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Abstract 
A game theoretic framework for strategic refinery production planning is presented in 

which strategic planning problems are formulated as non-cooperative potential games whose 

solutions represent Nash equilibria. The potential game model takes the form of a nonconvex 

nonlinear program (NLP) and we examine an additional scenario extending this to a nonconvex 

mixed integer nonlinear program (MINLP). Tactical planning decisions are linked to strategic 

decision processes through a potential game structure derived from a Cournot oligopoly-type 

game in which multiple crude oil refineries supply several markets. The resulting production 

planning decisions are rational in a game theoretic sense and are robust to deviations in 

competitor strategies. These solutions are interpreted as mutual best responses yielding 
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maximum profit in the competitive planning game. Two scenarios are presented which illustrate 

the utility of the game theoretic framework in the analysis of production planning problems in 

competitive scenarios. 

1. Introduction 

Strategic production planning plays a vital role in modern organizations as a tool for 

strategic and tactical decision making at an organization-wide level [1]. In a comprehensive 

review of refinery supply chain planning models Sahebi, Nickel, and Ashayeri identify crude oil 

supply chain planning optimization as an imperative source of competitive advantage in the 

refining business [2]. Few papers exist in which refinery production planning has been examined 

in a competitive context where the presence of separate refiners competing for limited market 

share is taken into account at the strategic or tactical planning levels. Game theory provides the 

tools to investigate competitive interactions and has seen wide use in process systems 

engineering in areas where the interactions between competing entities are of fundamental 

interest. Of note is the area of electricity market modelling in deregulated power markets, where 

the ability of interested power suppliers to “game” established auction and distribution systems is 

well known. Bajpai and Singh review game theoretic methodologies used in modelling strategic 

decision making processes in electrical markets [3]. Also of note is the area of distributed model 

predictive control (MPC) in which the control actions of separate but interacting controllers are 

managed using game theoretic principles. Scattolini reviews game theoretic and other distributed 

MPC architectures [4]. 

Game theoretic principles have seen use in engineering supply chain planning literature 

to solve cooperative and competitive problems. Gjerdrum, Shah, and Papageorgiou have 

implemented Nash bargaining objective functions to determine fair profit allocation among 
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members of multienterprise supply chains [5][6]. Pierru used Aumann-Shapley cost sharing to 

allocate carbon dioxide emissions to various products in an oil refinery [7]. Bard, Plumer, and 

Sourie used a bilevel formulation to investigate interactions between governments and biofuels 

producers as a Stackelberg game where the government leads by enacting policy [8]. Bai, 

Ouyang, and Pang have used a bilevel formulation to solve a competitive biofuel refinery 

location and planning problem as a Stackelberg game wherein the biofuel refiner takes the role 

of the leader and farmers follow by adjusting their land use [9]. Yue and You used KKT 

conditions to reduce the bilevel program describing a Stackelberg game into a single nonconvex 

MINLP whose global optimum is a Stackelberg equilibrium [10]. Zamarripa et al have 

developed a framework for solving cooperative and competitive supply chain problems through 

enumeration of the payoff matrix in multi-objective scenarios, yielding Nash equilibria in almost 

all cases [11][12][13]. 

With the exception to the works of Zamarripa et al, the applications of game theoretic 

principles in engineering supply chain literature do not yield Nash equilibrium planning results, 

and rely instead on other game theoretic constructs. In particular the use of a Stackelberg game 

allows the planning decisions of a leader to be optimized such that the followers are constrained 

to Nash equilibrium strategies. The Stackelberg framework is not appropriate if no single 

competitor can be identified as a leader or does not have the capacity to implement a strategy 

before competitors can react [14][15]. The framework proposed by Zamarripa et al yields Nash 

equilibria in most cases, but does not under certain conditions, as they observed in [13]. Since 

their method is based on enumeration of a finite strategy matrix, and the framework examines 

only pure strategy solutions (as opposed to mixed strategies) a Nash equilibrium is not 

guaranteed to exist in all cases [16]. There is thus a gap in engineering supply chain literature 
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where supply chain planning problems in competitive scenarios cannot be effectively solved to 

Nash equilibrium strategies. We address this problem with a game theoretic framework for 

strategic and tactical production planning which generates production plans representative of 

Nash equilibria between competing producers and we illustrate the properties of this framework 

using a set of competing oil refiners. Our framework treats production planning problems as 

continuous games (also referred to as infinite games) which guarantees that at least one Nash 

equilibrium will exist [17][18][19]. Problems are formulated as potential games, and Nash 

equilibrium solutions are identified as the global maxima of a potential function objective [20]. 

This potential game framework circumvents many of the problems which arise in the application 

of game theoretic models to production planning as the planning and game theoretic aspects of 

the problem are defined by a single objective function which can be solved using conventional 

NLP and MINLP solvers. The contributions and novel elements of this work are: 

 A framework under which strategic production planning problems can be solved 

in a game theoretic context using a potential game formulation yielding solutions 

forming Nash equilibria; 

 A modification to the Cournot oligopoly model which uses a defined demand 

level as a modifier of price behaviour; 

 Two case studies which illustrate the utility of the game theoretic framework in 

relevant planning scenarios which exemplify its potential applications to strategic 

and tactical production planning. 

 

The paper is presented as follows: Background material on game theory and potential 

games is provided in brief in section 2. Problem statements are outlined in section 3. Equations 
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and model formulation, including the formulation of each of the scenarios and their variants, are 

presented in section 4, along with the formulation of the demand-based Cournot oligopoly. 

Results, interpretations, and discussion are presented in section 5, and conclusions are drawn in 

section 6. 

2. Background 

2.1. Nash equilibrium 

The concept of the Nash equilibrium as a solution to a noncooperative game has been 

studied extensively and has different interpretations in various types of game theoretic problems 

[16][21][22]. We present elements of Nash equilibrium theory pertinent to the development of 

our potential game framework. Denoting the game as 𝐺 and the strategy sets of each of 𝑁 players 

as 𝑆𝑛 with strategies 𝑠𝑛 ∈ 𝑆𝑛 then a Nash equilibrium of 𝐺 is defined as a set of strategies 

𝐺{𝑠1
∗, … , 𝑠𝑁

∗ } where 𝑠𝑛
∗  represents player 𝑛’s equilibrium strategy. Each player has an objective 

function 𝐽𝑛{𝑠𝑛, 𝑠−𝑛}; a Nash equilibrium strategy has the property in Eq. (1). 

 𝐽𝑛{𝑠𝑛, 𝑠−𝑛
∗ } ≤ 𝐽𝑛{𝑠𝑛

∗ , 𝑠−𝑛
∗ } ∀𝑛 ∈ 𝑁, 𝑠𝑛 ∈ 𝑆𝑛 

(1) 

By using a non-strict inequality this definition allows multiple equilibria to exist with the 

same value. Such a case is referred to as a weak Nash equilibrium. Where an equilibrium 

satisfies the definition to strict inequality, the resulting Nash equilibrium is termed strict [23]. 

This result has several implications on the meaning of equilibrium. There is no alternate strategy 

available to any single player which yields a unilateral increase in their objective; equilibrium 

strategies are a set of mutual best responses among the set of players. The mathematical 

definition of the Nash equilibrium corresponds to an assumption that every participant in the 

game has full knowledge of the game and the strategy sets of all other players in order to 
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formulate their own strategies. The Nash equilibrium may also be interpreted as a maximizer of 

the set of player objectives in Eq. (2). 

 𝑠𝑛
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥{𝐽𝑛(𝑠𝑛, 𝑠−𝑛

∗ )} ∀𝑛 ∈ 𝑁, 𝑠𝑛 ∈ 𝑆𝑛 
(2) 

Each player’s objective is maximized with regard to the best responses of all other 

players, which are usually not the global maximizers of 𝐽𝑛(𝑠𝑛, 𝑠−𝑛) with respect to both strategy 

sets 𝑆𝑛 and 𝑆−𝑛. Where the players’ objectives are continuous and differentiable functions of 

strategy variables 𝑠𝑛 ∈ 𝑆𝑛 the Nash equilibrium is defined by solving the set of equations in 

Eq. (3) [22]. 

 
𝜕𝐽𝑛(𝑠𝑛, 𝑠−𝑛)

𝜕𝑠𝑛
= 0 ∀𝑠𝑛 ∈ 𝑆𝑛, 𝑛 ∈ 𝑁 

(3) 

Multiple Nash equilibria may exist in a continuous game. Calculation of all Nash 

equilibria which exist in a game is an NP-hard problem, although heuristics exist which allow 

additional equilibria to be characterized [24][25]. 

Games can be defined such that participants’ strategy spaces are not independent. Such 

games are referred to as generalized Nash equilibrium problems (GNEP) [26][27][28]. In a 

GNEP player strategies are defined in terms of a strategy set 𝑠𝑛 ∈ 𝑆𝑛(𝑠−𝑛) which is dependent 

on competing players’ chosen strategies. Constraints on player strategies make analytical 

solutions more difficult to obtain [28]. The solution to a GNEP is referred to as a generalized 

Nash equilibrium, and shares many of the same properties of a Nash equilibrium. Generalized 

Nash equilibrium strategies have the definition in Eq. (4). 

 𝑠𝑛
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥{𝐽𝑛(𝑠𝑛, 𝑠−𝑛

∗ )} ∀𝑛 ∈ 𝑁, 𝑠𝑛 ∈ 𝑆𝑛(𝑠−𝑛) 
(4) 

The generalized Nash equilibrium is defined by the KKT conditions corresponding to 

players’ problems, and multiple generalized Nash equilibria may be defined this way. Selection 
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of one equilibrium as a solution from among all possible generalized Nash equilibria is 

facilitated by the concept of the normalized Nash equilibrium. Normalization is accomplished by 

imposing a set of relative weightings on the dual variables, which for convex games guarantees 

that a unique normalized Nash equilibrium exist for each unique set of weightings [29][30]. This 

definition provides a selection mechanism for Nash equilibrium solutions in constrained 

problems. 

2.2. Potential games and the potential function 

For a subclass of games called potential games, the system of equations defining the 

Nash equilibria can be used to formulate a potential function whose maxima correspond to the 

Nash equilibria of the game. Early work demonstrating existence of the potential function was 

formalized by Bergstrom and Varian in 1985 [31], and Slade in 1989 [32] and 1994 [33]. The 

class of potential games and the associated nomenclature were characterized by Monderer and 

Shapley in 1996 [20]. With game equilibria defined as objective function maxima, potential 

games can be solved using optimization tools. The equilibria defined by potential games may be 

strict, weak, or of the generalized type [34][35]. 

A potential function can be derived from the individual objectives 𝐽𝑛(𝑠𝑛, 𝑠−𝑛) of the 

players in a game. All objective functions must be of the form in Eq. (5). 

 𝐽𝑛(𝑠𝑛, 𝑠−𝑛) = Ψ(𝑠𝑛, 𝑠−𝑛) + Ω𝑛(𝑠𝑛) + Θ𝑛(𝑠−𝑛) ∀𝑛 ∈ 𝑁 
(5) 

In this form each player’s objective consists of three parts: Ψ is a term common to all 

players and a function of all players’ strategy variables; Ω𝑛 is a term unique to each player and is 

a function exclusively of that player’s strategy variables; and Θ𝑛 is a term unique to each player 

which contains only the variables associated with the other players. The potential function is 

formulated as in Eq. (6). 
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 𝑍(𝑠𝑛, 𝑠−𝑛) = Ψ(𝑠𝑛, 𝑠−𝑛) + ∑Ω𝑛(𝑠𝑛)

𝑛

 
(6) 

The potential function yields the same definition of the Nash equilibrium as defined in 

section 2.1: its derivative with respect to any individual player’s strategy variable yields the 

derivative of that player’s objective function, as in Eq. (7). 

 
𝜕𝑍(𝑠𝑛, 𝑠−𝑛)

𝜕𝑠𝑛
=

𝜕

𝜕𝑠𝑛
(Ψ(𝑠𝑛, 𝑠−𝑛) + Ω𝑛(𝑠𝑛)) =

𝜕𝐽𝑛(𝑠𝑛, 𝑠−𝑛)

𝜕𝑠𝑛
 

(7) 

In this interpretation it is apparent that the maxima of the potential function must be 

solutions to the set of partial differential equations obtained by equating each player’s derivative 

to zero, and are therefore Nash equilibria by definition. These concepts extend to constrained 

games and the generalized Nash equilibrium; the maxima of the potential function subject to 

strategy space constraints are generalized Nash equilibria [29]. 

2.3. Cournot oligopoly 

The Cournot oligopoly is a classic economic model used to examine market competition, 

which we use to structure game theoretic interactions between competitors. The Cournot 

oligopoly has seen widespread use in economics and defines a game in which a set 𝑁 of 

producers of a single homogeneous good each must decide how much of that good to sell to a 

market [21][36]. The realized price for the good is a function of the collective amount the players 

deliver to the market. This scenario results in a game in which each player’s only strategic 

decision is a production volume. We focus on a Cournot game with particular assumptions: that 

the game is static, meaning all decision making occurs instantaneously and simultaneously, and 

also a state of complete information, meaning that players are always aware of their competitors’ 

decisions [21]. 
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Each market participant attempts to maximize its profits according to a function 𝐽𝑛 = 𝑃𝑟 ∙

𝑞𝑛 − 𝑐𝑛 where 𝑃𝑟 represents market price, 𝑞𝑛 is the amount supplied by producer 𝑛, each of 

whom has a production cost 𝑐𝑛. The solution to this game theoretic model is a Nash equilibrium 

in terms of the quantities of product 𝑞𝑛 that each of the 𝑁 producers supply. The market price 𝑃𝑟 

is a function of 𝑞𝑛 and the most common interpretation is that in Eq. (8). 

 𝑃𝑟 = 𝐴 − ∑𝑞𝑛

𝑛

 
(8) 

𝐴 is a parameter indicative of the marginal value of the first unit sold on the market. This 

equation interpretation is presented in similar form in [21][32][36]. Player objective functions 

can be rewritten as functions of total production of the form in Eq. (9). 

 𝐽𝑛 = (𝐴 − ∑𝑞𝑛′

𝑛′

) 𝑞𝑛 − 𝑐𝑛 
(9) 

The Nash equilibrium in terms of 𝑞𝑛 for this oligopoly problem is defined by the solution 

to the set of best response equations in Eq. (10). 

 
𝜕𝐽𝑛
𝜕𝑞𝑛

= 0 ∀𝑛 ∈ 𝑁 
(10) 

The Cournot oligopoly presented here is a potential game [33]. The corresponding 

potential function has the form in Eq. (11). 

 
𝑍 = ∑(𝐴 ∙ 𝑞𝑛 − 𝑞𝑛

2 − 𝑐𝑛)

𝑛

− ∑ (𝑞𝑛𝑞𝑛′)

𝑛,𝑛′

𝑛<𝑛′

 

(11) 

The derivatives of this potential function with respect to each 𝑞𝑛 yield the partial 

derivatives of each player’s objective 𝐽𝑛 with respect to 𝑞𝑛. The maxima of this function are 

Nash equilibria. 
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3. Problem statement 

We examine strategic refinery production planning in a game theoretic framework to 

investigate the effects of competition on strategic planning decisions. In this framework 

individual refineries are owned and operated by single, competing refiners such that each 

refinery is considered to be an individual competitor in a game theoretic sense. Each refiner 

produces the same set of petroleum products as the others and has access to the same crude oil 

stocks. Refineries are identical in configuration, but vary in capacity. 

Refiners are faced with a production planning problem in which multiple target markets 

exist and each market is characterized by its own nominal demand levels, corresponding nominal 

prices, and status as either a local or a global market. Local markets are those in which refiners 

are physically located, while global markets do not contain refineries. Refiners are collectively 

obligated to satisfy product supply constraints in their local market, and refiners outside that 

market cannot export product there for sale. We interpret this arrangement as a form of price 

protection between the local market population and the refiners operating there; refiners may 

import product for local market sale to make up production slack. Since global markets do not 

contain refiners, they are reliant upon imports. Global markets are connected to local markets by 

pipelines, and any refiner with access to a pipeline may export product to a global market 

without limit. 

The refinery market is formulated with Cournot oligopoly pricing. Product prices in each 

market are variable functions of the collective market supply of that product; refiners do not 

control prices, but do influence them with their production decisions. Pricing is based on the 

concept of inverse demand; prices decrease in response to a market supply in excess of demand, 

and increase when supply falls short of demand. This pricing structure assumes that prices adjust 
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to a point where all supplied product is sold and the market clears. Each refiner has the objective 

of maximizing its profit independently of the others. A refiner’s individual problem is thus to: 

 Determine the amounts of each product which should be sold in its local market in 

order to satisfy local supply constraints in concert with its competitors, and 

whether any product should be imported, in order to maximize its own profit (a 

strategic decision). 

 Determine the amounts of each product which should be sold to global markets 

accounting for all competitors with market access in order to maximize its profit 

(a strategic decision). 

 Determine how much of each crude oil stock to purchase and how to process the 

purchased stocks into the desired products in the most cost efficient manner 

(production planning decisions). 

Each refiners’ decision variables are: 

 Crude stock purchase volumes. 

 Blend volumes and unit operating modes. 

 Product volumes and shipping destinations, including imports. 

This game theoretic production planning problem is formulated as a potential game 

taking the form of an NLP. Local and global maxima of the potential function objective are 

defined as Nash equilibrium strategies in terms of refiner production decisions, and may be 

generalized Nash equilibria [29][33]. Due to the local market supply constraint forcing refiners 

to satisfy production within specified limits, the solutions obtained from this model are 

characterized as generalized Nash equilibria when the constraint is enforced. Figure 1 illustrates 

an arrangement of refiners, consumers, and markets with three local markets and two global 
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markets; one refiner has a local market monopoly because no other refiners have access to its 

point of sale, the rest compete in local oligopolies, and all compete in either one or two global 

market oligopolies. 

Two scenarios are presented under this framework in which multiple refiners compete 

under different conditions. Each scenario explores different aspects of production planning 

problems in a competitive context. The scenarios are described in the following sections. 

 

Figure 1. Sample arrangement of local and global markets. 

3.1. Scenario 1 (S1) - Competition for market share 

This scenario examines refiners competing in the petroleum market and forms a point of 

comparison with other production planning approaches. Each refiner is capable of producing the 

same set of six products. Unit capacity constraints in the production planning model limit the 

ability of any individual refiner to process more than a certain total throughput regardless of 

market driving forces. It will be shown by removing unit capacity constraints and allowing 

refiners to produce potentially infinite volumes that there exist Nash equilibria as the global 

maxima of the unconstrained potential function and that both types of solution share similar 

properties. The production planning problem is also solved under a fixed price profit 
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maximization objective for comparison using the sum of refiner profits as the objective function. 

With fixed prices the refiners are not in competition. It will be shown that results obtained using 

a fixed price approach differ from game theoretic results, and that the strategic plans derived are 

not competitively rational. 

3.2. Scenario 2 (S2) - Elimination of inefficient competitors 

This scenario examines refiners in competition where the market structure may change. A 

subset of refineries are considered to be more efficient and competitive than the remainder and 

are labeled low-cost refineries, denoted by the subset 𝐿𝐶𝑁 ⊆ 𝑁. The remaining refineries are, by 

virtue of their size, age, or technological obsoleteness, rendered less competitive than the low-

cost refineries and are termed high-cost refineries, denoted as part of the subset 𝐻𝐶𝑁 ⊆ 𝑁. All 

refiners are in competition regardless of low or high-cost status, and the low cost refiners need to 

decide whether to shut down high-cost refineries and obtain additional market share for 

themselves. Examples of such industry structure exist in western Canada where several small 

refiners compete with large capacity refiners [37]. 

Cournot limit theorem states that all else being equal a market with fewer competitors 

maintains higher prices [38]. Based on this theorem, any option to reduce the number of 

competitors is a positive decision for the remaining refiners. We differentiate our scenario from 

this theorem by assuming that high-cost refineries are older, obsolete, and require higher market 

prices than their low-cost competitors to remain profitable. As long as the high-cost refineries 

remain active, all refiners gain the benefit of the higher local market prices; if the high-cost 

refineries shut down, prices drop to reflect the competitive margins of the low-cost refineries. 

Low-cost refiners have the option either to drive a high-cost refiner out of business by 

aggressively supplying the local market, or allowing the high-cost refiner to continue to operate; 
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this decision occurs by consensus among the low-cost refiners in order to avoid cartel game 

mechanics [36]. The consensus decision is modelled as a binary variable such that this scenario 

is a nonconvex MINLP. The question in this game is under what market conditions a high-cost 

refiner is allowed to remain in operation. It will be shown that an inclusion region can be 

characterized based on market demand levels and the price increase associated with the high-cost 

refiner. 

4. Models and Formulation 

4.1. Production planning model 

The refinery production planning model consists of the set of equations which describe 

how crude oil is transformed into intermediates and products. We use a simplified linear yield-

based model similar to that used by Castillo Castillo and Mahalec [39]. A schematic of the 

refinery is shown in Figure 2 illustrating the pathways that crude oil, production intermediates, 

and products take through the process units. Each refinery consists of a crude distillation unit 

(CDU) two hydrotreaters (HT1 and HT2) a hydrocracker (HC) a fluid catalytic cracker (FCC) 

and a catalytic reformer (CR). Blending of intermediates into products occurs in a gas blender 

(GB) and a diesel blender (DB). The eight intermediates of interest are straight run light naphtha 

(srln) hydrocracker light naphtha (hcln) catalytic cracker light naphtha (fccln) heavy naphtha 

(fcchn) light cycle oil (fcclco) straight run distillate (srds) hydrocracker distillate (hcds) and 

reformate (rft). The six products are regular, mid-grade, and premium gasoline (reg, mid, and 

pre) and diesel grades 1, 2, and 4 (de1, de2, and de4). 
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Figure 2. Refinery model schematic. 

The plant processes crude oil following the layout in Figure 2. For each crude oil which 

enters the CDU there is a yield corresponding to the type of crude processed and operating mode 

(either max diesel mode or max naphtha mode) which dictates the amounts of outputs produced. 

The refinery model considers primarily those streams involved in the production of gasoline and 

diesel products. The streams denoting the CDU output of light product gasses (lpg) kerosene 

(kero) and residuals (rsd) are assumed to be sold at fixed price in order to keep the model 

relatively small. This assumption impacts neither the qualitative pattern of the results nor the 

conclusions. Similarly, the HC kerosene stream (hckero) and FCC heavy cycle oil (fcchco) are 

calculated but not included in profit calculations. All other streams in Figure 2 indicate 

movements of material through the refinery linking crude oil to gasoline and diesel products. 

Refinery efficiency cost reflects the cost a refiner faces due to operating away from its 

efficient operating throughput. It is meant to represent complex unit and process operating costs 

incurred from nonstandard plant operation. The efficiency cost curve is modelled as a quadratic 

function with vertex coordinates (𝐸𝐶𝐻(𝑛), 𝐸𝐶𝐾(𝑛), 𝐸𝐶𝑃(𝑛)) for each refinery 𝑛, where 𝐸𝐶𝐻(𝑛) 
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indicates the design throughput with the efficient cost 𝐸𝐶𝐾(𝑛). 𝐸𝐶𝑃(𝑛) represents parabolic 

focal length and determines how efficiency costs increase with deviation from 𝐸𝐶𝐻(𝑛). A 

quadratic efficiency function is calculated with the parameters in Eqs. (12), (13), and (14). 

 𝐸𝐶𝐴(𝑛) =
1

4(𝐸𝐶𝑃(𝑛))
 

(12) 

 𝐸𝐶𝐵(𝑛) = −
𝐸𝐶𝐻(𝑛)

2(𝐸𝐶𝑃(𝑛))
 

(13) 

 𝐸𝐶𝐶(𝑛) =
(𝐸𝐶𝐻(𝑛))

2

4(𝐸𝐶𝑃(𝑛))
+ 𝐸𝐶𝐾(𝑛) 

(14) 

The total efficiency cost experienced by a refiner is the quadratic efficiency cost 

multiplied by the total output from the refinery cumulatively over all products and planning 

periods, and is cubic overall. Total efficiency cost is defined by Eq. (15), where the variable 

𝑃𝑟𝑐(𝑡, 𝑝, 𝑛) indicates the amount of a product produced in a given time period by a refiner. 

 

𝑇𝐸𝐶(𝑛) = 𝐸𝐶𝐴(𝑛) [∑𝑃𝑟𝑐(𝑡, 𝑝, 𝑛)

𝑡,𝑝

]

3

+ 𝐸𝐶𝐵(𝑛) [∑𝑃𝑟𝑐(𝑡, 𝑝, 𝑛)

𝑡,𝑝

]

2

+ 𝐸𝐶𝐶(𝑛)∑𝑃𝑟𝑐(𝑡, 𝑝, 𝑛)

𝑡,𝑝

, ∀𝑛 ∈ 𝑁 

(15) 

The production planning model equations are included as supplementary material. The 

refinery production planning model consists of Eqs. (A 1) to (A 41). Model equation variants 

specific to a scenario are outlined in sections 4.4 and 4.5. 

4.2. A demand-based Cournot oligopoly 

We present a modified Cournot oligopoly designed for use with this work which assumes 

that if the total market production level of a product is equal to a nominal market demand level, 

denoted 𝐷(𝑝,𝑤), then the market price of that product will take a value 𝐵(𝑝,𝑤). As in the 
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classic Cournot model, price varies linearly with total market supply, where individual producer 

amounts are denoted 𝑇𝑝𝑑(𝑝, 𝑛, 𝑤) with a product index 𝑝. The marginal value of the first unit of 

a product to enter the market is defined as 𝐴(𝑝,𝑤) + 𝐵(𝑝, 𝑤), thus the price of a product 𝑝 

varies according to Eq. (16). 

 𝑃𝑟(𝑝, 𝑤) = 𝐴(𝑝, 𝑤) + 𝐵(𝑝, 𝑤) −
𝐴(𝑝,𝑤)

𝐷(𝑝,𝑤)
∑𝑇𝑝𝑑(𝑝, 𝑛, 𝑤)

𝑛

∀𝑝 ∈ 𝑃,𝑤 ∈ 𝑊 
(16) 

The competitor profit function is defined in Eq. (17) using the definition of market price 

in Eq. (16) and cost total 𝑇𝑜𝑡𝐶𝑜𝑠𝑡(𝑛). This demand-based Cournot oligopoly problem is a 

potential game and forms the basis of the game theoretic refinery planning framework. 

 𝐽(𝑛) = ∑(Pr(𝑝, 𝑤) 𝑇𝑝𝑑(𝑝, 𝑛, 𝑤))

𝑝,𝑤

− 𝑇𝑜𝑡𝐶𝑜𝑠𝑡(𝑛) ∀𝑛 ∈ 𝑁 
(17) 

 

4.3. Potential function formulation 

The potential function corresponding to the set of objectives defined in Eq. (17) consists 

of the common part Ψ and the unique parts Ω(𝑛) of the objectives 𝐽(𝑛), and is defined in 

Eq. (18) with definitions for Ψ and Ω(𝑛) in Eqs. (19) and (20). 
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max𝑍 

𝑍 = Ψ + ∑Ω(𝑛)

𝑛

 (18) 

Ψ = ∑

[
 
 
 

−
𝐴(𝑝,𝑤)

𝐷(𝑝,𝑤)
∑ 𝑇𝑝𝑑(𝑝, 𝑛, 𝑤)𝑇𝑝𝑑(𝑝, 𝑛′, 𝑤)

𝑛,𝑛′

𝑛<𝑛′ ]
 
 
 

𝑝,𝑤

 
(19) 

Ω(𝑛) = ∑[(𝐴(𝑝,𝑤) + 𝐵(𝑝,𝑤) −
𝐴(𝑝,𝑤)

𝐷(𝑝,𝑤)
𝑇𝑝𝑑(𝑝, 𝑛, 𝑤))𝑇𝑝𝑑(𝑝, 𝑛, 𝑤)]

𝑝,𝑤

− 𝑇𝑜𝑡𝐶𝑜𝑠𝑡(𝑛)

∀𝑛 ∈ 𝑁

 
(20) 

This form of the potential function serves as the model objective and its maxima are Nash 

equilibria of strict, weak, or generalized types depending on the included constraints. The total 

product leaving a refinery 𝑇𝑝𝑑(𝑝, 𝑛, 𝑤) is defined in Eq. (21) as the sum of the product the 

refinery produces and the amounts which it imports. These variables link the refinery planning 

model to the potential function. 

 𝑇𝑝𝑑(𝑝, 𝑛, 𝑤) = ∑𝐷𝑙𝑣(𝑡, 𝑝, 𝑛′, 𝑤)

𝑡

+ 𝐼𝑚𝑝(𝑝, 𝑛, 𝑤) 
(21) 

 

4.4. Fixed-price analysis 

Current practices generally use fixed prices in refinery planning models; we compare the 

outcomes of such analyses with game theoretic results. Our scenarios are examined under a 

fixed-price profit maximization framework using the objective in Eq. (22). This objective is the 

total profit of all refiners. Revenues are calculated based on fixed market prices 𝐹(𝑝,𝑤) and are 

linear calculations; the only nonlinearity in this variant is the efficiency cost calculation. 

 max𝑍 
(22) 
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𝑍 = ∑(∑(𝐹(𝑝,𝑤)𝑇𝑝𝑑(𝑝, 𝑛, 𝑤))

𝑝

− 𝑇𝑜𝑡𝐶𝑜𝑠𝑡(𝑛))

𝑛

 

The local market supply constraints defined by Eqs. (A 40) and (A 41) enforce refiner 

coordination. With exception to these constraints, refiners are independent of one another in 

terms of their decision making; their profits are not interdependent under this objective. 

4.5. Model alterations for Scenario 2 

The game theoretic model is modified such that high-cost refiners are linked to a binary 

variable that is incorporated into the high-cost refiner model equations in order to allow all flow 

rates, inventories, and outputs to be set to zero, effectively shutting down those refiners. The 

continued participation of high-cost refiners is dependent on a binary variable 𝑌𝐻𝐶𝑁(𝑤). High-

cost refiners are also limited to a decreased production level 𝐻𝐶𝑁𝑠𝑒𝑡 using Eq. (23), and are 

prevented from making import purchases in this scenario. These changes define the 

characteristics of the high-cost refiner, along with its parameter values. 

 ∑𝑃𝑟𝑐(𝑡, 𝑝, 𝑛) = 𝑌𝐻𝐶𝑁(𝑤)𝐻𝐶𝑁𝑠𝑒𝑡

𝑡,𝑝

∀ (𝑛, 𝑤) ∈ 𝑊𝐻𝐶𝑁(𝑛,𝑤) 
(23) 

The participation binary is also used to relax variable bound constraints in Eqs. (A 3), (A 

4), (A 10), (A 12), (A 13), (A 19), (A 20), (A 27), and (A 29)-(A 32); each use the binary 

variable to reduce a constraint value to zero if the value of 𝑌𝐻𝐶𝑁(𝑤) is zero in order to deactivate 

the high-cost refiner model. The potential function term Ω(𝑛) is altered to include the price 

increase 𝐴𝐻𝐶(𝑝,𝑤) corresponding to the presence or absence of the high-cost refiner defined in 

Eq. (24). 
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Ω(𝑛) = ∑

[
 
 
 
 

(

 
 

𝐴(𝑝,𝑤) + 𝐴𝐻𝐶(𝑝, 𝑤) ∑ 𝑌𝐻𝐶𝑁(𝑤′)

𝑤′

𝑤′∈𝑊𝐿𝑁

+ 𝐵(𝑝, 𝑤)
𝑝,𝑤

𝑤∈𝑊𝑁(𝑛,𝑤)

−
𝐴(𝑝, 𝑤)

𝐷(𝑝,𝑤)
𝑇𝑝𝑑(𝑝, 𝑛, 𝑤)

)

 
 

𝑇𝑝𝑑(𝑝, 𝑛, 𝑤)

]
 
 
 
 

− 𝑇𝑜𝑡𝐶𝑜𝑠𝑡(𝑛) 

∀𝑛 ∈ 𝑁 

(24) 

This version of Ω(𝑛) contains a bilinear term of the form 𝑌𝐻𝐶𝑁(𝑤)𝑇𝑝𝑑(𝑝, 𝑛, 𝑤) which 

has an exact linearization obtained by introducing two variables and the constraints in Eqs. (25), 

(26), and (27). This linearization technique reduces the number of model nonlinearities and is 

described in more detail by You and Grossmann [40]. The presented formulation allows multiple 

high-cost refiners to exist in a single local market, and dictates their activity on an all-or-none 

basis. The upper bound 𝑇𝑝𝑑̅̅ ̅̅ ̅(𝑝, 𝑛, 𝑤) represents the total combined processing capacity of a 

refiner plus its product import limit. 

 

𝑇𝑃(𝑝, 𝑛, 𝑤,𝑤′) + 𝑇𝑃1(𝑝, 𝑛, 𝑤, 𝑤′) = 𝑇𝑝𝑑(𝑝, 𝑛, 𝑤) 

∀𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁, (𝑤,𝑤′) ∈ 𝑊 
(25) 

 
𝑇𝑃(𝑝, 𝑛, 𝑤,𝑤′) ≤ 𝑌𝐻𝐶𝑁(𝑤′)𝑇𝑝𝑑̅̅ ̅̅ ̅(𝑝, 𝑛, 𝑤) 

∀𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁, (𝑤,𝑤′) ∈ 𝑊 
(26) 

 

𝑇𝑃1(𝑝, 𝑛, 𝑤) ≤ (1 − 𝑌𝐻𝐶𝑁(𝑤′))𝑇𝑝𝑑̅̅ ̅̅ ̅(𝑝, 𝑛, 𝑤) 

∀𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁, (𝑤,𝑤′) ∈ 𝑊 
(27) 

With this linearization Eq. (24) can be rewritten as in Eq. (28), which is the form of the 

equation implemented in the elimination scenario and is denoted ΩK(𝑛) in order to differentiate 

it from the version used in other scenarios. 
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ΩK(𝑛) = ∑

[
 
 
 
(𝐴(𝑝, 𝑤) + 𝐵(𝑝,𝑤))𝑇𝑝𝑑(𝑝, 𝑛, 𝑤)

𝑝,𝑤

𝑤∈𝑊𝑁(𝑛,𝑤)

+

(

 𝐴𝐻𝐶(𝑝, 𝑤) ∑ 𝑇𝑃(𝑝, 𝑛, 𝑤,𝑤′)

𝑤′

𝑤′∈𝑊𝐿𝑁 )

 

−
𝐴(𝑝,𝑤)

𝐷(𝑝, 𝑤)
(𝑇𝑝𝑑(𝑝, 𝑛, 𝑤))

2

]
 
 
 
− 𝑇𝑜𝑡𝐶𝑜𝑠𝑡(𝑛) 

∀𝑛 ∈ 𝑁 

(28) 

The elimination scenario is intended to determine whether low-cost refiners in a local 

market are better off with or without high-cost refiners. High-cost refiners’ production decisions 

cannot be part of the potential function; game potentials with opposing values of 𝑌𝐻𝐶𝑁(𝑤) 

compare the accrued value of the entire set of refiners including the local market price increase 

against that of the just the low-cost refiners without the increase. In order to model the question 

appropriately the potential function in this scenario must capture only the interests of the low-

cost refiners, with the high-cost refiner’s production decisions fixed to rational values. A two-

stage solution process is used to solve this problem. In the first stage all refiners are active under 

a full potential function generating the optimal game theoretic production decisions. This first 

stage amounts to solving a Scenario 1 problem where the high-cost refiner is unable to import 

product and generates a price increase. In the second stage of the solution process the potential 

function is generated with ΩK(𝑛) for the low-cost refiners which captures their profits and the 

price increase coming from the high-cost refiner. The variable Ψ is generated over all refiners 

and captures the decrease in price caused by their collective production decisions, including the 
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fixed first stage values assigned to the high-cost refiner. The second stage thus represents the 

interests of only the low-cost refiners. Any product profile could be assigned to the high-cost 

refiner in order to solve the Scenario 2 problem; generating the high-cost refiner’s profile using 

the first stage ensures that the decision is rational with respect to game theoretic analysis. The 

potential function used in the second stage is formulated as in Eq. (29). 

 

max𝑍 

𝑍 = Ψ + ∑ ΩK(𝑛)

𝑛∈𝐿𝐶𝑁

 (29) 

The fixed price approach to the elimination problem is formulated using the objective 

function in Eq. (30). 

 

max𝑍 

𝑍 = ∑

(

  
 

∑

(

 
 

(

 𝐹(𝑝,𝑤) + 𝐴𝐻𝐶(𝑝, 𝑤) ∑ 𝑌𝐻𝐶𝑁(𝑤′)

𝑤′

𝑤′∈𝑊𝐿𝑁 )

 𝑇𝑝𝑑(𝑝, 𝑛, 𝑤)

)

 
 

𝑝𝑛
𝑛∈𝐿𝐶𝑁

− 𝑇𝑜𝑡𝐶𝑜𝑠𝑡(𝑛)

)

  
 

 

(30) 

 

5. Results and Discussion 

5.1. Scenario basis and data 

The scenarios presented in this work are based as much as possible on the Canadian 

national fuel market using data from 2014. Each scenario is based on the same example 

involving three refineries acting in a local market 𝐿𝑀1 with access to an global market 𝐸𝑀1. 
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Product demand is scaled down to an appropriate level corresponding to the total combined 

production capacity existing among the three refineries. All numerical and structural problem 

data are included as supplementary material. 

Market demands for the six products in the scenarios are calculated based on historical 

Canadian national consumption using data from Statistics Canada for gasoline and diesel 

products. The published net consumer sales of gasoline and diesel provide the baseline for 

demand, but the reported net gasoline and diesel sales are not listed by grade [41]. The fraction 

of demand associated with each product grade is calculated using the Canadian gasoline and 

diesel totals assuming that the sales by grade can be approximated using consumer sales data for 

the relevant gasoline and diesel product grades in the USA in 2014 made available by the EIA 

[42][43]. These values are scaled to 18% and 21% of the real total in order to create local and 

global market demand totals with values scaling to the same order of magnitude as the combined 

production capacity of the three refineries. 

The product pricing structure is based on weekly national average price data from 2014 

published by Natural Resources Canada. Data are available for regular, mid-grade, and premium 

gasoline [44][45][46]. Data is also available for diesel fuel, but due to changes in the sale of 

diesel fuels the majority of diesel fuel sold for commercial purposes consists of a single grade 

[47][48]. We take the average price of each corresponding fuel in 2014 as 𝐵(𝑝,𝑤) in both 

markets. In order to account for the different grades of diesel, the average diesel price obtained 

from Natural Resources Canada data is assigned to fuel oil type 2 and the price for fuel oil types 

1 and 4 are calculated as one standard deviation above and below that price based on the 

available data. The marginal value of the first unit of each product on the market is calculated 

using a value of 𝐴(𝑝,𝑤) equal to three standard deviations of price. Hence a market supply of a 
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product twice the magnitude of 𝐷(𝑝,𝑤) results in prices three standard deviations below 

average. The values of 𝐴𝐻𝐶(𝑝,𝑤) are taken to be 5% of 𝐴(𝑝, 𝑤) in the local market and zero 

elsewhere; 𝐶𝐼(𝑝, 𝑤) is 120% of 𝐵(𝑝, 𝑤), and 𝐹(𝑝,𝑤) is calculated as the sum of 𝐴(𝑝, 𝑤) and 

𝐵(𝑝,𝑤) meaning that the fixed price in the corresponding examples is the price of the first unit 

sold in the equivalent game theoretic scenario. 

The primary operating cost burden to the refiner is the purchase price of crude oil. In this 

work crude oil prices are considered to be fixed. Three crude oil stocks are available on the 

market: a light sweet, a medium, and a heavy sour variety. The prices for these crude oils are 

chosen from representative average monthly prices of benchmark crude oils reported by Natural 

Resources Canada, using Canadian Light Chicago, Canadian Light Sweet, Canadian Heavy 

Chicago, and Canadian Heavy Hardisty prices to generate three representative crude stock prices 

at 610.20, 577.30, and 535.04 dollars per cubic meter [49]. Yield values in the production 

planning model are calculated based on assays for three crude oil stocks produced by 

ExxonMobil: Hibernia, a light blend, Terra Nova, a medium crude, and Cold Lake, a heavy sour 

crude [50][51][52]. Yields are computed for max naphtha and max diesel CDU operating modes 

using data from Fu, Sanchez, and Mahalec [53]. 

The two scenarios presented in this work are referred to using the notation S1 and S2 for 

convenience. Associated with each of these scenarios are two additional variations. The first is a 

version of the game theoretic scenario excluding upper capacity limits on refinery units such that 

refiners are capable of processing unlimited amounts of material. This variant is intended to 

illustrate the relationship between unit capacity constraints Nash equilibria, and is denoted by 

adding –G to the scenario name. The second variant solves the scenario problem under fixed 

prices for contrast with the game theoretic planning results. The fixed price variants are referred 
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to by appending each model name with –F. Equation listings for each scenario are given in Table 

1. All set and parameter data is included as supplementary material. 

 

Table 1. Scenario nomenclature and corresponding equations. 

Scenario Equation list 

S1 (15), (18) to (21), and (A 1) to (A 41) 

S1-G (15), (18) to (21), (A 1) to (A 41), excluding: (A 4), (A 13), (A 20), and (A 30) 

S1-F (15), (22), and (A 1) to (A 41) 

S2 (15), (21), (23), (25) to (29), and (A 1) to (A 41) 

S2-G (15), (21), (23), (25) to (29), and (A 1) to (A 41), excluding: (A 4), (A 13), (A 20), 

and (A 30) 

S2-F (15), (23), (30), and (A 1) to (A 41) 

 

5.2. Scenario 1 results 

Results are characterized entirely by refiner production decisions interpreted through the 

potential function as profits. Market prices and individual refiner profits are implicitly defined in 

the potential function and do not appear directly in the model. The production volumes resulting 

in S1 are presented in Figure 3. Local and import production volumes satisfy local market 

demand while production excesses of gasoline products are exported in order to take advantage 

of higher global market prices. Refiners have similar optimal production plans which scale 

according to refinery capacity. In the case that all three refiners are identical in size, their 

production volumes will be symmetric. Import volumes scale inversely with refinery size; 

smaller refiners import more than larger ones. 

Refiners do not have the capacity to satisfy local market diesel demand to the minimum 

constraint level and must import to do so. The total amount of each diesel product that each 

refiner produces is identical. Each refiner produces diesel products up to capacity and imports 

the balance of its share. Larger refiners are able to produce more diesel in-house and import less. 
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The cumulative amount produced by the refiners satisfies precisely the lower supply limit. 

Similarly refiners produce identical amounts of diesel 1 without imports; the cumulative volume 

satisfies the minimum supply. This pattern is not observed for gasoline products, in which case 

refiners produce amounts varying with their capacity for both local and global markets. This 

result suggests that game theoretic planning drives refiners to compete on marginally more 

profitable products and to allocate production equally for less profitable products. We note that 

the observed results are strongly dependent on refinery production capacities; e.g. refineries 

configured for diesel would have a reversed pattern of production volumes. 

 

 

Figure 3. S1 production volume breakdown and totals by refiner and scenario variant. 

The results of S1-G are presented in Figure 3 for comparison with S1. The total amount 

of diesel product is unchanged from S1 (minimum local supply is satisfied) but the amounts of 

gasoline product produced are increased. No product is supplied in the local market at an amount 

large enough to reach the upper constraint level; the solution in the local market is defined by 

Nash equilibrium prices, not local supply constraints. Import amounts in S1-G are unchanged 

from S1. This outcome suggests that with unlimited production capacity it is not profitable to 

produce any more diesel products than those required in the local market, and that the most cost 
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effective means of obtaining those products is to produce a fraction and import the balance, 

where the decision is driven by prices, not capacity constraints. 

Refiners export more gasoline product to the global market in S1-G than S1. Despite 

unconstrained capacities the refiners halt production at a price point representing a Nash 

equilibrium, contrasting with the different equilibrium obtained in S1 defined by capacity 

constraints. Refiners continue to plan production according to their sizes due to efficiency costs.  

The production volumes obtained from the solution of S1-F are shown in Figure 3. Total 

local market supply satisfies the upper and lower demand constraints, but production volumes 

associated with each refiner do not follow a competitively rational pattern. In S1-F prices are 

fixed and the objective is total refiner profit. The allocation of production is that which 

maximizes total market profit regardless of individual profits. This result is unobtainable barring 

a monopoly; an individual refiner will not yield profits because a competitor has a better 

marginal gain. This fixed price approach does not generate rational behaviour. Refiners only 

export premium gasoline as there is no consideration of market demand levels. We present this 

result to illustrate the driving forces at play in fixed priced models. 

The prices and profits associated with these three cases and for all scenarios are collected 

in Table 2 and Table 3. In S1-G refiners produce more than in S1; refiners R1 and R2 lose profits 

in S1-G while refiner three gains. This illustrates the rationality of Nash equilibria: refiners will 

not be worse off in terms of their own profits if any others behave differently; they can make 

gains if competitors deviate from equilibrium strategies. In this case R1 lost profits in S1-G 

relative to S1, but could stand to gain if R2 or R3 made a non-equilibrium plan. The profits 

reported in S1-F by comparison are much higher, and are unrealistic in a game-theoretic sense. 
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Table 2. Profit values by scenario (10
6
 CAD). 

 R1 R2 R3 

S1 97.82 52.81 4.24 

S1-G 71.61 50.73 30.18 

S1-F 1102.98 971.85 899.27 

S2 47.96 0.72 121.11 

S2-G 132.81 95.60 0.00 

S2-F 1112.83 1014.83 646.16 

 

The prices in scenarios S1 and S1-G illustrate the Cournot property: as refiners supply 

more of a product, its price drops. In S1-F the prices reported are the highest possible due to the 

assumption of fixed prices (under FIXED heading). The equivalent game theoretic prices (under 

EQUIV. heading) corresponding to the market supplies in S1-F are correspondingly lower and, 

in the case of the price of premium gasoline in the global market, substantially lower than those 

observed in the game theoretic version where consideration of market demand and price limits 

the total volume of premium gasoline supplied to a rational level. 

 

Table 3. Scenario prices (CAD/m
3
). S1-F and S2-F show fixed price values and the 

equivalent game theoretic Cournot prices corresponding to the production levels in those 

scenarios. 

 MARKET PRODUCT  S1 S1-G S1-F S2 S2-G S2-F 

    FIXED EQUIV.   FIXED EQUIV. 

LOCAL REG 912.18 912.18 1130.49 909.72 916.22 912.18 1134.53 909.72 

  MID 977.00 958.01 1183.36 911.64 980.82 977.00 1187.18 911.64 

  PRE 1028.12 971.91 1238.94 959.67 1032.02 1021.10 1242.84 959.67 

  DE1 1089.39 1089.39 1238.58 1042.34 1092.15 1089.39 1241.34 1042.34 

  DE2 1034.13 1034.13 1183.33 1036.14 1036.90 1034.13 1186.09 1036.14 

  DE4 978.88 978.88 1128.07 980.89 981.64 978.88 1130.83 980.89 

GLOBAL REG 1003.27 924.58 1049.64 1049.64 1008.15 958.00 1049.64 1043.54 

  MID 1017.59 938.91 1106.93 1106.93 1022.47 977.10 1106.93 1086.84 

  PRE 1031.07 952.39 1160.86 -367.68 1035.96 995.07 1160.86 70.25 

  DE1 1183.33 1183.33 1183.33 1183.33 1183.33 1183.33 1183.33 1183.33 
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  DE2 1128.07 1128.07 1128.07 1128.07 1128.07 1128.07 1128.07 1128.07 

  DE4 1072.81 1072.81 1072.81 1072.81 1072.81 1072.81 1072.81 1072.81 

 

5.3. Scenario 2 results 

The purpose of this scenario is to examine conditions under which strategic planning can 

incorporate large scale decisions affecting the structure of the market. Results are presented for 

S2 in Figure 4 in which the high-cost refiner R3 continues to participate in the market, and are 

similar to the production plans in S1, but the high-cost refiner cannot import in this scenario and 

has limited production. The high-cost refiner distributes its market share in the same way as the 

low-cost refiners; it produces less than in S1, since its share is constrained. 

 

Figure 4. S2 production volume breakdown and totals by refiner and scenario variant. 

An unconstrained version of this problem is presented as S2-G in which low-cost refiners 

have unconstrained capacity while the high-cost refiner (if active) is limited to producing the 

profile determined from the first stage calculation. In S2-G the high-cost refiner is shut down, as 

can be seen in Figure 4. In this scenario the low-cost refiners benefit more from the increased 

local market share obtained by shutting down the high-cost refiner than by having higher local 

market prices. The optimal decision in S2-G differs from that in S2; with unconstrained capacity 

the low-cost refiners are better off without the high-cost refiner, whereas in S2 the high-cost 
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refiner’s contributions in the local market allow the low-cost refiners greater access to global 

markets. There are thus multiple factors, both refinery-specific and market-based, influencing the 

participation of the high-cost refiner. 

A fixed price case is presented as S2-F. As in S2 the high-cost player remains active, but 

the production decisions made by the low-cost refiners are irrational, following the same patterns 

as S1-F, even though the high-cost refiner’s allocation is rational from a game theoretic 

standpoint. 

In order to investigate the influence of local and global market demands on the high-cost 

refiner’s participation in scenario S2 and S2-F these two cases are solved over a grid of demand 

values and for six different values of the high-cost refiner price increase 𝐴𝐻𝐶(𝑝,𝑤). Demand 

scaling factors for all products are taken at 19 even intervals ranging from 6% to 25.3% of the 

demand values 𝐷(𝑝,𝑤) included as supplementary data. The test values for the price increase 

𝐴𝐻𝐶(𝑝,𝑤) are taken at 10% intervals of the values of 𝐴(𝑝,𝑤) ranging from 5% up to 55%. 

Objective values are calculated for the six values of 𝐴𝐻𝐶(𝑝, 𝑤) and are used to define 

contours characterizing the inclusion region boundary. These boundary lines are visualized in 

Figure 5 as solid lines labeled with the associated price increase percentage. As the high-cost 

refiner’s presence brings larger price increases, the minimum local and global demands at which 

it will be shut down decrease. This result is intuitive; as the benefit accrued by low-cost refiners 

increases, they become more tolerant of the high-cost refiner in smaller markets. 
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Figure 5. Inclusion region boundary characterization for S2; boundaries define paired local 

and global demand levels (as scaled values) below which low-cost refiners shut down the 

high-cost refiner with the indicated price increase. 

Results are shown for the inclusion region associated with S2-F as dashed lines. 

Boundary lines are shown for values of 𝐴𝐻𝐶(𝑝,𝑤) equal to 5%, 15%, and 25% of 𝐴(𝑝,𝑤) for 

local market prices; no such boundary lines are found for values of 35% or greater, in which case 

the high cost refiner is allowed to remain active for all demand levels tested. Under fixed price 
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analysis, the low-cost refiners will mistakenly allow the high-cost refiner to operate when its 

impacts will reduce their profits, instead of increasing them as they would predict. 

5.4. Existence of multiple equilibria 

Multiple Nash equilibria may exist in continuous games; our potential game formulation 

is nonconvex and we identify equilibria of the generalized type as globally optimal solutions. 

The existence of equilibria with equal objective value is of interest to determine whether 

normalization is required. To ascertain whether equal-valued equilibria exist in this problem, we 

constrain the potential function to the obtained optimal value 𝑍∗ and modify the objective 

function to drive refiners’ individual decision variables to different values corresponding to the 

same optimum. Changes in 𝐷𝑙𝑣(𝑡, 𝑝, 𝑛, 𝑤) or 𝐼𝑚𝑝(𝑝, 𝑛, 𝑤) yielding 𝑍∗ constitute equal valued 

alternative equilibria. We were unable to find alternative Nash equilibria using this approach, 

suggesting that there is a single globally optimal Nash equilibrium under the implemented 

formulation and data set. Since the equilibrium is unique, we are not concerned with 

normalization to characterize a best equilibrium solution [30]. 

5.5. Model solution statistics 

All results are generated on a Dell Optiplex 9010 computer with Intel Core-i7-3770 CPU 

and a 3.40 GHz processor running the Windows 10 64-bit operating system. Models are solved 

using GAMS 24.7.1 with ANTIGONE 1.1 [54] warm starting with CONOPT 3.17A or DICOPT. 

Solution data for each scenario are given in Table 4 including preprocessing results. 

Solution results consist of the objective function value and optimality gap data reported 

by the solver, as well as the model statistics generated by GAMS. The model status indicates the 

optimality of the solution achieved; scenarios with a model status of 1 are solved to global 

optimality; a model status of 2 indicates local optimality. All scenarios presented are solved to 
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global optimality with a relative gap of 1×10
-9

. The processed model sizes generated by 

ANTIGONE are also reported; these indicate the types of equations, variables, and nonlinear 

terms detected by the solver and provide additional model information. The relative gap and 

CPU time reported by ANTIGONE are also included. The CPU times are essentially the same as 

those reported by GAMS, but exclude model generation time. 

 

Table 4. Solution data. 

 

 

6. Conclusions 

We have presented a game theoretic strategic production planning framework based on a 

modified Cournot oligopoly formulated as a potential game which we use to solve strategic 

refinery production planning problems to Nash equilibrium solutions. Two scenarios have been 

presented illustrating competitive behaviour in production planning problems. The first scenario 

illustrates competitive behaviour in the game theoretic sense and contrasts those results with 
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equivalent fixed price planning results. The second scenario extends the framework to include a 

decision to shut down a competitor by claiming its market share. This scenario illustrates how 

competitive behaviour manifests in problems involving market restructuring and that the 

inclusion of planning decisions influences the outcome. In both scenarios, the results of 

production planning in a game theoretic framework were contrasted with those obtained by 

solving the same problem under the assumption of fixed prices. The proposed potential game 

framework demonstrates that refinery production planning benefits from game theoretic analysis. 

Making production planning decisions in a competitive context is a non-obvious problem, 

particularly so when market restructuring decisions are involved, and using fixed price methods 

does not yield rational solutions in either case. The importance of rational planning arises from 

the reality that most industries operate under competition. Game theoretic methods are able to 

generate rational planning outcomes to these difficult problems. 

7. Notation 

7.1. Sets 

𝐵𝐿 (𝑏𝑙) set of blenders 

𝐼 (𝑖) set of process streams 

𝐼𝐶 (𝑖) set of crude oils streams entering refinery 

𝑀 (𝑚) set of unit operating modes 

𝑁 (𝑛) set of refineries 

𝑃 (𝑝) set of products 

𝑄 (𝑞) set of quality properties 

𝑊 (𝑤) set of markets 
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𝑇 (𝑡) set of time periods in which planning takes place 

𝑇𝐾 (𝑡𝑘) set of tanks for intermediates 

𝑈 (𝑢) set of process units 

𝐵𝐿𝐵𝐿𝐸𝑁𝐷 (𝑖) all streams entering a blender 

𝐵𝐿𝐼𝑁 (𝑏𝑙, 𝑖) streams entering blender 𝑏𝑙 

𝐵𝐿𝑂𝑈𝑇 (𝑏𝑙, 𝑝) streams leaving a blender 

𝐵𝐿𝑂𝑈𝑇,𝑉𝑂𝐿 (𝑏𝑙, 𝑝, 𝑞) product 𝑝 with volume-based properties 𝑞 leaves blender 𝑏𝑙 

𝐵𝐿𝑂𝑈𝑇,𝑊𝑇 (𝑏𝑙, 𝑝, 𝑞) product 𝑝 with weight-based properties 𝑞 leaves blender 𝑏𝑙 

𝐵𝐿𝑂𝑈𝑇,𝑁𝐿 (𝑏𝑙, 𝑝, 𝑞) product 𝑝 with nonlinear properties 𝑞 leaves blender 𝑏𝑙 

𝐵𝐿𝐼𝑃 (𝑏𝑙, 𝑖, 𝑝) product of 𝐵𝐿𝐼𝑁 and 𝐵𝐿𝑂𝑈𝑇 

𝐷𝑊𝑁 (𝑝′, 𝑝) product 𝑝′ may be mixed with product 𝑝 for delivery to market 

𝐿𝐶𝑁 (𝑛) refineries classified as low cost 

𝐻𝐶𝑁 (𝑛) refineries classified as high cost 

𝑁𝑃𝑟𝑒𝑠𝑡 (𝑛, 𝑝) refineries with production limits on product 𝑝 

𝑃𝑔 (𝑝) gasoline products 

𝑃𝑑 (𝑝) diesel products 

𝑄𝑔 (𝑞) gasoline properties 

𝑄𝑑 (𝑞) diesel properties 

𝑄𝑉𝑂𝐿 (𝑞) volume-based quality properties 

𝑄𝑊𝑇 (𝑞) weight-based quality properties 

𝑊𝐸 (𝑤) global markets 

𝑊𝐿 (𝑤) local markets 



36 

 

𝑊𝐿𝑁 (𝑛, 𝑤) refinery 𝑛 is located in local market 𝑤 

𝑊𝐿𝐸 (𝑤,𝑤′) refiners in local market 𝑤 can sell to global market 𝑤′ 

𝑊𝑁 (𝑛, 𝑤) refiner 𝑛 can sell to market 𝑤 

𝑊𝐿𝐶𝑁 (𝑛, 𝑤) low cost refiner 𝑛 is located in market 𝑤 

𝑊𝐻𝐶𝑁 (𝑛, 𝑤) high cost refiner 𝑛 is located in market 𝑤 

𝑇𝐾𝐼𝑁 (𝑡𝑘, 𝑖) streams entering intermediate tank 𝑡𝑘 

𝑇𝐾𝑂𝑈𝑇 (𝑡𝑘, 𝑖) streams leaving intermediate tank 𝑡𝑘 

𝑈𝐼𝑁 (𝑢, 𝑖) streams 𝑖 entering unit 𝑢 

𝑈𝑂𝑈𝑇 (𝑢, 𝑖) streams 𝑖 leaving unit 𝑢 

𝑈𝐶 (𝑢) subset of 𝑈 for certain constraints 

𝑈𝑀 (𝑢,𝑚) units 𝑢 which can operate in a mode 𝑚 

𝑈𝑀𝐶 (𝑢,𝑚) subset of 𝑈𝑀 for certain constraints 

𝑈𝑀𝑂𝑈𝑇,𝐶 (𝑖, 𝑢, 𝑚) product of 𝑈𝑂𝑈𝑇 and 𝑈𝑀𝐶 

7.2. Parameters 

𝐴(𝑝,𝑤) Marginal value of first unit of product 𝑝 in market 𝑤 

𝐴𝐻𝐶(𝑝,𝑤) Additional marginal value associated with product 𝑝 if high cost 

refineries are active in market 𝑤 

𝐵(𝑝,𝑤) Marginal value of product 𝑝 when market 𝑤 supply is 𝐷(𝑝,𝑤) 

𝐶𝐼(𝑝, 𝑤) Import cost of product 𝑝 to local market 𝑤 from elsewhere 

𝐷(𝑝,𝑤) Expected market demand for product 𝑝 in market 𝑤 

𝐷(𝑝,𝑤) Minimum demand for product 𝑝 in local market 𝑤 

𝐷(𝑝,𝑤) Maximum demand for product 𝑝 in local market 𝑤 
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𝐹(𝑝,𝑤) Fixed sale price for product 𝑝 in market 𝑤 

𝑃𝑟(𝑝,𝑤) Price of product 𝑝 in market 𝑤 

𝐻𝐶𝑁𝑠𝑒𝑡 High-cost refinery production level, as a fraction of market demand 

𝐸𝐶𝐻(𝑛) Efficiency cost parameter 𝐻 for 𝑛 

𝐸𝐶𝐾(𝑛) Efficiency cost parameter 𝐾 for 𝑛 

𝐸𝐶𝑃(𝑛) Efficiency cost parameter 𝑃 for 𝑛 

𝐸𝐶𝐴(𝑛) Efficiency cost parameter 𝐴 for 𝑛 

𝐸𝐶𝐵(𝑛) Efficiency cost parameter 𝐵 for 𝑛 

𝐸𝐶𝐶(𝑛) Efficiency cost parameter 𝐶 for 𝑛 

𝐶𝑎𝑝 Percentage rated capacity 

𝐶𝑜𝑠𝑡(𝑖) Cost of crude oil stream 𝑖 ∈ 𝐼𝐶 

𝑀𝑎𝑥𝑃𝑟𝑜𝑑(𝑢) Maximum production rate on unit 𝑢 

𝑀𝑖𝑛𝑃𝑟𝑜𝑑(𝑢) Minimum production rate on unit 𝑢 

𝑉(𝑡𝑘) Maximum holding in intermediate tank 𝑡𝑘 

𝑉(𝑡𝑘) Minimum holding in intermediate tank 𝑡𝑘 

𝑉𝑖𝑛𝑖(𝑡𝑘) Initial holding in intermediate tank 𝑡𝑘 

𝑉𝑃(𝑝) Maximum holding in product tank 𝑝 

𝑉𝑃(𝑝) Minimum holding in product tank 𝑝 

𝑉𝑃𝑖𝑛𝑖(𝑝) Initial holding in product tank 𝑝 

𝐵𝑙𝑒𝑛𝑑𝑀𝑎𝑥(𝑏𝑙) Maximum blending rate for blender 𝑏𝑙 

𝐵𝑙𝑒𝑛𝑑𝑀𝑖𝑛(𝑏𝑙) Minimum blending rate for blender 𝑏𝑙 

𝐵𝐿𝑐𝑜𝑠𝑡(𝑏𝑙) Cost of operating blender 𝑏𝑙 
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𝜏(𝑡) Duration of time period 𝑡 

𝑂𝑝𝐶𝑜𝑠𝑡(𝑢,𝑚) Operating cost of unit 𝑢 in mode 𝑚 

𝑃𝑟𝑜𝑑𝑅𝑒𝑠𝑡(𝑛, 𝑝) Restriction on refinery 𝑛 production level of product 𝑝 

𝑞𝑞(𝑖, 𝑞) Quality property 𝑞 of stream 𝑖 

𝑄(𝑞, 𝑝) Maximum quality specification of property 𝑞 for product 𝑝 

𝑄(𝑞, 𝑝) Minimum quality specification of property 𝑞 for product 𝑝 

𝑅(𝑖, 𝑝) Maximum specification of stream 𝑖 for product 𝑝 

𝑅(𝑖, 𝑝) Minimum specification of stream 𝑖 for product 𝑝 

𝑇𝐶 Time scaling cost factor 

𝑇𝑝𝑑(𝑝, 𝑛, 𝑤) Total product variable upper bound 

𝑌(𝑖, 𝑚, 𝑢) Yield of stream 𝑖 from unit 𝑢 operating in mode 𝑚 

𝑋(𝑖, 𝑚, 𝑖′) CDU yield of stream 𝑖 from feed of crude oil 𝑖′ ∈ 𝐼𝐶 operating in mode 

𝑚 

7.3. Continuous variables 

𝑍 Objective function value 

Ψ Potential function term 

Ω𝑛 Potential function term 

𝑇𝐸𝐶(𝑛) Total efficiency cost for 𝑛 

𝐹𝐴(𝑡, 𝑢, 𝑛) Inlet feed to unit 𝑢 in period 𝑡 for refinery 𝑛 

𝐹𝑉(𝑡, 𝑖, 𝑛) Volumetric flow of stream 𝑖 in period 𝑡 for refinery 𝑛 

𝐹𝑉𝑀(𝑚, 𝑡, 𝑢, 𝑛) Inlet feed to unit 𝑢 in period 𝑡 in mode 𝑚 for refinery 𝑛 

𝐹𝑉𝑀𝐼𝑁(𝑚, 𝑡, 𝑖, 𝑛) Inlet feed of stream 𝑖 in period 𝑡 in mode 𝑚 
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𝐹𝑉𝑀𝑂𝑈𝑇(𝑖,𝑚, 𝑡, 𝑢, 𝑛) Volumetric flow of stream 𝑖 leaving unit 𝑢 in mode 𝑚 in period 𝑡 

𝑉𝑃(𝑡, 𝑝, 𝑛) Product tank inventory of 𝑝 in period 𝑡 

𝑉(𝑡𝑘, 𝑡, 𝑛) Intermediate tank inventory 𝑡𝑘 in period 𝑡 

𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛) Volume of intermediate 𝑖 used to produce product 𝑝 in period 𝑡 

𝑉𝐵𝑙𝑒𝑛𝑑(𝑡, 𝑝, 𝑛) Volume of product 𝑝 blended in period 𝑡 

𝑉𝐵𝑙𝑒𝑛𝑑𝑇(𝑡, 𝑏𝑙, 𝑛) Total volume blended by blender 𝑏𝑙 in period 𝑡 

𝑃𝑟𝑐(𝑡, 𝑝, 𝑛) Volume of product 𝑝 produced in period 𝑡 by refiner 𝑛 

𝐷𝑙𝑣(𝑡, 𝑝, 𝑛, 𝑤) Volume of product 𝑝 for delivery to market 𝑤 produced in period 𝑡 

𝐼𝑚𝑝(𝑝, 𝑛, 𝑤) Volume of product 𝑝 imported by refiner 𝑛 in local market 𝑤 

𝐶𝑟𝑢𝑑𝑒𝑂𝑖𝑙𝐶𝑜𝑠𝑡(𝑛) Total cost of all crude oil purchased by refinery 𝑛 

𝑈𝑛𝑖𝑡𝑂𝑝𝐶𝑜𝑠𝑡(𝑛) Total unit operating cost in refinery 𝑛 

𝐵𝑙𝑒𝑛𝑑𝑂𝑝𝐶𝑜𝑠𝑡(𝑛) Total blending cost in refinery 𝑛 

𝐼𝑚𝑝𝐶𝑜𝑠𝑡(𝑛) Cost of imports for refiner 𝑛 

𝑇𝑖𝑚𝑒𝐶𝑜𝑠𝑡(𝑛) Cost of production timing for refinery 𝑛 

𝑇𝑜𝑡𝐶𝑜𝑠𝑡(𝑛) Total cost for refiner 𝑛 excluding upgrades 

𝑇𝑝𝑑(𝑝, 𝑛, 𝑤) Total product 𝑝 leaving refinery 𝑛 for sale to market 𝑤 

𝑇𝑃(𝑝, 𝑛, 𝑤) Linearization variable for 𝑇𝑜𝑡𝑃𝑟𝑜𝑑(𝑝, 𝑛, 𝑤) 

𝑇𝑃1(𝑝, 𝑛, 𝑤) Linearization variable for 𝑇𝑜𝑡𝑃𝑟𝑜𝑑(𝑝, 𝑛, 𝑤) 

7.4. Binary variables 

𝑌𝐻𝐶𝑁(𝑤) Decision variable dictating whether high-cost refiners remains in a market 𝑤 
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1. Set elements 

Set Indices Elements 

𝐵𝐿 (𝑏𝑙) GB, DB 

𝐼 (𝑖) crude1, crude2, crude3, lpg, srln, srhn, kero, lgo, hgo, rsd, rft, 

srds, hclf, hchf, hcln, hckero, hcds, hchn, fccf, fccln, fcchn, fcclco, 

fcchco, srln_tk, rft_tk, hcln_tk, fccln_tk, fcchn_tk, srds_tk, 

hcds_tk, fcclco_tk 

𝐼𝐶 (𝑖) crude1, crude2, crude3 

𝑀 (𝑚) 1, 2 

𝑁 (𝑛) R1, R2, R3 

𝑃 (𝑝) REG, MID, PRE, DE1, DE2, DE4 

𝑄 (𝑞) RON, MON, ARO, FLS, CNU, SUL, SG, RVP 

𝑊 (𝑤) LM1, EM1 

𝑇 (𝑡) 1, 2 

𝑇𝐾 (𝑡𝑘) tk1, tk2. Tk3, tk4, tk5, tk6, tk7, tk8 

𝑈 (𝑢) CDU, CR, HC, FCC, HT1, HT2 

𝑈𝑃𝐺 (𝑢𝑝𝑔) uHCproc, uHTproc, uCDUcap, uCRcap, uHCcap, uFCCcap, 

uGBcap, uDBcap 

𝐵𝐿𝐵𝐿𝐸𝑁𝐷 (𝑖) (GB).(srln_tk, rft_tk, hcln_tk, fccln_tk, fcchn_tk), (DB).(srds_tk, 

hcds_tk, fcclco_tk) 

𝐵𝐿𝐼𝑁 (𝑏𝑙, 𝑖) srln_tk, rft_tk, hcln_tk, fccln_tk, fcchn_tk, srds_tk, hcds_tk, 

fcclco_tk 

𝐵𝐿𝑂𝑈𝑇 (𝑏𝑙, 𝑝) (GB).(REG, MID, PRE), (DB).(DE1, DE2, DE4) 

𝐵𝐿𝑂𝑈𝑇,𝑉𝑂𝐿 (𝑏𝑙, 𝑝, 𝑞) (GB).(REG, MID, PRE).(RON, MON, ARO, SG), (DB).(DE1, 

DE2, DE4).(FLS, CNU, SG) 

𝐵𝐿𝑂𝑈𝑇,𝑊𝑇 (𝑏𝑙, 𝑝, 𝑞) (GB).(REG, MID, PRE).(RVP) 

𝐵𝐿𝑂𝑈𝑇,𝑁𝐿 (𝑏𝑙, 𝑝, 𝑞) (DB).(DE1, DE2, DE4).(SUL) 

𝐵𝐿𝐼𝑃 (𝑏𝑙, 𝑖, 𝑝) 𝐵𝐿𝐼𝑁 ∙ 𝐵𝐿𝑂𝑈𝑇 

𝐷𝑊𝑁 (𝑝′, 𝑝) (REG).(REG), (MID).(REG, MID), (PRE).(REG, MID, PRE), 

(DE1).(DE1), (DE2).(DE1, DE2), (DE4).(DE1, DE2, DE4) 

𝐿𝐶𝑁 (𝑛) R1, R2 

𝐻𝐶𝑁 (𝑛) R3 

𝑁𝑃𝑟𝑒𝑠𝑡 (𝑛, 𝑝) (R1, R2, R3).(REG) 

𝑃𝑔 (𝑝) REG, MID, PRE 

𝑃𝑑 (𝑝) DE1, DE2, DE4 

𝑄𝑔 (𝑞) RON, MON, ARO, SG, RVP 

𝑄𝑑 (𝑞) FLS, CNU, SUL, SG 

𝑄𝑉𝑂𝐿 (𝑞) RON, MON, ARO, FLS, CNU, SG, RVP 

𝑄𝑊𝑇 (𝑞) SUL 

𝑊𝐸 (𝑤) EM1 

𝑊𝐿 (𝑤) LM1 

𝑊𝐿𝑁 (𝑛, 𝑤) (R1, R2, R3).(LM1) 

𝑊𝐿𝐸 (𝑤, 𝑤′) (LM1).(EM1) 

𝑊𝑁 (𝑛, 𝑤) (R1, R2, R3).(LM1, EM1) 



2 

 

𝑊𝐿𝐶𝑁 (𝑛, 𝑤) (R1, R2).(LM1) 

𝑊𝐻𝐶𝑁 (𝑛, 𝑤) (R3).(LM1) 

𝑇𝐾𝐼𝑁 (𝑡𝑘, 𝑖) (tk1).(srln), (tk2).(rft), (tk3).(hcln), (tk4).(fccln), (tk5).(fcchn), 

(tk6).(srds), (tk7).(hcds), (tk8).(fcclco) 

𝑇𝐾𝑂𝑈𝑇 (𝑡𝑘, 𝑖) (tk1).(srln_tk), (tk2).(rft_tk), (tk3).(hcln_tk), (tk4).(fccln_tk), 

(tk5).(fcchn_tk), (tk6).(srds_tk), (tk7).(hcds_tk), (tk8).(fcclco_tk) 

𝑈𝐼𝑁 (𝑢, 𝑖) (CDU).(crude1, crude2, crude3), (CR).(srhn, hchn), (HC).(hclf, 

hchf), (FCC).(fccf), (HT1).(lgo), (HT2).(hgo) 

𝑈𝑂𝑈𝑇 (𝑢, 𝑖) (CDU).(lpg, srln, srhn, kero, lgo, hgo, rsd), (CR).(rft), (HC).(hcln, 

hchn, hckero, hcds), (FCC).(fccln, fcchn, fcclco, fcchco), 

(HT1).(srds, hclf), (HT2).(hchf, fccf) 

𝑈𝐶 (𝑢) CDU, CR, HC, FCC 

𝑈𝑀 (𝑢, 𝑚) (CDU, CR, HC, FCC).(1, 2),(HT1, HT2).(1) 

𝑈𝑀𝐶 (𝑢, 𝑚) (CR, HC, FCC).(1, 2), (HT1).(1) 

𝑈𝑀𝑂𝑈𝑇,𝐶 (𝑖, 𝑢, 𝑚) 𝑈𝑂𝑈𝑇 ∙  𝑈𝑀𝐶  

𝑃𝑟𝑜𝑐𝑈𝑝 (𝑢𝑝𝑔) uHCproc, uHTproc 

𝐶𝑎𝑝𝑈𝑝 (𝑢𝑝𝑔) uCDUcap, uCRcap, uHCcap, uFCCcap, uGBcap, uDBcap 

𝑆𝑈𝐷 (𝑖, 𝑢𝑝𝑔) (crude2).(uHTproc), (crude3).(uHCproc, uHTproc) 

𝑈𝑈𝐷 (𝑢, 𝑢𝑝𝑔) (CDU.uCDUcap), (CR.uCRcap), (HC.uHCcap), (FCC.uFCCcap) 

𝐵𝑈𝐷 (𝑏𝑙, 𝑢𝑝𝑔) (GB).(uGBcap), (DB).(uDBcap) 

 

2. Parameter values 

 

Table 1. 𝑨(𝒑, 𝒘) (CAD/m3) 

 REG MID PRE DE1 DE2 DE4 

LM1 245.30 226.43 232.72 163.54 163.54 163.54 

EM1 163.54 150.96 157.24 113.22 113.22 113.22 

 

Table 2. 𝑨𝑯𝑪(𝒑, 𝒘) (CAD/m3) 

 REG MID PRE DE1 DE2 DE4 

LM1 4.04 3.82 3.90 2.76 2.76 2.76 

 

Table 3. 𝑩(𝒑, 𝒘) (CAD/m3) 

 REG MID PRE DE1 DE2 DE4 

LM1 886.86 956.05 1006.37 1075.56 1018.95 962.34 

EM1 886.86 956.05 1006.37 1075.56 1018.95 962.34 

 

Table 4. 𝑪𝑰(𝒑) (CAD/m3) 

 REG MID PRE DE1 DE2 DE4 

 1065.51 1144.89 1205.63 1287.38 1221.07 1154.76 
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Table 5. 𝑫(𝒑, 𝒘) (10
6
 m

3
/year) 

 REG MID PRE DE1 DE2 DE4 

LM1 6.38 0.48 0.71 0.08 3.19 0.17 

EM1 7.45 0.56 0.83 0.10 3.73 0.20 

 

Table 6. 𝑫(𝒑, 𝒘) (10
6
 m

3
/year) 

 REG MID PRE DE1 DE2 DE4 

LM1 5.75 0.43 0.64 0.07 2.87 0.16 

 

Table 7. 𝑫(𝒑, 𝒘) (10
6
 m

3
/year) 

 REG MID PRE DE1 DE2 DE4 

LM1 7.66 0.57 0.86 0.10 3.83 0.21 

 

Table 8. 𝑭(𝒑, 𝒘) (CAD/m3) 

 REG MID PRE DE1 DE2 DE4 

LM1 1132.16 1182.48 1239.09 1239.09 1182.48 1125.87 

EM1 1050.40 1107.00 1163.61 1182.48 1125.87 1075.56 

 

Table 9. 𝑯𝑪𝑵𝒔𝒆𝒕 (10
6
 m

3
/year) 

R3 2.86 

 

Table 10. Efficiency cost curve parameters 

 R1 R2 R3 

𝐸𝐶𝐻(𝑛) (10
6
 m

3
) 5.56 4.79 4.12 

𝐸𝐶𝐾(𝑛) (CAD/m
3
) 6.04 5.98 6.16 

𝐸𝐶𝑃(𝑛) ((m
3
)
3
/CAD) 2.009×10

11
 2.010×10

11
 2.011×10

11
 

𝐸𝐶𝐴(𝑛) (CAD/(m
3
)
3
) 1.24×10

-12
 1.24×10

-12
 1.24×10

-12
 

𝐸𝐶𝐵(𝑛) (CAD/(m
3
)
2
) -1.38×10

-5
 -1.19×10

-5
 -1.02×10

-5
 

𝐸𝐶𝐶(𝑛) (CAD/ m
3
) 44.45 34.49 27.27 

 

Table 11. 𝑪𝒂𝒑 

 0.65 

 

Table 12. 𝑪𝒐𝒔𝒕(𝒊) (CAD/m
3
) 

crude 1 610.20 

crude 2 577.30 

crude 3 535.04 
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Table 13. 𝑴𝒂𝒙𝑷𝒓𝒐𝒅(𝒖) (10
3
 m

3
/day) 

 R1 R2 R3 

CDU 18.28 15.90 13.51 

CR 5.30 5.30 5.30 

HC 10.60 10.60 10.60 

FCC 10.60 10.60 10.60 

GB 10.60 10.60 10.60 

DB 9.54 9.54 9.54 

 

Table 14. 𝑴𝒊𝒏𝑷𝒓𝒐𝒅(𝒖) (10
3
 m

3
/day) 

 R1 R2 R3 

CDU 9.54 7.95 7.15 

CR 1.06 1.06 1.06 

HC 0.53 0.53 0.53 

FCC 0.53 0.53 0.53 

 

Table 15. Intermediate tank capacity data (10
3
 m

3
) 

 𝑉(𝑡𝑘) 𝑉(𝑡𝑘) 𝑉𝑖𝑛𝑖(𝑡𝑘) 

tk1 47.70 0 0 

tk2 47.70 0 0 

tk3 47.70 0 0 

tk4 47.70 0 0 

tk5 47.70 0 0 

tk6 47.70 0 0 

tk7 47.70 0 0 

tk8 47.70 0 0 

 

Table 16. Product tank capacity data (10
3
 m

3
) 

 𝑉𝑃(𝑝) 𝑉𝑃(𝑝) 𝑉𝑃𝑖𝑛𝑖(𝑝) 

REG 159 1.59 1.59 

MID 159 1.59 1.59 

PRE 159 1.59 1.59 

DE1 159 1.59 1.59 

DE2 159 1.59 1.59 

DE4 159 1.59 1.59 

 

Table 17. Blender capacity data (10
3
 m

3
/month) 

 𝐵𝑙𝑒𝑛𝑑𝑀𝑎𝑥(𝑏𝑙) 𝐵𝑙𝑒𝑛𝑑𝑀𝑖𝑛(𝑏𝑙) 

GB 318 4.70 

DB 286 4.70 



5 

 

 

Table 18. 𝑩𝑳𝒄𝒐𝒔𝒕(𝒃𝒍) (CAD/m
3
) 

GB 6.29×10
-2

 

DB 6.29×10
-2

 

 

Table 19. 𝝉(𝒕) (months) 

1 6 

2 6 

 

Table 20. 𝑶𝒑𝑪𝒐𝒔𝒕(𝒖, 𝒎) (CAD/m
3
) 

 1 2 

CDU 1.95 1.41 

CR 2.61 5.43 

HC 3.37 2.62 

FCC 2.12 2.07 

GB 0.21 0.21 

DB 2.20 2.20 

 

Table 21. 𝑷𝒓𝒐𝒅𝑹𝒆𝒔𝒕(𝒏, 𝒑) (10
3
 m

3
/year) 

R1,REG 318 

R2,REG 318 

R3,REG 318 

 

Table 22. 𝒒𝒒(𝒊, 𝒒) 

 RON MON ARO FLS CNU SUL SG RVP 

srln 69.4 64.2 0 0 0 0 0.694 2.378 

rft 103 90.8 74.9 0 0 0 0.818 2.378 

hcln 93.2 81.6 18 0 0 0 0.751 12.335 

hcds 0 0 0 56 50 0.008 0.832 0 

fccln 87.7 75.8 25 0 0 0 0.713 13.876 

fcchn 82.3 73.5 20 0 0 0 0.764 19.904 

fcclco 0 0 0 53 50 0.009 0.802 0 

srds 0 0 0 46 40 0.008 0.852 0 

 

Table 23. 𝑸(𝒒, 𝒑) 

 REG MID PRE DE1 DE2 DE4 

RON 200 200 200 200 200 200 

MON 200 200 200 200 200 200 

ARO 60 50 45 200 200 200 

FLS 200 200 200 200 200 200 
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CNU 200 200 200 200 200 200 

SUL 0.01 0.01 0.01 0.01 0.01 0.05 

SG 0.81 0.81 0.81 0.85 0.87 0.9 

RVP 15.6 15.6 15.6    

 

Table 24. 𝑸(𝒒, 𝒑) 

 REG MID PRE DE1 DE2 DE4 

RON 88 91 94 0 0 0 

MON 75 78 81 0 0 0 

ARO 0 0 0 0 0 0 

FLS 0 0 0 40 45 55 

CNU 0 0 0 40 40 30 

SUL 0 0 0 0 0 0 

SG 0.7 0.7 0.7 0.81 0.81 0.81 

RVP 0 0 0 0 0 0 

 

Table 25. 𝑹(𝒊, 𝒑) 

 REG MID PRE DE1 DE2 DE4 

srln 1 1 1 0 0 0 

rft 1 1 1 0 0 0 

hcln 1 1 1 0 0 0 

hcds 1 1 1 0 0 0 

fccln 1 1 1 0 0 0 

fcchn 0 0 0 1 1 1 

fcclco 0 0 0 1 1 1 

srds 0 0 0 1 1 1 

 

Table 26. 𝑹(𝒊, 𝒑) 

 REG MID PRE DE1 DE2 DE4 

srln 0 0 0 0 0 0 

rft 0 0 0 0 0 0 

hcln 0 0 0 0 0 0 

hcds 0 0 0 0 0 0 

fccln 0 0 0 0 0 0 

fcchn 0 0 0 0 0 0 

fcclco 0 0 0 0 0 0 

srds 0 0 0 0 0 0 

 

Table 27. 𝑻𝑪 (CAD/m
3
) 

 0.314 
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Table 28. 𝑼𝑷𝑮𝒄𝒐𝒔𝒕(𝒖𝒑𝒈) (10
6
 CAD) 

uHCproc 7.00 

uHTproc 3.63 

uCDUcap 8.40 

uCRcap 2.475 

uHCcap 6.00 

uFCCcap 10.50 

uGBcap 1.00 

uDBcap 1.00 

 

Table 29. 𝑼𝑷𝑮𝒄𝒐𝒔𝒕(𝒖𝒑𝒈) (10
3
 m

3
/day) 

uCDUcap 9.27 

uCRcap 2.65 

uHCcap 5.30 

uFCCcap 5.30 

uGBcap 5.30 

uDBcap 4.77 

 

Table 30. 𝒀(𝒊, 𝒎, 𝒖) (yield fraction) 

 

CR HC FCC HT1 

rft.1 0.8 

   rft.2 0.9 

   hcln.1 

 

0.5 

  hchn.1 

 

0.3 

  hckero.1 

 

0.1 

  hcds.1 

 

0.1 

  hcln.2 

 

0.3 

  hchn.2 

 

0.2 

  hckero.2 

 

0.2 

  hcds.2 

 

0.3 

  fccln.1 

  

0.5 

 fcchn.1 

  

0.3 

 fcclco.1 

  

0.1 

 fcchco.1 

  

0.1 

 fccln.2 

  

0.3 

 fcchn.2 

  

0.2 

 fcclco.2 

  

0.2 

 fcchco.2 

  

0.3 

 srds.1 

   

0.072 

hclf.1 

   

0.928 
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Table 31. 𝑿(𝒋, 𝒎, 𝒊) (%) 

 Crude 1 Crude 2 Crude 3 

1 lpg 2.18 1.45 0.86 

srln 6.37 5.91 12.21 

srhn 17.14 16.19 8.00 

kero 15.83 15.21 5.87 

lgo 13.25 13.60 6.73 

hgo 29.87 30.60 29.99 

rsd 16.57 17.05 36.33 

2 lpg 1.97 1.23 0.76 

srln 5.76 5.30 10.79 

srhn 15.50 14.51 7.07 

kero 12.12 11.49 2.16 

lgo 25.16 25.51 18.64 

hgo 26.17 26.91 27.39 

rsd 14.52 14.99 33.18 

 

3. Refinery Production Planning Model 

The purpose of the production planning model equations is to determine the volumes of 

products that the refinery should produce in order to satisfy the model objective and what crude 

oil stocks, intermediate products, and blending strategies must be used in order to satisfy quality 

constraints associated with each product. Flow of material between process units is defined based 

on inclusion of set elements in equation definitions. The total volumetric inlet flow to each unit 

in the refinery is defined by Eq. (A 1). Inlet flow is broken down by mode for those units which 

have multiple operating modes in Eq. (A 2). The minimum and maximum total inlet flows into a 

unit are defined by Eqs. (A 3) and (A 4). 

 
𝐹𝐴(𝑡, 𝑢, 𝑛) = ∑ 𝐹𝑉𝑀(𝑚, 𝑡, 𝑢, 𝑛)

𝑚
𝑚∈𝑈𝑀

∀𝑡 ∈ 𝑇, 𝑢 ∈ 𝑈, 𝑛 ∈ 𝑁
 (A 1) 

 
𝐹𝑉𝑀(𝑚, 𝑡, 𝑢, 𝑛) = ∑ 𝐹𝑉𝑀𝐼𝑁(𝑚, 𝑡, 𝑖, 𝑛)

𝑖
𝑖∈𝑈𝐼𝑁

∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑢, 𝑚) ∈ 𝑈𝑀
 (A 2) 

 𝐹𝐴(𝑡, 𝑢, 𝑛) ≥ 𝑀𝑖𝑛𝑃𝑟𝑜𝑑(𝑢)𝜏(𝑡) ∀𝑡 ∈ 𝑇, 𝑢 ∈ 𝑈𝐶 , 𝑛 ∈ 𝑁 (A 3) 
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𝐹𝐴(𝑡, 𝑢, 𝑛) ≤ 𝑀𝑎𝑥𝑃𝑟𝑜𝑑(𝑢)𝜏(𝑡) ∀𝑡 ∈ 𝑇, 𝑢 ∈ 𝑈𝐶 , 𝑛 ∈ 𝑁 

 

(A 4) 

Volumetric flow rates of streams exiting a unit are defined using a similar set of 

equations. Streams entering a unit have a corresponding stream or streams leaving that unit 

which are defined by specific yield values. Yield relationships are governed by Eq. (A 5). The 

total volume leaving each unit is defined by Eq. (A 6). 

 
𝐹𝑉𝑀𝑂𝑈𝑇(𝑖, 𝑚, 𝑡, 𝑢, 𝑛) = 𝑌(𝑖, 𝑚, 𝑢)𝐹𝑉𝑀(𝑚, 𝑡, 𝑢, 𝑛)

∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑖, 𝑢, 𝑚) ∈ 𝑈𝑀𝑂𝑈𝑇,𝐶
 (A 5) 

 
𝐹𝐴(𝑡, 𝑢, 𝑛) = ∑ 𝐹𝑉(𝑡, 𝑖, 𝑛)

𝑖
𝑖∈𝑈𝑂𝑈𝑇

∀𝑡 ∈ 𝑇, 𝑢 ∈ 𝑈𝐶 , 𝑛 ∈ 𝑁
 (A 6) 

Unit outlet and inlet volumetric flow rates are calculated on a stream basis using Eqs. (A 

7) and (A 8). 

 
𝐹𝑉(𝑡, 𝑖, 𝑛) = ∑ 𝐹𝑉𝑀𝑂𝑈𝑇(𝑖, 𝑚, 𝑡, 𝑢, 𝑛)

𝑚
𝑚∈𝑈𝑀

∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑖, 𝑢) ∈ 𝑈𝑂𝑈𝑇 (A 7) 

 
𝐹𝑉(𝑡, 𝑖, 𝑛) = ∑ 𝐹𝑉𝑀𝐼𝑁(𝑚, 𝑡, 𝑖, 𝑛)

𝑚
𝑚∈𝑈𝑀

∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑖, 𝑢) ∈ 𝑈𝐼𝑁 (A 8) 

The CDU uses Eq. (A 9) to compute intermediate yields based on the crude streams 

entering the unit. 

 

𝐹𝑉𝑀𝑂𝑈𝑇(𝑖, 𝑚, 𝑡, 𝑢, 𝑛) = ∑ 𝑋(𝑖, 𝑚, 𝑖′)𝐹𝑉𝑀𝐼𝑁(𝑚, 𝑡, 𝑖′, 𝑛)

𝑖′

𝑖′∈𝑈𝐼𝑁

∀𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, 𝑢 = 𝐶𝐷𝑈

 (A 9) 

The holdings of refining intermediates are defined by balance equations around the 

intermediate tanks and the initial tank content in Eqs. (A 10) and (A 11), and by constraints 
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which maintain the tank level between its maximum and minimum values in Eqs. (A 12) and (A 

13). 

 

∑ 𝐹𝑉(𝑡, 𝑖, 𝑛)

𝑖
𝑖∈𝑇𝐾𝐼𝑁

− ∑ 𝐹𝑉(𝑡, 𝑖, 𝑛)

𝑖
𝑖∈𝑇𝐾𝑂𝑈𝑇

+ 𝑉𝑖𝑛𝑖(𝑡𝑘, 𝑛) − 𝑉(𝑡𝑘, 𝑡, 𝑛) = 0

∀𝑡𝑘 ∈ 𝑇𝐾, 𝑡 = 1, 𝑛 ∈ 𝑁

 (A 10) 

 

∑ 𝐹𝑉(𝑡, 𝑖, 𝑛)

𝑖
𝑖∈𝑇𝐾𝐼𝑁

− ∑ 𝐹𝑉(𝑡, 𝑖, 𝑛)

𝑖
𝑖∈𝑇𝐾𝑂𝑈𝑇

+ 𝑉(𝑡𝑘, 𝑡 − 1, 𝑛) − 𝑉(𝑡𝑘, 𝑡, 𝑛) = 0

∀𝑡𝑘 ∈ 𝑇𝐾, 𝑡 > 1, 𝑛 ∈ 𝑁

 (A 11) 

 𝑉(𝑡𝑘, 𝑡, 𝑛) ≥ 𝑉(𝑡𝑘) ∀𝑡𝑘 ∈ 𝑇𝐾, 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁 (A 12) 

 𝑉(𝑡𝑘, 𝑡, 𝑛) ≤ 𝑉(𝑡𝑘) ∀𝑡𝑘 ∈ 𝑇𝐾, 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁 (A 13) 

The process of blending refining intermediates into products is governed by a number of 

equations and constraints which dictate blend volumes and quality specifications. The volume of 

a stream to be blended into a particular product is defined by Eq. (A 14). The blended volume of 

a product is defined by Eq. (A 15). 

 
∑ 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛)

𝑝
𝑝∈𝐵𝐿𝑂𝑈𝑇

= 𝐹𝑉(𝑡, 𝑖, 𝑛) ∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑏𝑙, 𝑖) ∈ 𝐵𝐿𝐼𝑁
 (A 14) 

 
∑ 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛)

𝑖
𝑖∈𝐵𝐿𝐼𝑁

= 𝑉𝐵𝑙𝑒𝑛𝑑(𝑡, 𝑝, 𝑛) ∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑏𝑙, 𝑝) ∈ 𝐵𝐿𝑂𝑈𝑇
 (A 15) 

The minimum and maximum fractions of an intermediate allowed in the blending of a 

product are defined by Eqs. (A 16) and (A 17). 

 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛) ≥ 𝑅𝑀𝑖𝑛(𝑏𝑙)𝑉𝐵𝑙𝑒𝑛𝑑(𝑡, 𝑝, 𝑛) ∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑏𝑙, 𝑖, 𝑝) ∈ 𝐵𝐿𝐼𝑃 (A 16) 

 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛) ≤ 𝑅𝑀𝑎𝑥(𝑏𝑙)𝑉𝐵𝑙𝑒𝑛𝑑(𝑡, 𝑝, 𝑛) ∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑏𝑙, 𝑖, 𝑝) ∈ 𝐵𝐿𝐼𝑃 (A 17) 
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The total volume processed in a blender is defined by Eq. (A 18). This volume must be 

within the lower and upper capacity values for each blender, reflected through the constraints in 

Eqs. (A 19) and (A 20). 

 
∑ 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛)

𝑖,𝑝
(𝑖,𝑝)∈𝐵𝐿𝐼𝑃

= 𝑉𝐵𝑙𝑒𝑛𝑑𝑇(𝑡, 𝑏𝑙, 𝑛) ∀𝑏𝑙 ∈ 𝐵𝐿, 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁
 (A 18) 

 𝑉𝐵𝑙𝑒𝑛𝑑𝑇(𝑡, 𝑏𝑙, 𝑛) ≥ 𝐵𝑙𝑒𝑛𝑑𝑀𝑖𝑛(𝑏𝑙)𝜏(𝑡) ∀𝑏𝑙 ∈ 𝐵𝐿, 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁 (A 19) 

 𝑉𝐵𝑙𝑒𝑛𝑑𝑇(𝑡, 𝑏𝑙, 𝑛) ≤ 𝐵𝑙𝑒𝑛𝑑𝑀𝑎𝑥(𝑏𝑙)𝜏(𝑡) ∀𝑏𝑙 ∈ 𝐵𝐿𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁 (A 20) 

Quality properties are divided into three groups: properties based on volume, based on 

weight, and based on nonlinear relationships. The upper and lower bounds for each property are 

defined by Eqs. (A 21) to (A 26). 

 

∑ 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛)𝑞𝑞(𝑖, 𝑞)

𝑖
𝑖∈𝐵𝐿𝐼𝑁

≥ 𝑄(𝑞, 𝑝)𝑉𝐵𝑙𝑒𝑛𝑑(𝑡, 𝑝, 𝑛)

∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑏𝑙, 𝑝, 𝑞) ∈ 𝐵𝐿𝑂𝑈𝑇,𝑉𝑂𝐿

 (A 21) 

 

∑ 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛)𝑞𝑞(𝑖, 𝑞)

𝑖
𝑖∈𝐵𝐿𝐼𝑁

≤ 𝑄(𝑞, 𝑝)𝑉𝐵𝑙𝑒𝑛𝑑(𝑡, 𝑝, 𝑛)

∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑏𝑙, 𝑝, 𝑞) ∈ 𝐵𝐿𝑂𝑈𝑇,𝑉𝑂𝐿

 (A 22) 

 

∑ 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛)𝑞𝑞(𝑖, 𝑞)𝑞𝑞(𝑖, 𝑞′)

𝑖
𝑖∈𝐵𝐿𝐼𝑁

≥ 𝑄(𝑞, 𝑝) ∑ 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛)𝑞𝑞(𝑖, 𝑞′)

𝑖
𝑖∈𝐵𝐿𝐼𝑁

∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, 𝑞′ = 𝑆𝐺, (𝑏𝑙, 𝑝, 𝑞) ∈ 𝐵𝐿𝑂𝑈𝑇,𝑊𝑇

 (A 23) 

 

∑ 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛)𝑞𝑞(𝑖, 𝑞)𝑞𝑞(𝑖, 𝑞′)

𝑖
𝑖∈𝐵𝐿𝐼𝑁

≤ 𝑄(𝑞, 𝑝) ∑ 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛)𝑞𝑞(𝑖, 𝑞′)

𝑖
𝑖∈𝐵𝐿𝐼𝑁

∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, 𝑞′ = 𝑆𝐺, (𝑏𝑙, 𝑝, 𝑞) ∈ 𝐵𝐿𝑂𝑈𝑇,𝑊𝑇

 (A 24) 

 

∑ 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛)𝑞𝑞(𝑖, 𝑞)1.25

𝑖
𝑖∈𝐵𝐿𝐼𝑁

≥ 𝑄(𝑞, 𝑝)1.25𝑉𝐵𝑙𝑒𝑛𝑑(𝑡, 𝑝, 𝑛)

∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑏𝑙, 𝑝, 𝑞) ∈ 𝐵𝐿𝑂𝑈𝑇,𝑁𝐿

 (A 25) 
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∑ 𝑉𝐵(𝑖, 𝑝, 𝑡, 𝑛)𝑞𝑞(𝑖, 𝑞)1.25

𝑖
𝑖∈𝐵𝐿𝐼𝑁

≤ 𝑄(𝑞, 𝑝)1.25𝑉𝐵𝑙𝑒𝑛𝑑(𝑡, 𝑝, 𝑛)

∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑏𝑙, 𝑝, 𝑞) ∈ 𝐵𝐿𝑂𝑈𝑇,𝑁𝐿

 (A 26) 

The products produced by blending are either stored in product tanks or delivered to a 

market for sale. The product tank balances for the initial tank condition and for subsequent time 

periods take the form of Eqs. (A 27) and(A 28). The maximum and minimum product tank levels 

are defined by Eqs. (A 29) and (A 30). 

 
𝑉𝐵𝑙𝑒𝑛𝑑(𝑡, 𝑝, 𝑛) + 𝑉𝑃𝑖𝑛𝑖(𝑝) − 𝑉𝑃(𝑡, 𝑝, 𝑛) − 𝑃𝑟𝑐(𝑡, 𝑝, 𝑛) = 0

∀𝑡 = 1, 𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁
 (A 27) 

 
𝑉𝐵𝑙𝑒𝑛𝑑(𝑡, 𝑝, 𝑛) + 𝑉𝑃(𝑡 − 1, 𝑝, 𝑛) − 𝑉𝑃(𝑡, 𝑝, 𝑛) − 𝑃𝑟𝑐(𝑡, 𝑝, 𝑛) = 0

∀𝑡 > 1, 𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁
 (A 28) 

 𝑉𝑃(𝑡, 𝑝, 𝑛) ≥ 𝑉𝑃(𝑝) ∀𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁 (A 29) 

 𝑉𝑃(𝑡, 𝑝, 𝑛) ≤ 𝑉𝑃(𝑝) ∀𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁 (A 30) 

At the end of the planning horizon all tank levels should return to their minimum levels. 

Equations (A 31) and (A 32) enforce this constraint for the sets of intermediate and product 

tanks. 

 𝑉(𝑡𝑘, 𝑡, 𝑛) = 𝑉(𝑡𝑘) ∀𝑡𝑘 ∈ 𝑇𝐾, 𝑡 = 𝑇, 𝑛 ∈ 𝑁 (A 31) 

 𝑉𝑃(𝑡, 𝑝, 𝑛) = 𝑉𝑃(𝑝) ∀𝑡 = 𝑇, 𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁 (A 32) 

The total amount of each product produced by a refiner is delivered to a market for sale. 

Eq. (A 33) defines the balance between the products produced and those delivered to a market. 

 𝑃𝑟𝑐(𝑡, 𝑝, 𝑛) − ∑ 𝐷𝑙𝑣(𝑡, 𝑝, 𝑛, 𝑤)

𝑤

= 0 ∀𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁 (A 33) 

The costs of crude oil, unit operation, and blender operation are defined by Eqs. (A 34), 

(A 35), and (A 36), respectively. 
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 𝐶𝑟𝑢𝑑𝑒𝑂𝑖𝑙𝐶𝑜𝑠𝑡(𝑛) = ∑ [(1 + 0.01𝑡) ∑ 𝐶𝑜𝑠𝑡(𝑖)𝐹𝑉(𝑡, 𝑖, 𝑛)

𝑖
𝑖∈𝐼𝐶

]

𝑡

∀𝑛 ∈ 𝑁  (A 34) 

 𝑈𝑛𝑖𝑡𝑂𝑝𝐶𝑜𝑠𝑡(𝑛) = ∑ 𝑂𝑝𝐶𝑜𝑠𝑡(𝑢, 𝑚)𝐹𝑉𝑀(𝑚, 𝑡, 𝑢, 𝑛)

𝑚,𝑛,𝑢

∀𝑛 ∈ 𝑁 (A 35) 

 𝐵𝑙𝑒𝑛𝑑𝑂𝑝𝐶𝑜𝑠𝑡(𝑛) = ∑ 𝐵𝐿𝑐𝑜𝑠𝑡(𝑏𝑙)

𝑏𝑙,𝑛

𝑉𝐵𝑙𝑒𝑛𝑑𝑇(𝑡, 𝑏𝑙, 𝑛) ∀𝑛 ∈ 𝑁 (A 36) 

Refiners are able to import products from another seller located elsewhere whose prices 

are fixed at values of 𝐶𝐼(𝑝, 𝑤) for refiners in local markets. Buyers in local and global markets 

do not have access to this purchasing channel; refiners may purchase imports at a price 𝐶𝐼(𝑝, 𝑤) 

and sell them in their local market at the market price Pr(𝑝, 𝑤). Imports cannot be sold in global 

markets and are limited to an amount of 1.589×10
6
 m

3
 per year of each product by each refiner 

as a reasonable upper limit. The cost of imports incurred by a refiner is defined by Eq. (A 37). 

 𝐼𝑚𝑝𝐶𝑜𝑠𝑡(𝑛) = ∑ 𝐶𝐼(𝑝, 𝑤)

𝑝,𝑤

𝐼𝑚𝑝(𝑝, 𝑛, 𝑤) ∀𝑛 ∈ 𝑁 (A 37) 

Refiners also incur time-based costs which are calculated based on the total amount 

produced in a given time period and which decrease in each subsequent time period in the 

planning horizon. Eq. (A 38) defines this cost value which serves, all else being equal, to make 

production near the end of the planning horizon more efficient. 

 𝑇𝑖𝑚𝑒𝐶𝑜𝑠𝑡(𝑛) = 𝑇𝐶 ∑(1 − 0.01 ∙ 𝑡)𝑃𝑟𝑜𝑑𝑢𝑐𝑒(𝑡, 𝑝, 𝑛)

𝑡,𝑝

∀𝑛 ∈ 𝑁 (A 38) 

For convenience of equation writing we define the variable 𝑇𝑜𝑡𝐶𝑜𝑠𝑡(𝑛) as in Eq. (A 39). 

 

𝑇𝑜𝑡𝐶𝑜𝑠𝑡(𝑛) = 𝐶𝑟𝑢𝑑𝑒𝑂𝑖𝑙𝐶𝑜𝑠𝑡(𝑛) + 𝑈𝑛𝑖𝑡𝑂𝑝𝐶𝑜𝑠𝑡(𝑛) + 𝐵𝑙𝑒𝑛𝑑𝑂𝑝𝐶𝑜𝑠𝑡(𝑛)

+ 𝑇𝐸𝐶(𝑛) + 𝐼𝑚𝑝𝐶𝑜𝑠𝑡(𝑛) + 𝑇𝑖𝑚𝑒𝐶𝑜𝑠𝑡(𝑛) 

∀𝑛 ∈ 𝑁 

(A 39) 
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Deliveries to global markets are unrestricted and are driven purely by competition, but 

deliveries to local markets by the refiners situated in those markets face contracts stipulating that 

neither too low a supply of any one product, nor more than the market can absorb, be collectively 

produced. In local markets the collective supply from local refiners is constrained to fall within 

upper and lower bounds. Since the model is formulated as a deterministic static game refiners are 

capable of making competitive plays guaranteed to satisfy these constraints, which take the form 

in Eqs. (A 40) and(A 41). 

 ∑ 𝐷𝑙𝑣(𝑡, 𝑝, 𝑛, 𝑤)

𝑡,𝑛

≥ 𝐷(𝑝, 𝑤) ∀𝑝 ∈ 𝑃, 𝑤 ∈ 𝑊𝐿 (A 40) 

 ∑ 𝐷𝑙𝑣(𝑡, 𝑝, 𝑛, 𝑤)

𝑡,𝑛

≤ 𝐷(𝑝, 𝑤) ∀𝑝 ∈ 𝑃, 𝑤 ∈ 𝑊𝐿 (A 41) 
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