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ABSTRACT 

The one of the most time consuming steps for association rule mining is the computation of the frequency of 

the occurrences of itemsets in the database.  The hash table index approach converts a transaction 

database to an hash index tree by scanning the transaction database only once. Whenever user requests for 

any Uniform Resource Locator (URL), the request entry is stored in the Log File of the server. This paper 

presents the hash index table structure, a general and dense structure which provides web page set 

extraction from Log File of server. This hash table provides information about the original database. Web 

Page set mining (WPs-Mine) provides a complete representation of the original database. This approach 

works well for both sparse and dense data distributions. Web page set mining supported by hash table 

index shows the performance always comparable with and often better than algorithms accessing data on 

flat files. Incremental update is feasible without reaccessing the original transactional database. 
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1. Introduction 

Many researchers and practitioners have been investigated Association rule mining has been for 

many years [1], [3], [4], [5], [6].  Agrawal  et al. introduced the problem of mining frequent 

itemsets for the first time[5], who proposed algorithm  Apriori. The Apriori algorithm must scan 

the transcation database several times and FP_growth algorithm needs to scan the database only 

twice. If the the database is larger, the efficiency of FP growth algorithm is  higher. To reduce 

scanning of database twice, the rapid association rule mining algorithm came into existence. The 

rapid association Rule Mining algorithm (QFP) requires to scan the transaction database once 

compared to FP growth algorithm, so it can increase the time efficiency of mining association 
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rules [2].The correlations among web pages in a transactional database D can be identified using 

association rules. Association refers to   how the web pages in the web site can be grouped. These 

are used to assist retail store management, marketing, grocery store problems, and inventory 

control. Each transaction in D is a set of web pages. Association rules are usually represented in 

the form A -> B, where A and B are web page sets, i.e., set of web pages. Web page sets are 

characterized by their frequency of occurrence in D, which is called support. Research activity 

usually focuses on defining efficient algorithms for web page set extraction, which represents the 

most computationally intensive knowledge extraction task in association rule mining [7].  In this 

paper, we propose a similar approach to support data mining queries. The WebPages-Mine (WPs-

Mine) index is a novel data structure that provides a compact and complete representation of 

transactional data supporting efficient item set extraction from a relational DBMS. The following 

Web Pages data set shows 13 hypertext transfer protocol (http) transaction requests in given 

session threshold. 

 

Table 1. Example Web Pages data set 

      TID  WebPagesID       TID  WebpagesID     TID WebPagesID 

        1 

        2 

        3 

        4 

        5 

b,h,e,p,v,d,g 

m,h,n,d,b,e 

I,f,o,h,e,c,p 

a,w,e,k,h,j 

d,b,e,h,n 

        6 

        7 

        8 

        9 

       10 

a, r, n, u ,i, 

b,s 

b, g, h, d, e,p 

     a, i, b 

  f, e ,i, c ,h, p 

h, a, e, b, r ,t 

    11 

    12 

    13 

     

  r,e,h,b,a 

  z,i,a,n,r,b 

 b,d,h,p,e 

 

 

2. The WPs-Mine Index 

 

Whenever user requests for any Uniform Resource Locator, the details of request is entered into 

the Log File of the server. The log file entry contains various fields like IP address, time at which 

request is made, status code, number of bytes transferred and which page is requested. The web 

pages information collected in the log file is stored in the form of database. This data is stored in 

the form of relational model, as a relation R. Assuming some session threshold the frequency of 

each webpage is counted and stored in dataset as shown in table 1.   

 

2.1 WPs-Hash Indexed tree Structure 
 

The structure of the WPs-Mine index is characterized by two components: the Web Page Set-Tree 

and the Web Pages-Hash table tree. The two components provide two levels of indexing. The 

Web Pages set-Tree (WPs-Tree) is a prefix-tree which represents relation R by means of a brief 

and compact structure. The hash table of 26 buckets [A-Z] is created. Each bucket stores the 

information about the support of each web page in a assumed threshold. Each bucket holds the 

physical location of each web page in the website. Linked list with various nodes is attached for 
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each bucket which holds the addresses of different web pages. The WebPages-Hash index (WPs-

H index) table structure allows reading selected WPs-Tree portions during the extraction task. For 

each item, it stores the physical locations of all item occurrences in the WPs-Tree. 

 

2.1.1 WPs-Tree: 

 
The Web Pages set-Tree (WPs-Tree) is a prefix-tree which represents relation R by means of a 

short and compact structure. Implementation of the WPs-Tree is based on the FP-tree data 

structure, which is very effective in providing a compact and lossless representation of relation R 

as shown in Figure .1.  

 

2.1.2 WPs-Hash-indexed tree: 
 

The WPs-Hash-tree is a Hash table with tree structure which allows access of selected WPs-Tree 

portions during the extraction task. For each web page in the given website, it stores the physical 

locations of all web page occurrences in the Web Pages set Tree.  

 

Figure 2 shows the WPs-Mine Hash indexed tree allows selectively accessing the WPs-Tree 

blocks during the extraction process. It is based on a Hash indexed Tree structure. For each item i 

in relation R, there is one entry in the WPs-Mine Hash indexed tree. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. WPs-Mine index for the example dataset WPs-Tree 
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Figure 2 WPs-Mine Hash indexed tree for the example dataset WPs tree 

 

2.2 WPs-Mine Data Access Methods    
 
Three data access methods are devised to load from the WPs-Mine index the following 

projections of the original database: 1) Frequent WebPages-Tree to support projection-based 

algorithms (e.g., FP-growth [8]). 2) Support-based projection, to support level based (e.g., 

APRIORI [7]), and array-based (e.g., LCM v.2 [10]) algorithms. 3) web pages-based projection, 

to load all transactions where a specific webpage occurs, enabling constraint enforcement during 

the extraction process. The three access methods are described in the following sections.  

 

2.2.1 Construction of Frequent WebPages-Tree: 

From the relation R, the frequency of each web page is counted for a given session threshold 

time. The web pages are sorted in order based on its frequency but preceding in lexicographical 

order. In the WPs-Tree web pages are sorted by descending support lexicographical order as 

represented by WPs-Tree. This is represented as a prefix tree. 

 

In the example data set, item p appears in two nodes, i.e., [p:3] and [p:2]. The access method 

reads two prefix paths for p, i.e., [p : 3 ->d :5 -> h : 7 !->e : 7 -> b : 10]and [p : 2 !->i : 2 !->h : 3 -

>e:3] Each sub path is normalized to p node support. For example, the first prefix path, once 

normalized to [p:3], is [ p : 3 ->d :3 -> h : 3 -> e : 3 !->b : 3] 

 

2.2.2 Support-Based division of WPs-Tree: 

The support-based projection of relation R contains all transactions in R intersected with the web 

pages which are frequent with respect to a given support threshold (Min Sup ). The WPs-Tree 

paths completely represent the transactions. Web pages are sorted by decreasing support along the 

paths. Starting from a root node, the WPs-Tree is visited depth-first by following the node child 

pointer. The visit ends when a node with an Un-frequent item or a node with no children is 

reached.  
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The WPs-Tree is partitioned into three layers based on given minimum support threshold. The 

web pages whose support is greater than or equal to given minimum threshold is considered to be 

belonging to Excellent layer. The web pages whose support is greater than 1 and less than given 

minimum support belong to weak layer as shown in Fig. 1. 

2.2.3 WPs-Hash-Table Tree 

Log File of server contains information about how many visitors visited various web pages of 

web site. Given a session threshold, the frequency of each web page is counted and each page’s 

count is stored in hash table. The hash table of 26 buckets [A-Z] is created. Each bucket stores the 

information about the frequency of each web page. Each bucket holds the physical location of 

each web page occurrences in the WPs-tree. Linked list with various nodes is attached for each 

bucket which holds the addresses of the occurrences of web pages in the WPs-Tree. The 

WebPages-Hash index (WPs-H index) table structure allows reading selected WPs-Tree portions 

during the extraction task. For each web page, it stores the physical locations of all page 

occurrences in the WPs-Tree. 

 

2.3 WPs-Mine storage procedure 

The organization of the WPs-Mine index is designed to minimize the cost of reading the data 

needed for the current extraction process. However, fetching a given record requires loading the 

entire disk block where the record is stored The WPs-Tree physical organization is based on the 

following correlation types:  

 

i) Intra transaction correlation:. Web Pages appearing in a same transaction are thus 

intrinsically correlated. To minimize the number of read blocks, each WPs-Tree path should be 

partitioned into a block.  

 

ii) Extra transaction correlation: In some transactions, set of web pages accessed may be same 

and some other pages accessed may be different, so block can be formed for common web pages 

accesses and separate block can be made for remaining web pages access.   

 

2.3.1 WPS-Tree Layers 

TheWPS-Tree is partitioned in three layers based on the node access frequency during the 

extraction processes. 1) the node level in the WPs-Tree, i.e., its distance from the root,2) the 

number of paths including it, represented by the node support, and 3) the support of its item.. The 

three layers are shown in Fig. 2a for the example WPs-Tree. 

 

Excellent layer: This layer includes web pages that are very frequently accessed during the 

mining process. These nodes are located in the upper levels of the WPs-Tree. These web pages 

are most important pages as these are frequently accessed. 

 

Medium Layer: This layer includes nodes that are quite frequently accessed during the mining 

process. This layer contains web pages which are frequently accessed during web site visits. 

Weak layer: This layer includes the nodes corresponding to rather low support items, which are 

rarely accessed during the mining process. The web pages in this layer must be paid more 

attention to modify the content as these web pages are rarely accessed by web users. 
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3. Web Page set Mining 

Web Page set mining has two sequential steps: 1) the needed index data is stored and 2) web page 

set extraction takes place on stored data.    

 

Frequent Web Pages set Extraction 

This section describes how frequent web pages set extraction takes place on the WPs-Mine index. 

We present two approaches, denoted as FP-based and LCM-based algorithms, which are an 

adaptation of the FP-Growth algorithm [3][9]  and LCM v.2 [10]algorithm.  

 

FP-based algorithm: 

The FP-growth algorithm stores the data in a prefix-tree structure called FP-tree. First, it 

computes web page support. Then, for each transaction, it stores in the FP-tree its subset 

including frequent web pages. Web pages are considered one by one. For each web page, 

extraction takes place on the frequent-web page database, which is generated from the original 

FP-tree and represented in a FP-tree based structure. 

 

4. EXPERIMENTAL RESULTS 

The validation is done on both  dense and sparse data distributions. We report the experiments on  

these  parameters. The parameters include   transaction and item cardinality, average transaction 

size (AvgTrSz),and data set size) as shown in  Table 1.  Connect is dense and medium-size data 

sets. Kosarak [10] is a Large and sparse data set.  

 

4.1 Index Creation and Structure: 

Table 2 reports both WPs-Tree and WPs-Hash index table tree size for the two data sets. The 

overall WPs-Mine index size is obtained by summing both contributions. The WPs-Mine indices 

have been created with the default value Kavg ¼ 1:2.  

 

Furthermore, the Connect and  Kosarak, and data sets have been created with KSup ¼ 0, while 

large synthetic data sets with KSup ¼ 0:05.  In sparse data sets   (e.g., Kosarak), where data are 

weakly correlated, data compression is low and storing the WPs-Tree requires more disk blocks.  

 

 Table 1 also shows the index creation time, which is mainly due to path correlation analysis and 

storage of the index paths on disk. The first factor depends on the number of WPs-Tree paths. 
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Table 2. Data Set Characteristics and Corresponding Indices 

 
 

Dataset 

 

Transactions 

 

Dataset 

Items 

 

AvtrSz 

 

Size(KB) 

 

WPs-Tree 

(Records) 

WPs-Hash 

-indexed tree  

(Records) 

 

Time 

(sec) 

CONNECT 1200 38 7 8563 269 722 0.59 

KOSARAK 1600 20 7.9 9564 291 729 0.61 

 
4.2 Frequent Web Pages Set Extraction Performance: 

The WPs-Mine structure is independent of the extraction algorithm. To validate its generality, we 

compared the FP-based and LCM-based algorithms with three very effective state-of-the-art 

algorithms accessing data on flat file. 

 

Figure 3 generates statistics about Konark dataset containing how many WP-Tree nodes are 

created, how much storage required and how many WP-Tree updates. Figure 4 produces 

Minimum support, Number of records, Number of columns and WP-Tree updates. Figure 5 

shows what is the storage required by WP-Hash-index Tree along with generation time for the 

tree. Similarly Figure 6 generates statistics about Connect Dataset.   

 

Figure  8  compares the FP-based algorithm with the FP-growth algorithms [3] on flat file, all 

characterized by a similar extraction approach.   For real data sets (Connect, and Kosarak), 

differences in CPU time between the FP-based and the Prefix-Tree algorithms are not visible for 

high supports, while for low supports the FP-based approach always performs better than Prefix-

Tree.  Comparison is made between connect and Kosarak dataset. In connect data set WPs-Hash 

index Tree 3 times faster than WPs-tree.so WPs-Hash index Tree reduced the search time and I/O 

cost.  In Kosarak data set WPs-Hash index Tree 3 times faster than WPs-tree.so WPs-Hash index 

Tree reduced the search time and I/O cost.  This effect is particularly relevant for low supports, 

because representing in memory a large portion of the data set may significantly reduce the space 

for the extraction task, hence causing more memory swaps. Figure 9 displays run Time 

Comparison Between (a)Connect  and (b) Kosarak dataset 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.4, October 2011 

156 

 

 
     Figure 3. Kosark statistics 

 

 

Figure 4. The Dataset Kosark statistics 
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Figure 5. The Database Kosark statistics 

 

 
Figure 6. The Dataset Connect  statistics 
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 Figure 7. The Dataset  Connect  statistics 

 

 

 
Figure 8.  Frequent WPs set extraction time for the FP-based algorithm. (a) Connect 
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Figure .8 Frequent WPs set extraction time for the FP-based algorithm. (b) Kosarak. 

4.3 Comparison  

Run Time Comparison between WP-Tree and WPs-Hash index Tree for Dataset Connect and 

Kosarak dataset is shown in Figure 9a & Figure 9 b respectively. . In connect data set WPs-Hash 

index Tree 3 times faster than WPs  Tree.  So WPs-Hash index Tree reduced the search time and 

I/O cost.  In Kosarak data set WPs-Hash index Tree 3 times faster than WPs-tree.so WPs-Hash 

index Tree reduced the search time and I/O cost.   

 

 

Figure 9 a. Run Time Comparison Between WPs-Tree  and WPs-Hash index Tree  Connect 

dataset 
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 Figure 9 b. Run Time Comparison Between WPs-Tree and WPs-Hash index Tree 

Kosarak dataset  

5. CONCLUSION  

Efficient Data mining algorithms play an important role when transaction databases are very 

large. Since transaction databases are huge, it may not be stored in main memory. This Hash-

indexing   approach helps in completion of mining process through scanning the transaction 

database only once. This experiment showed that this algorithm is more efficient compared to 

other existing algorithms. The WPs-Hash index tree structure provides efficient access reducing 

I/O time. Further extension may be to have still efficient compact structure for different data 

distributions and incremental updating of index. Incremental update is feasible without re-

accessing the original transactional database. Incremental update can be done considering the 

transaction where session was ended. 

 

REFERENCES 

[1] Agrwal, R, T. Imielinski, and A. Swami. (1993) “ Mining association rules between sets of items in 

large databases “ , in proceedings of the 1993 ACM SIGMOD International Conference on 

Management of Data, Washington, D.C. pp 207-216 

 

[2] Li Juan, Ming De-ting (2010) “Research of an Association Rule Mining Algorithm Based on FP 

Tree”  978-1-4244-6585-9/10 IEEE 

 

[3] Silverstein, C., S. Brin, and R. Motwani(1998) “Beyond market baskets: Generalizing association 

rules to dependence rules. Data Mining and Knowledge Discovery”, pp 39–68,. 

 

[4] Aggarawal, C. and P. Yu.(1998) “A new framework for itemset generation. In Proceedings of the 

PODS Conference, Seattle, WA, USA, June 1998” pp 18–24. 

 



International Journal of Web & Semantic Technology (IJWesT) Vol.2, No.4, October 2011 

161 

[5] Han, J., Pei, J., & Yin, Y, (2000), Mining frequent patterns Candidate generation. In Proc. 2000 

ACM-SIGMOD Int. Management of Data (SIGMOD'00), Dallas, TX. 

 

[6] Kotásek, P. & Zendulka J.,(2000) “Comparison of Three Mining Algorithms for Association Rules. 

Proc. of 34th Spring Int. Conf. on Modeling and Simulation of Systems”, (MOSIS'2000), Workshop 

Proceedings Information Systems Modeling (ISM'2000), pp. 85-90. 

 

[7] R. Agrawal and R. Srikant,(1994)  “Fast Algorithm for Mining Association Rules,” Proc. 20th Int’l 

Conf. Very Large Data Bases (VLDB ’94). . 

 

[8] J. Han, J. Pei, and Y. Yin, (200) “Mining Frequent Patterns without Candidate Generation,” Proc. 

ACM SIGMOD. 

 

[9] Elena Baralis, Tania cerquitelli, and Silvia Chiusano, (2009) “IMine: Index Support for Item Set 

Mining; ,IEEE Transactions on Knowledge and data engineering, Vol 21, No. 4, pp 493-506. 

 

[10] T. Uno, M. Kiyomi, and H. Arimura, (2004)  “LCM ver. 2: Efficient Mining Algorithms for 

Frequent/Closed/Maximal Itemsets,”Proc. IEEE ICDM Workshop Frequent Itemset Mining 

Implementations (FIMI). 

 

Authors 
 

Mrs Geeta R.B, received her Master’s degree from Walchand Engineering college, 

Kolhapur University, Sangli. She is pursuing her PhD degree from JNTU Hyderabad. 

She is a working as Associate Professor and head of the department of Information 

Technology GMR IT,RAJAM. She is member of Computer Society of India, ISTE and 

IEEE. Her research areas include data mining, distributed databases and computer 

network. She has published various papers on journal and conference proceedings 

 

Mr. M. Omkar pursuing his M.Tech in Computer Science & Engg from GMR IT, RAJAM 

affiliated to JNTU Kakinada. He is a member of IEEE. His areas of interest include Data 

mining, Computer network and Databases. He is author of many papers 
 

Prof Shashikumar G. Totad received his Master’s degree from Walchand Engineering 

college, KolhapurUniversity, Sangli. He is pursuing her PhD degree from JNTU 

Hyderabad. He is a working as a Professor and head of the department of Computer 

Science & Engg GMR IT,RAJAM. He is member of Computer Society of India and ISTE. 

His research areas include data mining, mobile agents, data structures and design and 

analysis of algorithms. He has published various papers in journals and conference 

proceedings. 

 

Dr. Prasad Reddy received the PhD degree from Andhra University, Vizag Andhra 

Pradesh, India. He is currently a Rector of Andhra University. He is specialized in 

Enterprise widecomputing, XML based object models and scalable web applications. His 

research areas include Soft computing,Knowledge discovery from databases, Image 

processing, Number theory and cryptosystems. He has published numerous papers 

National/International Journals andconference proceedings. He is a Fellow, Institution of 

Engineers, INDIA,member, International Association of Engineers, member,Indian Science 

Congress. 


