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Abstract

This article studies the relation of the two scientific languages Chem-
istry and Mathematics via three selected comparisons: (a) QSSA versus
dynamic ILDM in reaction kinetics, (b) lumping versus discrete Galerkin
methods in polymer chemistry, and (c) geometrical conformations versus
metastable conformations in drug design. The common clear message
from these comparisons is that chemical intuition may pave the way for
mathematical concepts just as chemical concepts may gain from mathe-
matical precising. Along this line, significant improvements in chemical
research and engineering have already been possible – and can be fur-
ther expected in the future from the dialogue between the two scientific
languages.
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Introduction

When contemplating the role of Chemistry and Mathematics as two scientific
languages of the 21st century, one may first associate the novel The Glass Bead
Game (Das Glasperlenspiel) [9] from 1943. In this novel, Hermann Hesse
(1877–1962) had envisioned some unifying language of art and science, which
many a reader might be tempted to identify as Mathematics. In the spirit of the
Order of the Glass Bead Game players that language was only understood (and
permitted!) to represent the close structural links between various up to all
sciences and arts: linguistics versus history versus music versus physics versus
mathematics – to be continued. Individuality of the scholars, even creativity,
was definitely not meant to enter the Game. Through the personal development
of the Magister Ludi Joseph Knecht, the main character of the novel, the poet’s
genius left this narrow confinement opening up into the ’real’ life. Is this a
paradigm for the evolution of Mathematics after the invention of the computer,
from the pure science of structures towards some key discipline, which inter-
venes in more and more parts of our real life? In fact, at the beginning of the
21st century, detailed mathematical models open new possibilities to master
complexity and to explore smart technological options via modeling, simula-
tion, and optimization. It is more than clear now that present Mathematics is
not only a unifying language, but adds actual value in a joint interdisciplinary
’game’ with nearly all fields of science and engineering – including, of course,
Chemistry.

The present paper asks about the mutual role of the languages of Chemistry
and Mathematics, restricted to computational chemistry and mathematics due
to the author’s expertise. Rather than treating this kind of question in general,
an answer is sought here via a synopsis of three comparable concepts from the
two scientific disciplines. Of course, the selection is biased according to the
author’s personal taste and experience. Section 1 deals with the development
from the classical QSSA (quasistationary state approximation) to modern ILDM
(intrinsic los–dimensional manifold) and its dynamics extension in reaction ki-
netics. Section 2 starts from lumping techniques in the numerical treatment of
polyreaction kinetics and ends up with discrete Galerkin methods. Section 3
treats molecular conformations, from the essentially geometrical concept to the
recent metastability concept.

1 Dynamic Dimension Reduction versus QSSA
in Reaction Networks

Consider a singularly perturbed system of ordinary differential equations (ODEs)
in the explicitly separated form

y′ = f(y, z), εz′ = g(y, z), (1.1)
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for which the solution will be denoted by (yε, zε). This might model the kinetics
of a complex reaction network – see, e.g., the survey paper [7] of Deuflhard
and Nowak (1986), which is especially addressed to computational chemists.
Typically, such an ODE system will be ’stiff’ and nonlinear; for a deeper un-
derstanding of stiffness, the reader may refer to the recent textbook [3] by
Deuflhard and Bornemann (2002). For our present purposes, we just recall
that stiff systems asymptotically reach an equilibrium. In terms of the numer-
ical treatment, this implies that information about the Jacobian matrix of the
right hand side must enter – thus increasing the computational cost considerably
compared to the solution of nonstiff systems. Typically, different components
reach the equilibrium at rather different time scales, which gives rise to a separa-
tion of ’slow’ modes y and ’fast’ modes z. In complex reaction network models,
the identification of ’fast’ and ’slow’ modes is often quite difficult. It is not
for nothing that experts speak of the ’golden’ ε that has to be found in each
problem.

Given such an identification, the assumption of quasi-stationarity

εz′ = 0 ,

then leads to the quasi-stationary state approximation (QSSA) (y0, z0) defined
by the differential-algebraic equations (DAEs)

y′ = f(y, z), 0 = g(y, z) . (1.2)

Mathematically speaking, the transition from the ODE model (1.1) to the DAE
model (1.2) is justified under the assumption that the equilibrium point is unique
and attractive. In this situation, an explicit local parametrization of the form

z = h(y)

will certainly exist. If, in addition, consistent initial values y(0), z(0) are given,
i.e. initial values satisfying

g(y(0), z(0)) = 0 ,

then system (1.2) may be replaced by the reduced ODE system

y′ = f(y, h(y)). (1.3)

The transition from (1.1) to (1.3) is usually called dimension reduction or also
model reduction.

Classical QSSA approach. In this approach, the selection of fast modes is
based on chemical insight into the reaction network. This means that a chemist
may have identified certain ’radicals’ z exhibiting only a short–lived appearance
in the chain of reactions. In the days before the advent of efficient numerical stiff
integrators, the radical components would then be eliminated and an analytic
expression z = h(y) would be derived, which, when inserted into the reduced
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model (1.3), could be cheaply integrated by some nonstiff numerical integrator.
However, as it turned out, the thus obtained DAE systems are often not uniquely
solvable – see, again, the book [3] or the survey in [7], where an example of this
kind has been worked out.

Of course, modern computational chemists would just apply their favorite nu-
merical stiff integrator DASSL, RADAU53, or LIMEX to the original unsepa-
rated system – see, e.g., the textbook [3] for details and references.

ILDM aproach. This alternative approach (ILDM: intrinsic low-dimensional
manifold) has been proposed by Maas and Pope in 1992, see [13]. It avoids the
occurrence of nonuniqueness in the derived DAE models, but requires a deeper
mathematical understanding. In order to convey the main idea, we consider the
general ODE model

x′ = F (x), x(0) = x0 (1.4)

and its local Jacobian
J = Fx(x(0)) .

The corresponding linearized differential equation

δx′ = Jδx

has solution components with a growth behavior

δx(t) ∼ exp(�λit) = exp(−t/τi) .

specified by those eigenvalues λi of J , for which �λi < 0, or by the corresponding
time scales

τi = − 1
�λi

> 0 . (1.5)

As can be seen, the computation of the various time scales τi would require
the solution of the corresponding eigenvalue problem – which, however, may be
ill–conditioned for nonsymmetric Jacobian matrices, the usual case.

Fortunately, in the presence of a sufficiently large spectral gap between the
corresponding eigenvalues and the rest of the spectrum, the computation of
invariant eigenspaces is known to be a well–conditioned problem. For its solution
we use two steps to transform the Jacobian matrix J . The first step consists of
an orthogonal similarity transformation such that

QT JQ = S̄ =
( S11 S12

0 S22

)
.

Here Q is an orthogonal matrix and S̄ (essentially) an upper triangular matrix.
It is possible to arrange the diagonal elements of S̄ according to the order of
magnitude of the real parts of the eigenvalues. If at least one of these real parts is
negative, then, with a reduced dimension, say r, the above block decomposition
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of S̄ can be defined in terms of an associated parameter µr < 0 by the following
condition:

µr = max
λ∈S22

�λ = �λr+1 < 0 and min
λ∈S11

�λ = �λr > µr.

In the second step the coupling matrix S12 is eliminated (via a so–called Sylvester
equation) so that a nonorthogonal similarity transformation

T−1
r JTr = S =

(
S11 0
0 S22

)

is realized. The transformation matrix and its inverse have the form

Tr = Q
(
I +

(
0 Cr

0 0

) )
and T−1

r =
(
I −

(
0 Cr

0 0

) )
QT .

At this point, we are now able to identify ’fast’ components z and ’slow’ com-
ponents y by virtue of

T−1
r x =

(
y
z

)
, T−1

r F =
(

f
g

)
.

With this transformation we have obviously established the connection between
our original full network model (1.4) and the singularly perturbed problem (1.1)
– and found the ’golden’

ε =
1

|µr|
=

1
|�λr+1|

.

Obviously, the choice of the reduced dimension r is coupled with the selection
of the perturbation parameter ε. A comparison with (1.5) shows that ε = τr+1

represents that time scale, below which a resolution of the system dynamics is
ignored in the modeling.

In the language of chemistry, we have identified ’radicals’ – but without any
use of chemical insight, merely with the help of a numerical algorithm. The
inevitable downer is that the thus obtained components z can no longer be
associated with selected chemical species, they are just ’abstract radicals’. In
summary, we see that the intuitive, but mathematically deficient QSSA concept
from chemistry has turned into the less intuitive ILDM concept based on more
precise mathematical terms.

Dynamic dimension reduction. On the above mathematical basis, we can
now even go a step further and allow for a time dependent reduction of dimen-
sion. The reduced model will only be useful, when the differences yε − y0 and
zε − z0 are ’sufficiently small’. Actually we are free to dispose about the initial
values such that

zε(0) = z0(0) + ζ0(0), and yε(0) = y0(0) .
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Then, on the theoretical basis given in [5] by Deuflhard and Heroth (1996),
we may even derive a componentwise error criterion: Given a user prescribed
error tolerance TOL, we just need to require that

ε|f(yε(0), zε(0)) − f(yε(0), z0(0))| ≤ TOL. (1.6)

This criterion actually permits a time varying definition of ’abstract radicals’,
i.e. we obtain a reduced dimension r(t) – which explains the name dynamic
dimension reduction. Note that the actual evaluation of the criterion requires
consistent initial values (y0(0), z0(0)) as input arguments – for more details we
refer again to the textbook [3].

In passing we want to mention that an actual elimination of all the fast modes
z succeeds only, if the algebraic equations g = 0 need not be solved explicitly,
but through pointwise evaluation of the fast variables z via simple table lookups.

Illustrative example: Oxyhydrogen combustion. We base our discussion
on the chemical model given in [13], which involves 37 elementary chemical reac-
tions for 8 chemical species. This leads to a system of 8 differential equations. A
reduced version of this initial value problem including only 7 chemical reactions
for 7 species has been given in [10] by Hoppensteadt et al. (1981) as an
example of the failure of the classical QSSA approach: there an elaborate an-
alytical treatment showed that before, during, and after the combustion rather
different ’golden’ ε’s had to be defined.

The computational results presented in Fig. 1 were obtained by means of the
differential–algebraic numerical integrator LIMEX with adaptive control of or-
der and stepsize; the prescribed error tolerance was TOL = 10−2 in (1.6). Prior
to the treatment as a singular perturbation problem, two dynamical invariants
of the system were eliminated (since these induce associated zero eigenvalues).
Consequently, the dimension n = 8 was reduced in advance to an effective sys-
tem dimension neff = 6. The upper part of Fig. 1 shows the computed solution
for the species H2, O2 and H2O as a function of time t. Within the required
error tolerance, these numerical results agree with those for the full model. The
lower part of Fig. 1 shows that the dimension reduces to r = 2 before, to r = 1
during, and even to r = 0 (equilibrium) after the combustion.

This approach only pays off in the context of partial differential equations,
especially of the reactive flow type – see the (German) habilitation thesis by
Maas (1993) as quoted in the English survey paper [12].

2 Discrete Galerkin Methods versus Lumping
in Polyreaction Kinetics

Polymers are known to be chains of typically ten thousand up to ten million
monomers, which are simple molecules or molecular groups. Corresponding
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Figure 1: Oxyhydrogen combustion. Top: Chemical species behavior as a func-
tion of time t. Bottom: Reduced dimension r(t).

mathematical models of polyreaction kinetics involve the same number of ODEs,
usually nonlinear and stiff. For quite a while, this problem class had been
among the real challenges in both computational mathematics and computa-
tional chemistry. In what follows we denote by Ps(t) the concentration of some
polymer of chain length s at time t. For ease of writing, we will not distinguish
between the chemical species Ps, its concentration Ps(t), and the chain length
distribution {Ps(t)}s=1,2..., but just rely on the context. In order to convey an
impression of the CODE problem class, we start with a real life example.

Example: Biopolymerization. This problem deals with an attempt to re-
cycle waste of synthetic materials in an ecologically satisfactory way – which is
certainly an important problem of modern industrial societies. An attractive
idea in this context is to look out for synthetic materials that are both produced
and eaten by bacteria – under different environmental conditions, of course. A
schematic illustration of the production process within such a bacterial recycling
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is given in Fig. 2: there certain bacteria use a monomer, fructose, as chemical
input to produce a polymer, polyester (PHB), as chemical output.

polyestersugar

Figure 2: Biopolymerization: bacteria eat sugar and produce polyester. White
areas: polyester granules within bacteria cells.

The macromolecular reaction steps of production and degradation of the poly-
mer can be summarized in the following chemical model

E
ka−→ A

A + M
ki−→ P1

Ps + M
kp−→ Ps+1

Ps
kt−→ Ds + E

Ds+r
kd−→ Ds + Dr

with s, r = 1, 2, . . . , smax . Herein M denotes the monomer, E an enzyme, A
the activated enzyme, Ps the ’living’ and Ds the ’dead’ polymer.

The corresponding mathematical model for the above process reads

E′ = −kaE + kt

smax∑
r=1

Pr

A′ = +kaE − kiAM

M ′ = −kpM

smax∑
r=1

Pr − kiAM

P ′
1 = −kpMP1 + kiAM − ktP1

P ′
s = −kpM(Ps − Ps−1) − kdPs , s = 2, 3, . . . , smax

D′
s = +ktPs − kd(s − 1)Ds + 2kd

smax∑
r=s+1

Dr , s = 1, 2, . . . , smax.
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The truncation index smax is not known a priori; practical considerations suggest
smax = 50.000 or so – which means that the above system consists of 100.000
ODEs, each of which has about the same number of terms (!) in the right hand
side.

Lumping techniques. In the chemical literature, certain linear combinations
of polymer components are defined to yield a much smaller number of ODEs
involving the corresponding linear combinations of the right hand sides. The
thus constructed smaller systems are then numerically tractable – see Kuo and
Wei (1969) in [11]. Clearly, a proper collection of components will require de-
tailed a–priori insight into the process under consideration. In some cases, a
logarithmic mesh equilibration is imposed on the basis of chemical intuition,
as privately communicated to the author by Ederer (1984): the larger s, the
more components are ’lumped’ together. However, even though this technique
is reported to work satisfactorily in some linear ODE models, it is certainly un-
reliable for nonlinear models – which actually represent the bulk of industrially
relevant models.

Discrete Galerkin methods. This approach dates back to suggestions of
Deuflhard and Wulkow(1989) in [8]. Facing such a huge number of ODEs,
they suggest to expand the problem to infinitely many ODEs, more precisely:
to Countably many ODEs – in short named CODEs. In fact, such an approach
appears to be natural for a mathematician! The main idea of the approach is
to construct a special discrete Hilbert space, a so–called sequence space, and
an associated Galerkin method. The key to these so–called discrete Galerkin
methods is the introduction of a discrete inner product

(f, g) :=
∞∑

s=1

f(s)g(s)Ψ(s) (2.1)

in terms of some prescribed positive decaying weighting function Ψ, which takes
care of the regularity of the infinite sum. This product induces a set of orthogonal
polynomials, say {lj}, j = 1, 2, . . ., for the discrete variable s such that

(lj , lk) = γjδjk , γj > 0 j, k = 0, 1, 2, . . . . (2.2)

A first attempt of this kind has been based on the discrete weight function

Ψ(s) = ρs, ρ < 1 . (2.3)

The kernel ρ = exp(−β) can be interpreted as a uniform discretization of the
decaying exponential exp(−βt) in terms of some β > 0. The free choice of β
corresponds to the free choice of ρ. Since the exponential generates the classical
Laguerre polynomials Lk(t) for the continuous variable t, the lk(s) are here
called discrete Laguerre polynomials. For the actual adaptation of ρ see the
“moving weight function” concept as worked out in [8]. For the solution P of
the CODE, discrete Galerkin methods try the corresponding separation ansatz

P (s, t) = Ψ(s)
∞∑

k=0

ak(t)lk(s). (2.4)
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In this setting, a linear CODE would be written as

∂P

∂t
= AP ,

where A denotes some discrete operator, bounded or unbounded in dependence
on the modeled polyreaction mechanisms. Upon insertion of the expansion
(2.4), multiplication by the test function lj(s), summation over s, change of the
summation order, and use of the above orthogonality relations, we again end up
with a CODE, this time for the Galerkin coefficients

γja
′
j(t) =

∞∑
k=0

ak(t)(lj ,Alk) j = 0, 1, . . . . (2.5)

The attractive qualitatively new feature of this CODE compared to the original
one is that the Galerkin coefficients are known to decay, if only the desired
solution actually lies in the prescribed discrete Hilbert space – an assumption
to be carefully taken into account using reasonable approximation arguments
(estimation of truncation errors). Under this assumption we are then able to
truncate the above k–sum, avoiding any artificial ’closure assumptions’.

There still remain infinite sums to be evaluated in the right hand side, which
have the structure

(lj ,Alk) =
∞∑

s=1

lj(s)A(s)lk(s)Ψ(s) .

These sums also must be approximated somehow by a finite number of terms (to
prescribed accuracy TOL). In most of the relevant cases, analytical expressions
are not available so that numerical approximations are the only choice. Today,
the most efficient approximation is done via a discrete Gauss–Christoffel
quadrature, which is directly based on the selected weight function Ψ. For Ψ =
ρs, let τin , i = 0, . . . , n denote the zeroes of the discrete Laguerre polynomials
ln+1 and λin the associated weights of the discrete Gauss–Laguerre quadrature
rule. Then we obtain the approximation

(lj ,Alk) ≈
n∑

i=o

λinlj(τin)A(τin)lk(τin) .

The sum might even be exact, if a proper choice of finite n can be made that
corresponds with the polynomial order of the discrete integrand. Obviously,
this is nothing else than a special kind of ’lumping’, this time based on subtle
mathematical tools. In summary, we see that the intuitive, but deficient chemical
concept of lumping has turned into the less intuitive, but algorithmically more
efficient mathematical concept of discrete Galerkin methods.

This new algorithmic view of polyreaction models opened the door to a much
improved version, a discrete h − p finite element method, which is now the

9



basis for an efficient treatment of challenging polymer problems in industry.
For further references see, e.g., the survey [16] by Wulkow (1996), especially
addressed to computational chemists, or chapter 3 in the survey article [1] of
Deuflhard (2000), especially addressed to mathematicians.

3 Metastable versus Geometrical Conformations
in Drug Design

In computational biotechnology, algorithms from discrete mathematics or com-
puter science already have played a publicly visible role for some time already –
for example, in the decoding of the human and other genomes. These approaches
primarily aim at a clarification of the secondary structure of biomolecular sys-
tems. However, in most cases, the key to an understanding of biomolecular
function is the tertiary structure, i.e. the geometrical shape in 3D. On top of it,
molecular dynamics rules biololgical function, which makes computational drug
design an extremely challenging task.

The whole situation is basically characterized by the spreading between real
times of pharmaceutical interest (in the region of msec up to min) and simu-
lation times (presently in the region of psec up to nsec). Detailed examination
of the problem reveals that the computation of molecular dynamics has a hid-
den mathematical limitation: the arising trajectories are Hamiltonian and as
such chaotic. This implies that long term trajectory simulations – as typically
performed in classical molecular dynamics (MD) – can, at best, only yield in-
formation about time averages. On the basis of this insight, an investigation
of the dynamics of molecular systems over the time scales of interest will re-
quire a rather different mathematical approach. Such an approach, now called
conformation dynamics, has been derived and worked out in a series of papers
[15, 14, 6] by Deuflhard and Schütte and their coworkers since 1997 and is
still under investigation.

Geometrical conformations. The term ’conformation’ used in conformation
dynamics is quite different from the earlier classical term ’conformation’ that
has been used within chemistry for quite a while. In fact, the chemical term
condenses the scientific experience that certain geometrical forms of molecules
– often with given extra names like cis, trans, or gauche – play a dominant
role in certain reaction mechanisms. This term does not characterize a sin-
gle molecular ’configuration’, which is just a point in 3D space, but a whole
set of ’similar’ configurations – whatever similar means. Therefore, the name
geometrical conformation has been coined for this meaning.

Metastable conformations. In order to elucidate the meaning of the term
’conformation’ used in conformation dynamics, we have to outreach somehow.

Hamiltonian differential equations. Let N atoms of a molecular system be spec-
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ified in terms of their spatial coordinates q = (q1, . . . , qN ) and their generalized
momenta p = (p1, . . . , pN ). Then, usually, the Hamilton function H has the
separated form

H(q, p) =
1
2
pT M−1p + V (q) ,

where the first term is the kinetic energy T (p), the second term the potential
energy. From given H, the Hamiltonian differential equations are defined as

q′i =
∂H

∂pi
, p′i = −∂H

∂qi
, i = 1, . . . , N.

Given initial values x0 = (q0, p0), we may assume that the above initial value
problem has a unique solution, formally written in terms of the flow Φ as

x(t) = (q(t), p(t)) = Φtx0 .

In addition, we have to study the condition number κ, which characterizes the
sensitivity of the unique solution under perturbation of the initial values. As
shown in Section 3.1.2 of the textbook [3] by Deuflhard and Bornemann
(2002), such a quantity can be defined (in first order perturbation theory) as

‖δx(t)‖≤̇κ(t)‖δx0‖ , κ(t) = ‖∂Φt/∂x0‖ .

As already discovered by Poincaré (1881–1885), Hamiltonian systems are
chaotic, which implies that κ(∞) = ∞. In the context of numerical analy-
sis, however, the interesting question is, after which characteristic critical time
the condition number exceeds the inverse initial accuracy or, colloquially speak-
ing, after which time the molecule ’forgets its history’. For so–called integrable
Hamiltonian systems (such as the popular Kepler problem) the condition num-
ber is known to grow linearly. In real life molecular dynamics problems, however,
the growth is exponential

κ(t) ∼ exp(t/tcrit) . (3.1)

The critical times tcrit turned out to be typically no longer than a few ps – which
had been a surprising phenomenon even to the experts!

Example: Trinucleotide ACC. We illustrate the effect for a short RNA
segment consisting of 94 atoms and containing three genetic letters. Fig. 3
shows simulated configurations at times t = 0.0 ps, and t = 20 ps. At the start,
the two molecular configurations are nearly identical. After only 20 ps they
differ completely.

The resulting configurations – a spherical shape on the left, a stretched one on
the right – remain essentially the same over quite long time spans. In other
words: these forms are metastable, which motivates the name metastable con-
formations.
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0.0 ps

20.0 ps

Figure 3: Trinucleotide ACC: Development of distinct conformations from
nearly identical initial configurations

This kind of observation stimulated severe changes in the mathematical mod-
elling of molecular dynamics. Instead of the point concept of classical mechanics
a set concept turned out to be actually needed.

Stochastic transition operator. A first attempt to find such a different mathe-
matical model has been suggested in [4] by Deuflhard et al. (1999). This
approach has been based on the so–called Perron–Frobenius operator, a spe-
cial stochastic operator defined over the space of both position variables q and
generalized momenta p. In [15, 14], Schütte (1999) constructed a more appro-
priate stochastic operator T, defined only over the space of position variables
q.

Starting point of his construction was the fact that in a chemical lab, with
constant temperature and constant volume, the deterministic model should be
embedded into a canonical distribution f0. With β essentially the inverse tem-
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perature we may factorize this distribution according to

f0 = PQ, Z = ZpZq,

∫
P(p)dp =

∫
Q(q)dq = 1 (3.2)

Observe that P represents the (Gaussian) distribution of the momenta p, while
Q represents the Boltzmann partial distribution of the position variables q –
containing all information about the potentials V (q). In this setting the prob-
ability for the dynamical system to be within some subset A of position space
can be written as

π(A) =
∫

Γ(A)

f0(p, q)dq dp =
∫
A

Q(q)dq =
∫
Ω

χ2
AQ(q)dq =: 〈χA, χA〉Q , (3.3)

where we introduced some inner product with weighting Q.

After this preparation, the operator T is constructed as the restriction of the
Perron-Frobenius operator to position space via averaging over the momentum
part of the canonical distribution. Once this operator has been defined, the
conditional probability for the system to move from some subset A to some
subset B in position space during time τ can be written as

w(A, B, τ) =
〈χA,TχB〉Q
〈χA, χA〉Q

. (3.4)

In the same manner, the probability for the system to stay in A during time τ
comes out as

w(A, A, τ) =
〈χA,TχA〉Q
〈χA, χA〉Q

. (3.5)

The elements of the operator are computed via some hybrid Monte Carlo method.

Perron cluster analysis. Suppose we have k sets of configurations, say ’metastable
conformations’ S1, . . . ,Sk, each of which captures the molecular system ’for a
long time’, once it is in there. For the transition probabilities (3.4) and (3.5)
this means that

w(Si,Si, τ) = 1 − O(ε), w(Si,Sj , τ) = O(ε), i 
= j (3.6)

in terms of some ’small’ perturbation parameter not specified here. Assuming
a ’reasonable’ discretization of the above operator T, the obtained transition
matrix T contains the desired information about the metastable sets in the
Perron cluster eigenproblem associated with the eigenvalues

λ1 = 1, λ2 = 1 − O(ε), . . . , λk = 1 − O(ε) .

Details are omitted here – see the quoted literature or the recent survey paper
[2] by Deuflhard (2002). The name ’Perron cluster analysis’ characterizes a
cluster analysis technique based on some analysis of the arising Perron cluster
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of eigenvalues of the transition matrix of a Markov chain. For this reason it
is more correctly named as Perron Cluster Cluster Analysis, abbreviated as
PCCA.

In summary, the PCCA algorithm supplies the following information:

• the probabilities π(Si) for the system to be within each of the subsets Si,

• the probabilities wii = w(Si,Si, τ) for the system to stay within subset Si

during time τ , once it is in there, and

• the probabilities w(Si,Sj , τ) , i 
= j, for the system to move from subset
Si to subset Sj .

In other words: The Perron cluster analysis supplies the number, the life times,
and the decay pattern of the metastable chemical conformations. The charac-
teristic life times for each of the Si are roughly found to be

τSi ≈
τ

1 − wii
.

This formula nicely shows that the blow-up from the deterministic time scale τ
to the time scales τSi

of the metastable conformations may be significant.

Example: HIV protease inhibitor VX-478. This molecule is the basis for
the anti-AIDS drug Agenerase distributed by Glaxo Wellcome. As is well–knwon
among chemists, HIV is a retrovirus and therefore hard to attack directly by
drugs. The HIV protease is an enzyme regulating the passage of HIV through
the cell membrane. The here selected molecule has been exactly designed (by
Vertex) to inhibit this passage. The molecular data were taken from the public
domain Protein Data Bank (PDB).

The conformation analysis yielded k = 3 metastable conformations at a virtual
temperature of 1400 K in the Boltzmann distribution part P. At a lower tem-
perature level (1000 K), more substructures came into sight, two of which are
shown in Fig. 4. The representation there is via some volume rendering of the
corresponding molecular probability density for the system dynamics.

Summarizing, the mathematical concept of metastable conformations supplies a
much deeper understanding of the original intuitive chemical concept of geomet-
rical conformations, especially in view of their dynamical properties.

Conclusion

The selected comparison of three related concepts from chemistry and mathe-
matics gives a rather homogeneous common picture. As a result of close inter-
disciplinary interaction over decades, certain intuitive chemical concepts, which
were mathematically deficient, have turned into less intuitive, but more precise
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Figure 4: HIV protease inhibitor: T-bone and double T conformations

mathematical concepts. The firmer mathematical basis, in turn, gave rise to
further fruitful developments, which now play an important role in chemical
research and engineering. Along this line, further progress can be expected in
the future from the dialogue between the two scientific languages.
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