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An Iterative Learning Control (ILC) method with Extended State Observer (ESO) is proposed to enhance the tracking precision
of telescope. Telescope systems usually suffer some uncertain nonlinear disturbances, such as nonlinear friction and unknown
disturbances. Thereby, to ensure the tracking precision, the ESO which can estimate system states (including parts of uncertain
nonlinear disturbances) is introduced. The nonlinear system is converted to an approximate linear system by making use of the
ESO. Besides, to make further improvement on the tracking precision, we make use of the ILC method which can find an ideal
control signal by the process of iterative learning. Furthermore, this control method theoretically guarantees a prescribed tracking
performance and final tracking accuracy. Finally, a few comparative experimental results show that the proposed control method
has excellent performance for reducing the tracking error of telescope system.

1. Introduction

A high performance telescope system has attracted lots of
attention, since it is widely used in space applications, such
as space observer [1] and satellite surveillance [2]. However,
it is inevitable that there are always some nonlinear charac-
teristics in the telescope tracking control systems, such as
deadzone [3], friction [4], and some uncertainly disturbances
[5]. Without doubt, all the nonlinear features will deteriorate
the tracking performance of systems. Simultaneously, the
conventional linear control method (proportional-integral)
has not guaranteed a higher tracking precision. To solve the
above nonlinear problems, there are many control methods
being proposed, such as adaptive control [6], slide control [7],
compensating control based on DOB [8], active disturbance
rejection control (ADRC) [9], and iterative learning control
(ILC) [10].

In recent years, since the iterative learning control (ILC)
needs too little knowledge of system dynamics, it has received
a great deal of attention [11]. ILC is proposed by Arimoto

et al. in 1984 [12]. It is essentially a feedforward control
approach that fully utilizes the previous control information
[13]. Over the past three decades, it has been successfully
used in extensive research fields such as industrial robotics
[14], manufacturing process [15], stochastic process control
system [16], and hysteretic system [17]. Nevertheless, the
ILC still has some of its inherent shortages. It can only
eliminate some disturbances which emerge repeatedly. If
there are some nonlinear nonperiod disturbances involved
in the systems, the sole ILC method will face difficulty to
get a higher tracking precision. The ADRC is different from
the ILC,which can estimate unknownnonlinear disturbances
involved in the systems. As the core technology of ADRC, the
ESO also needs to know little knowledge of system dynamics,
which only needs the information of system’s input and
output.Thereby, it has beenwidely used inmany fields such as
missile control system [18], optical system [19], and other high
precision occasions [20]. Even though the ESO has excellent
estimation ability for system states, its estimation ability is still
restricted to the bandwidth of ESO.
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In this paper, since there are some uncertain nonlinear
disturbances in the telescope system, which reduce severely
the tracking precision of system, it is needed to eliminate the
nonlinear disturbances and find the best input signal for the
system.Under the circumstances, an ILC techniquewith ESO
is proposed, which takes use of the advantages of the two
control methods (ILC and ESO). The function of ESO is to
eliminate parts of uncertain nonlinear disturbances and to
transform the nonlinear system into an approximate linear
system. And the function of ILC is to get the best input signal
for the approximate linear system. In the ILC controller,
a PD-type learning algorithm with the forgetting factor
is chosen. The forgetting factor can balance the learning
precision and the robustness of system. To illustrate the
excellent performance of the proposed control method, three
comparative experiments will be given in this paper.

This remainder of this paper is organized as follows.
Section 2 gets the dynamic models. Section 3 introduces the
controller design and the theory analysis. The experiment
results are presented in Section 4. And some conclusions can
be found in Section 5.

2. Dynamic Models

The tracking control system is made of brushless DC, load,
high precision encoder, servo actuator, and host computer.
The goal is to make the system track the given reference
motion trajectory as far as possible. The control structure is
shown in Figure 1.

In the telescope system, since the electrical response of the
actuator is very fast, the current dynamics can be neglected.
And the dynamics of the tracking system is

𝑑𝜃 (𝑡)

𝑑𝑡
= 𝜔 (𝑡) ;

𝑑𝜔 (𝑡)

𝑑𝑡
=

𝑢

𝐽
−
]
𝐽

𝜔 (𝑡) − 𝑓 (𝑡, 𝜔) ;

𝑢 = 𝑘
𝑡
𝑖, 𝐽 = 𝐽

𝑚
+ 𝐽
𝑙
.

(1)

In (1), 𝐽
𝑚
and 𝐽
𝑙
are the motor inertia and the load inertia,

respectively. 𝜃 and 𝜔 represent for the load angle position
and the load angle velocity, respectively. 𝑢 represents the
torque imposed on the motor. 𝑖 is the control input current
of the motor. 𝑓(𝑡, 𝜔) represents nonlinear disturbances (such
as the friction disturbance, external disturbances, and some
unmodeled dynamics). ] is the viscous coefficient.

Rewrite the dynamic model (1) as

𝑑𝜃 (𝑡)

𝑑𝑡
= 𝜔 (𝑡) ;

𝑑𝜔 (𝑡)

𝑑𝑡
= 𝑏0𝑢 + 𝑓1 (𝑡, 𝜔) ;

𝑢 = 𝑘
𝑡
𝑖, 𝐽 = 𝐽

𝑚
+ 𝐽
𝑙
.

(2)

𝑓1(𝑡, 𝜔) = (1/𝐽 − 𝑏0)𝑢 − (]/𝐽)𝜔(𝑡) − 𝑓(𝑡, 𝜔), which
includes the nonlinear disturbances −𝑓(𝑡, 𝜔) and the inner
disturbances (1/𝐽 − 𝑏0)𝑢 − (]/𝐽)𝜔(𝑡). Here, 𝑏0 is a parameter
that can be adjusted in the controller.

Position feedback

Encoder

Load
E axis

Power supply
Motor

Actuator
𝜃ref Motion

controller

Figure 1: Architecture of tracking system.

3. Controller Design

The aim of designing controller is eliminating the nonlinear
disturbance 𝑓1(𝑡, 𝜔) and enhancing the tracking precision of
system. The ESO makes the nonlinear system transform into
an approximate linear system. And the ILC with ESO gets the
ideal input control signal.

In most of telescope systems, the multiple-loops control
structure is usually applied to guarantee the tracking preci-
sion of systems, which includes position loop, velocity loop,
and current loop. In this paper, since the current dynamic has
higher frequency range than other loops, it has been ignored.
We mainly analyze position loop and speed loop.

3.1. Design PI Controller with ESO

3.1.1. Design the ESO. Before designing the ESO, we assume
that the disturbance 𝑓1(𝑡, 𝜔) is continuous and differential.

Assumption 1. The disturbance 𝑓1(𝑡, 𝜔) is continuous and
differential, and ℎ = −𝑑𝑓1(𝑡, 𝜔)/𝑑𝑡. Besides, ℎ(𝑡) is bounded;
namely, there is a positive constant 𝛽 to meet:

𝛽 = sup {𝑡 > 0 |ℎ (𝑡)|} . (3)

Consequently, we extend the 𝑓1(𝑡, 𝜔) as a separate state
𝑥3 of system. Then, the original plant of system (2) can be
described as

�̇�1 (𝑡) = 𝑥2 (𝑡) ;

�̇�2 (𝑡) = 𝑥3 (𝑡) + 𝑏0𝑢 (𝑡) ;

�̇�3 (𝑡) = − ℎ,

(4)

where 𝑥 = [𝑥1 𝑥2 𝑥3]
𝑇

= [𝜃 𝜔 𝑓1]
𝑇

.

By (4), we can know that it is observable. Hence, an ESO
can be constructed as (5)

̇̂𝑥1 (𝑡) = 𝑥2 (𝑡) − 𝛽01 [𝑥1 (𝑡) − 𝑥1 (𝑡)] ;

̇̂𝑥2 (𝑡) = 𝑥3 (𝑡) − 𝛽02 [𝑥1 (𝑡) − 𝑥1 (𝑡)] + 𝑏0𝑢 (𝑡) ;

̇̂𝑥3 (𝑡) = − 𝛽03 [𝑥1 (𝑡) − 𝑥1 (𝑡)] ,

(5)
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where 𝛽01, 𝛽02, and 𝛽03 are the parameters that will be
designed in the ESO.

The aim of ESO is to make

𝑥1 (𝑡) → 𝑥1 (𝑡) ,

𝑥2 (𝑡) → 𝑥2 (𝑡) ,

𝑥3 (𝑡) → 𝑓1 (𝑡, 𝜔) .

(6)

Let 𝜂
𝑖

= 𝑥
𝑖
− 𝑥
𝑖
, 𝑖 = 1, 2, 3, denote the estimation error;

subtracting (4) from (5), then we can obtain

̇𝜂 = 𝐴𝜂 + 𝑀ℎ, (7)

where

𝜂 =
[
[

[

𝜂1

𝜂2

𝜂3

]
]

]

,

𝐴 =
[
[

[

−𝛽01 1 0
−𝛽02 0 1
−𝛽03 0 0

]
]

]

,

𝑀 =
[
[

[

0
0
1

]
]

]

.

(8)

Therefore, if the matrix 𝐴 is Hurwitz, the ESO will
be Bounded-Input Bounded-Output (BIBO) stable. In the
matrix 𝐴, the parameters 𝛽01, 𝛽02, and 𝛽03 can be designed
as [21]

𝛽01 = 3𝜔0,

𝛽02 = 3𝜔
2
0 ,

𝛽03 = 𝜔
3
0 ,

(9)

where 𝜔0 is the bandwidth of ESO. Equation (9) can promise
the matrix 𝐴 being Hurwitz.

Lemma 2. If the ℎ(𝑡) is bounded, there will be a positive
constant 𝜁

𝑖
> 0 and a finite time 𝑇1 > 0 such that

𝜂𝑖 (𝑡)
 ≤ 𝜁
𝑖
,

𝜁
𝑖
= o(

1
𝜔𝑐0

) ;

𝑖 = 1, 2, 3 ∀𝑡 ≥ 𝑇1.

(10)

The proof can be found in the literature [22].

Remark 3. Equation (9) makes the ESO (5) a BIBO stable
observer. The result of Lemma 2 shows that the ESO has an
excellent estimation ability for disturbances. Its estimation
ability depends on the bandwidth 𝜔0 of ESO. When the
bandwidth 𝜔0 is big enough, it can estimate accurately 𝑥1(𝑡),
𝑥2(𝑡), and 𝑓1(𝑡, 𝜔).

According to the analysis in Lemma 2, when designing an
appropriate parameter𝜔0, it canmake 𝑜(1/𝜔

𝑐

0) ≈ 0. And there
will be |𝑥3−𝑥3| = |𝜂3(𝑡)| ≤ 𝑜(1/𝜔

𝑐

0); namely, the 𝑥3 ≈ 𝑓1(𝑡, 𝜔).
So we can transform the input 𝑢 into 𝑢

𝜔
; namely, 𝑢 = (𝑢

𝜔
−

𝑥3)/𝑏0.
Substituting the 𝑢 = (𝑢

𝜔
− 𝑥3)/𝑏0 to (2), we can get

𝑑𝜃 (𝑡)

𝑑𝑡
= 𝜔 (𝑡) ;

𝑑𝜔 (𝑡)

𝑑𝑡
≈ 𝑢
𝜔
.

(11)

3.1.2. Design Velocity Loop PI Controller. The nonlinear sys-
tem (2) is converted to an approximate linear integral system
(11). So we can design a PI controller in the velocity loop:

𝑢
𝜔

= 𝐾
𝜔

𝑝
(𝜔

ref
− 𝑥2) + 𝐾

𝜔

𝑖
∫

𝑡

0
[𝜔

ref
(𝜏) − 𝑥2 (𝜏)] 𝑑𝜏, (12)

where 𝜔
ref is the input signal of velocity loop and 𝐾

𝜔

𝑝
, 𝐾𝜔
𝑖
are

the proportion gain and the integral gain in the velocity loop
controller, respectively.

3.1.3. Design Position Loop PI Controller. Similarly, we can
design a PI controller in the position loop:

𝜔
ref

= 𝐾
𝜃

𝑝
(𝜃

ref
− 𝑥1) + 𝐾

𝜃

𝑖
∫

𝑡

0
[𝜃

ref
(𝜏) − 𝑥1 (𝜏)] 𝑑𝜏, (13)

where 𝜃
ref is the input signal of position loop and 𝐾

𝜔

𝑝
, 𝐾𝜔
𝑖
are

the proportion gain and the integral gain in the position loop
controller, respectively.

3.2. Iterative Learning Controller with ESO Design. From
(11), we can see that the system is only an approximate
linear system. Thereby, to make further improvement on the
tracking precision of system, we will find an ideal input 𝑢

𝜔
by

the method of iterative learning. And it can make the output
𝜔 of system close to the input 𝜔

ref as far as possible. In this
section, we will design an ILC to substitute the PI controller
in the velocity loop.

According to (11), the state space equation of system can
be obtained as

�̇� (𝑡) = 𝐴
𝑙
𝑥 + 𝐵𝑢

𝜔
;

𝑦 = 𝐶𝑥,

(14)

where 𝑥 = [
𝑥1
𝑥2 ] = [ 𝜃

𝜔
],𝐴
𝑙
= [ 0 1

0 0 ],𝐵 = [ 0
1 ], and𝐶 = [ 0 1 ] .

Tomake the system track the desired reference trajectory,
we assume that there is an ideal input signal meeting the
condition.

Assumption 4. The ideal input signal 𝑢
𝑑
(𝑡) can make the

system track the desired reference trajectory 𝑦
𝑑
(𝑡):

�̇�
𝑑

(𝑡) = 𝐴
𝑙
𝑥
𝑑

(𝑡) + 𝐵𝑢
𝑑

(𝑡) ;

𝑦
𝑑

(𝑡) = 𝐶𝑥
𝑑

(𝑡) ,

(15)

where 𝑥
𝑑
(𝑡), 𝑦

𝑑
(𝑡) represent the ideal states of system,

respectively.
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Figure 2: Schematic diagram of the proposed iterative learning control with ESO.

Since system (14) will be tracked a period trajectory, there
will be once input in every period. Then the state space
equation of system (14) can be rewritten:

�̇�
𝑘

(𝑡) = 𝐴
𝑙
𝑥
𝑘

+ 𝐵𝑢
𝑘
;

𝑦
𝑘

= 𝐶𝑥
𝑘
,

(16)

where 𝑘 is the times. Equation (16) means the 𝑘th states of
system under the 𝑘th input 𝑢

𝑘
.

For system (16), a PD-type learning algorithm with the
forgetting factor 𝛼 is selected. The factor 𝛼 is introduced to
make a tradeoff between perfect learning and robustness,
which can increase the robustness of ILC against noise,
initialization error and fluctuation of system dynamics [23].
The selected iterative learning scheme is found in (17), whose
schematic diagram is depicted in Figure 2:

𝑢
𝑘+1 (𝑡) = (1− 𝛼) 𝑢

𝑘
(𝑡) + 𝛼𝑢0 (𝑡) + Φ (𝑒

𝑘
(𝑡))

+ Γ ( ̇𝑒
𝑘

(𝑡)) ,

(17)

where Φ and Γ are the proportion gain matrix and deviation
gain matrix, respectively. Φ ∈ R𝑚×𝑞, Γ ∈ R𝑚×𝑞 are bounded.
𝑘 is the times. 𝑒

𝑘
(𝑡) = 𝑦

𝑑
(𝑡) − 𝑦

𝑘
(𝑡) is the iterative error in the

𝑘th times.

3.3. Iterative Learning Controller Convergence Analysis

Theorem 5. If the system described by (16) satisfies assump-
tions and uses the update law (18). Given a desired trajectory
𝑦
𝑑
(𝑡) and an initial state 𝑥

𝑑
(0) which are achievable, if

‖(1− 𝛼) 𝐼 − Γ𝐶𝐵‖ ≤ 𝜌 < 1, (18)

then, as 𝑘 → ∞, the iterative output 𝑦
𝑘
(𝑡) of system will

converge to the desired reference trajectory 𝑦
𝑑
(𝑡).

Proof. Consider

𝑢
𝑑

(𝑡) − 𝑢
𝑘+1 (𝑡) = 𝑢

𝑑
(𝑡) − (1− 𝛼) 𝑢

𝑘
(𝑡) − 𝛼𝑢0 (𝑡)

− Φ (𝑒
𝑘

(𝑡)) − Γ (
𝑑 (𝑒
𝑘

(𝑡))

𝑑𝑡
)

= (1− 𝛼) [𝑢
𝑑

(𝑡) − 𝑢
𝑘

(𝑡)]

+ 𝛼 [𝑢
𝑑

(𝑡) − 𝑢0 (𝑡)]

− Φ𝐶 [𝑥
𝑑

(𝑡) − 𝑥
𝑘

(𝑡)]

− Γ𝐶𝐴 [𝑥
𝑑

(𝑡) − 𝑥
𝑘

(𝑡)]

− Γ𝐶𝐵 [𝑢
𝑑

(𝑡) − 𝑢
𝑘

(𝑡)]

= [(1− 𝛼) 𝐼 − Γ𝐶𝐵] [𝑢
𝑑

(𝑡) − 𝑢
𝑘

(𝑡)]

− (Φ𝐶 + Γ𝐶𝐴) [𝑥
𝑑

(𝑡) − 𝑥
𝑘

(𝑡)] .

(19)

In (19), by the state space equation (15) and (16), the
𝑥
𝑑
(𝑡) − 𝑥

𝑘
(𝑡) can be transformed into

𝑥
𝑑

(𝑡) − 𝑥
𝑘

(𝑡) = 𝑒
𝐴𝑡

[𝑥
𝑑

(0) − 𝑥
𝑘

(0)]

+ ∫

𝑡

0
𝑒
𝐴(𝑡−𝜏)

𝐵 [𝑢
𝑑

(𝜏) − 𝑢
𝑘

(𝜏)] 𝑑𝜏.

(20)

Substituting (20) to (19), we can have

𝑢
𝑑

(𝑡) − 𝑢
𝑘+1 (𝑡)

= [(1− 𝛼) 𝐼 − Γ𝐶𝐵] [𝑢
𝑑

(𝑡) − 𝑢
𝑘

(𝑡)]

− (Φ𝐶 + Γ𝐶𝐴) 𝑒
𝐴𝑡

[𝑥
𝑑

(0) − 𝑥
𝑘

(0)]

− (Φ𝐶 + Γ𝐶𝐴) ∫

𝑡

0
𝑒
𝐴(𝑡−𝜏)

𝐵 [𝑢
𝑑

(𝜏) − 𝑢
𝑘

(𝜏)] 𝑑𝜏.

(21)
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Taking the norm ‖ ⋅ ‖ on both sides of (21), we obtain
𝑢
𝑑

(𝑡) − 𝑢
𝑘+1 (𝑡)



≤ ‖(1− 𝛼) 𝐼 − Γ𝐶𝐵‖ ⋅
𝑢
𝑑

(𝑡) − 𝑢
𝑘

(𝑡)


+ 𝑒
𝐴𝑡

‖Φ𝐶 + Γ𝐶𝐴‖ ⋅
𝑥
𝑑

(0) − 𝑥
𝑘

(0)


+ ‖Φ𝐶 + Γ𝐶𝐴‖

⋅ ∫

𝑡

0
𝑒
𝐴(𝑡−𝜏)

𝐵
𝑢
𝑑

(𝜏) − 𝑢
𝑘

(𝜏)
 𝑑𝜏.

(22)

Multiplying by 𝑒
−𝜆𝑡, 𝜆 > ‖𝐴‖, and we have

𝑢
𝑑

(𝑡) − 𝑢
𝑘+1 (𝑡)

 𝑒
−𝜆𝑡

≤ ‖(1− 𝛼) 𝐼 − Γ𝐶𝐵‖ ⋅
𝑢
𝑑

(𝑡)

− 𝑢
𝑘

(𝑡)
 𝑒
−𝜆𝑡

− ‖Φ𝐶 + Γ𝐶𝐴‖ ⋅
𝑥
𝑑

(0) − 𝑥
𝑘

(0)


⋅ 𝑒
(‖𝐴‖−𝜆)𝑡

+ ‖Φ𝐶 + Γ𝐶𝐴‖

⋅ ∫

𝑡

0
𝑒
(‖𝐴‖−𝜆)(𝑡−𝜏)

𝑒
−𝜆𝜏

𝐵
𝑢
𝑑

(𝜏) − 𝑢
𝑘

(𝜏)
 𝑑𝜏

≤ ‖(1− 𝛼) 𝐼 − Γ𝐶𝐵‖ ⋅
𝑢
𝑑

(𝑡) − 𝑢
𝑘

(𝑡)
 𝑒
−𝜆𝑡

− ‖Φ𝐶

+ Γ𝐶𝐴‖ ⋅
𝑥
𝑑

(0) − 𝑥
𝑘

(0)
 𝑒
(‖𝐴‖−𝜆)𝑡

+
‖Φ𝐶 + Γ𝐶𝐴‖ ⋅ ‖𝐵‖ ⋅ (1 − 𝑒

(‖𝐴‖−𝜆)𝑡
)

𝜆 − ‖𝐴‖

𝑢
𝑑

(𝑡)

− 𝑢
𝑘

(𝑡)
 𝑒
−𝜆𝑡

.

(23)

Definition 6. Define 𝜆 norm for a function ℎ : [0, 𝑇] → R𝑘

[24]; then

‖ℎ (⋅)‖
𝜆

≜ sup
𝑡∈[0,𝑇]

𝑒
−𝜆𝑡

‖ℎ (⋅)‖ → R
𝑘
. (24)

Then

𝑢
𝑑

(𝑡) − 𝑢
𝑘+1 (𝑡)

𝜆 ≤



(1− 𝛼) 𝐼 − Γ𝐶𝐵

+
‖Φ𝐶 + Γ𝐶𝐴‖ ⋅ ‖𝐵‖ ⋅ (1 − 𝑒

(‖𝐴‖−𝜆)𝑡
)

𝜆 − ‖𝐴‖



⋅
𝑢
𝑑

(𝑡)

− 𝑢
𝑘

(𝑡)
𝜆 − ‖Φ𝐶 + Γ𝐶𝐴‖ ⋅

𝑥
𝑑

(0) − 𝑥
𝑘

(0)
 .

(25)

Since the (1 − 𝛼)𝐼 − Γ𝐶𝐵 ≤ 𝜌 < 1, we can find a 𝜆 > ‖𝐴‖

which makes

𝜌 =



(1− 𝛼) 𝐼 − Γ𝐶𝐵

+
‖Φ𝐶 + Γ𝐶𝐴‖ ⋅ ‖𝐵‖ ⋅ (1 − 𝑒

(‖𝐴‖−𝜆)𝑡
)

𝜆 − ‖𝐴‖



< 1.

(26)

So we can get

𝑢
𝑑

(𝑡) − 𝑢
𝑘+1 (𝑡)

𝜆 ≤
‖Φ𝐶 + Γ𝐶𝐴‖

1 − 𝜌

𝑥
𝑑

(0) − 𝑥
𝑘

(0)
 . (27)

Remark 7. It shows that 𝑢
𝑘
converges to the 𝑢

𝑑
of radius

(‖Φ𝐶 + Γ𝐶𝐴‖/(1 − 𝜌))‖𝑥
𝑑
(0) − 𝑥

𝑘
(0)‖ with respect to the

𝜆 norm. Besides, we can know that the convergent radius
is bounded. And the boundary depends on the initial input
states of system.

Consequently, the tracking error of system will be

𝑒
𝑘+1 (𝑡) = 𝑦

𝑑
(𝑡) − 𝑦

𝑘+1 (𝑡) = 𝐶 ⋅ {𝑒
𝐴𝑡

[𝑥
𝑑

(0) − 𝑥
𝑘

(0)]

+ ∫

𝑡

0
𝑒
𝐴(𝑡−𝜏)

𝐵 [𝑢
𝑑

(𝜏) − 𝑢
𝑘

(𝜏)] 𝑑𝜏} .

(28)

Similarly, taking the norm ‖ ⋅ ‖
𝜆
on both sides of (28), we

can get

𝑒
𝑘+1 (𝑡)

𝜆 =
𝑦
𝑑

(𝑡) − 𝑦
𝑘+1 (𝑡)

𝜆 ≤ ‖𝐶‖

⋅


𝑒
𝐴𝑡

[𝑥
𝑑

(0) − 𝑥
𝑘+1 (0)]

+ ∫

𝑡

0
𝑒
𝐴(𝑡−𝜏)

𝐵 [𝑢
𝑑

(𝜏) − 𝑢
𝑘+1 (𝜏)] 𝑑𝜏

𝜆
≤ ‖𝐶‖

⋅
[𝑥
𝑑

(0) − 𝑥
𝑘+1 (0)]



+
‖𝐶‖ ⋅ ‖𝐵‖ ⋅ (1 − 𝑒

(‖𝐴‖−𝜆)𝑡
)

𝜆 − ‖𝐴‖

𝑢
𝑑

(𝑡) − 𝑢
𝑘+1 (𝑡)

𝜆

≤ ‖𝐶‖ ⋅
[𝑥
𝑑

(0) − 𝑥
𝑘+1 (0)]



+
‖𝐶‖ ⋅ ‖𝐵‖ ⋅ (1 − 𝑒

(‖𝐴‖−𝜆)𝑡
)

𝜆 − ‖𝐴‖

⋅
‖Φ𝐶 + Γ𝐶𝐴‖

1 − 𝜌

𝑥
𝑑

(0) − 𝑥
𝑘

(0)
 .

(29)

Specially, the system usually can meet the initial condi-
tion; that is,

𝑥
𝑑

(0) = 𝑥
𝑘

(0) , 𝑘 = 1, 2, 3, . . . . (30)

That is said as

lim
𝑘→∞

𝑒
𝑘+1 (𝑡)

𝜆 → 0. (31)

To sum up, when the PD-type learning algorithm is
applied to the ILC with ESO, the input 𝑢

𝑘
(𝑡) of system can

converge to the ideal input 𝑢
𝑑
(𝑡), and the output of system

can converge to the ideal output 𝑦
𝑑
(𝑡).

4. Experiment Setup and Result

The verification platform is the rotary table of telescope
system, which consists of a DC motor, a tracking load,
an electrical driver, a control system, and a high precision
encoder whose accuracy is about ±0.618 (arc-second). The
control scheme includes two loops: position loop and velocity
loop.
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Figure 3: The desired reference signal.

The following three controllers are compared.

(1) PI-PI: this is the traditional Proportional-Integral (PI)
controller. In the velocity loop and position loop, we
use two PI controllers. The velocity signal can be
obtained by differentiating the position signal.

(2) PI-ESO: in both of the position loop and the velocity
loop, the PI controllers are used, but the velocity
signal will be gotten by the ESO. The bandwidth 𝜔0
of ESO is 𝜔0 = 100. The parameters of position loop’s
PI controller remain the same.

(3) PI-ILC-ESO: the PI controller is used in the position
loop, and the ILC controller is used in the speed loop.
The parameters of position loop’s PI controller still
remain the same. The velocity signal is also the signal
which is gotten by the ESO. To satisfy the condition
(18), The factor 𝛼 and the deviation gain matrix Γ are
chosen as 𝛼 = 0.2 and Γ = 0.5. By the state space
equation of system (14), it will have

‖(1− 𝛼) 𝐼 − Γ𝐶𝐵‖ =



(1− 0.2) 𝐼 − 0.5× [0 1] [
0
1
]



= 0.3 < 1.

(32)

The three controllers are tested for a sinusoidal signal,
whose velocity and acceleration are 𝜔 = 1.0 (

∘
/s) and 𝛼 =

3.14 (
∘
/s2). The period of 𝑇 sinusoidal signal is 2 (s).

The desired reference trajectory is shown in Figure 3.
And the corresponding tracking performance under the three
controllers is shown in Figures 4–6. As seen, the PI-PI
controller has a larger tracking error whose maximum value
is about 28.84. Comparatively speaking, the PI controller
with ESO has a better tracking performance, which illustrates
that ESO has an excellent estimation ability for disturbances
involved in the system. Furthermore, the proposed PI-ILC-
ESO controller has the least tracking error than other control
methods, whose maximum value of error is about 20.06.
This controller combines the advantages of ESO with the
advantages of ILC. It makes use of ESO to eliminate most of
the nonlinear disturbances. Simultaneously, the ILC gets the
best control input by learning previous control information.
Some detailed results of the three controllers are shown in
Table 1.
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Figure 4: The tracking error of PI-PI.
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Figure 5: The tracking error of PI-ESO.
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Figure 6: The tracking error of PI-ILC-ESO.

Table 1: The experimental results of the three controllers.

PI-PI PI-ESO PI-ILC-ESO
|maximum error| 28.8432 20.9988 20.0592

Root mean square error 9.8301 6.0282 5.6468

From Table 1, it can be seen that the PI-ILC-ESO has
better performance than other control methods. However,
comparing the PI-ESO controller with the PI-ILC-ESO con-
troller, it can be seen that the effectiveness of using ILC
is not obvious. The maximum error reduces only to 0.94
and the root mean square error reduces to 0.38. In fact,
Comparing with Figures 5 and 6, it can be found that the
errors of many position points exceed 10 and the errors
are close to 20, when the PI-ESO controller is used. But
when the PI-ILC-ESO controller is used, almost all the errors
of position points are near 10. So the conclusion that the
comprehensive performance of PI-ILC-ESO is better than
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other control methods can be gotten. The ILC method helps
the system get the best input signal. Besides, in Figures 5
and 6, it can be found that the errors are evenly distributed.
Comparing with the Figure 4 (PI-PI controller), both of the
two controllers have reduced almost all the turning errors
of system. The remaining errors are mostly caused by the
signal noise. So it is difficult to reduce the remaining error and
further improve the precision of system, unless the problem
of signal noise is solved.

5. Conclusion

Uncertain nonlinear disturbances have been themajor factors
which restrict the performance of tracking control systems.
This is because the systems will have a low tracking precision
when some uncertain nonlinear disturbances are induced in
the systems. Therefore, to reduce the influence introduced
by the uncertain nonlinear disturbances, an ILC method
with ESO is proposed in this paper. The ILC can get an
excellent input signal by learning previous control informa-
tion. It owns a better ability for eliminating some period
disturbances. Meanwhile, an ESO is designed for estimating
some uncertain nonlinear disturbances. It compensates the
shortage of the ILC’s disablement for nonperiod disturbances.
In addition, the ESO can estimate an accurate velocity signal
and supply the velocity as the feedback input signal of
iterative learning controller. Furthermore the convergence
analysis of the proposed control method guarantees the
robustness of system. Finally, the experiment results show
that the proposed control method has excellent performance
for reducing the tracking error of telescope system.
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