outer join
simplification and reordering for query optimization.
ACM TODS, 22(1):43–73, 1997.

[9] G. Graefe, U. Fayyad, and S. Chaudhuri. On the
efficient gathering of sufficient statistics for
classification from large SQL databases. In ACM KDD
Conference, pages 204–208, 1998.

[10] J. Gray, A. Bosworth, A. Layman, and H. Piharesh. A
relational aggregation operator generalizing group-by,
cross-tab and sub-total. In ICDE Conference, 1996.

[11] A. Hinneburg, D. Habich, and W. Lehner.
Combi-operator-database support for data mining
applications. In VLDB Conference, pages 429–439,
2003.

[12] C. Ordonez. Clustering binary data streams with
K-means. In ACM DMKD Workshop, pages 10–17,
2003.

[13] C. Ordonez. Vertical and horizontal percentage
aggregations. In ACM SIGMOD Conference, 2004.

[14] C. Ordonez and P. Cereghini. SQLEM: Fast clustering
in SQL using the EM algorithm. In ACM SIGMOD
Conference, pages 559–570, 2000.

[15] C. Ordonez and E. Omiecinski. FREM: Fast and
robust EM clustering for large data sets. In ACM
CIKM Conference, pages 590–599, 2002.

[16] C. Ordonez and E. Omiecinski. Efficient disk-based
K-means clustering for relational databases. IEEE
TKDE, to appear, 2004.

[17] D. Papadopoulos, C. Domeniconi, D. Gunopulos, and
S. Ma. Clustering gene expression data in SQL using
locally adaptive metrics. In ACM DMKD Workshop,
pages 35–41, 2003.

[18] R. Rantzau. Processing frequent itemset discovery
queries by division and set containment join operators.
In ACM DMKD Workshop, pages 20–27, 2003.

[19] S. Roweis and Z. Ghahramani. A unifying review of
linear Gaussian models. Neural Computation,
11:305–345, 1999.

[20] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
mining with relational databases: Alternatives and
implications. In ACM SIGMOD Conference, 1998.

[21] K. Sattler and O. Dunemann. SQL database
primitives for decision tree classifiers. In ACM CIKM
Conference, 2001.

[22] H. Wang, C. Zaniolo, and C.R. Luo. ATLAS: A small
but complete SQL extension for data mining and data
streams. In VLDB Conference, pages 1113–1116, 2003.

[23] J. Widom. Research poblems in data warehousing. In
ACM CIKM Conference, pages 25–30, 1995.

[24] A. Witkowski, S. Bellamkonda, T. Bozkaya,
G. Dorman, N. Folkert, A. Gupta, L. Sheng, and
S. Subramanian. Spreadsheets in RDBMS for OLAP.
In ACM SIGMOD Conference, pages 52–63, 2003.

42

