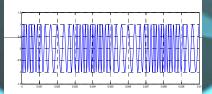
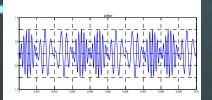
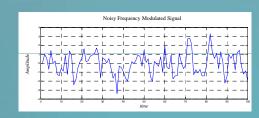

ABSTRACT The goal of this project is to extend the stationary MUltiple SIgnal Classification (MUSIC) algorithm to non-stationary Amplitude and Frequency Modulated (AM-FM) signals.


Classical approaches to amplitude and frequency estimation assume a stationary data model, i.e., both the amplitude and frequency of the signal are constant and do not vary with time. Non-stationary harmonic signals are, however, ubiquitous in various applications such as speech, music, seismic, radar, sonar, and biology. We are particularly interested in

FORMS OF ANALOG MODULATION


Amplitude Modulated Signal

Frequency Modulated Signal


Amplitude and Frequency Modulated Signal

THE EFFECT OF NOISE

EXTENTION OF THE MUSIC ALGORITHM TO AM-FM SIGNALS

Advisor: Dr. Nidhal Bouaynaya Department of Systems Engineering, University of Arkansas at Little Rock

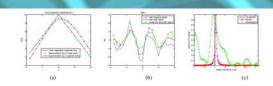
THE STATIONARY MUSIC ALGORITHM

The MUSIC algorithm gives a high-resolution (higher than the spectrum) estimation of frequency parameters based a given stationary signal

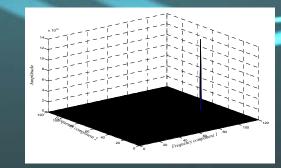
$$x[n] = \sum_{i=1}^{p} A_i e^{j(\omega_i n + \varphi_i)} + w[n]$$

THE PROPOSED AM-FM MUSIC ALGORITHM

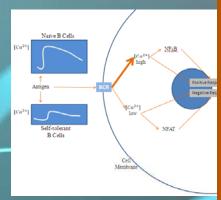
Our approach relies on a basis decomposition of the time dependent amplitude and frequency ignals. We show that the introduction of a basis representation reduces the non-stationary estimation problem to a stationary one.


AM MUSIC

$$x[n] = \sum_{i=1}^{p} A_i e^{j(\omega_i[n] + \varphi_i)} + w[n]$$


$$\omega_i[n] = \sum_{k=1}^{M} d_{i,k} f_k[n]$$

$$x[n] = \sum_{i=1}^{p} A_i e^{j(\omega_i[n] + \varphi_i)} + w[n]$$
$$\omega_i[n] = \sum_{k=1}^{M} d_{i,k} f_k[n]$$



(a) The Time-dependent amplitude A[n] and its Fourier and Legendre basis representations; (b) The pure sinusoidal signal, its noiseless AM modulated version, and its noisy AM modulated version with SNR = 0 dB; (c) The TD-MUSIC pseudo-spectrum, the MUSIC pseudo-spectrum, and the periodogram of the noisy AM modulated signal.

BIOLOGICAL APPLICATI

The proposed algorithm will be assessed using the

CONCLUSIONS AND FUTU RESEARCH

- Similarly to the stationary case, the AM and MUSIC have higher resolutions (in terms of freq separation) than the non-parametric time-fre decomposition methods.
- The next step is to develop the AM-FM M lgorithm.
- We will, subsequently, investigate the state properties of the amplitude and frequer computing their respective Camer-Rao lower be

ACKNOWLEDGEMEN

We would like to thank the Ar Department of Higher Education for funding through a SURF grant 2010.

REFERENCES

[1] M.J. Berridge, "The AM and FM of Calc Signalling" Nature, vol. 386, pp. 759-760, 19

brought to you by I CORE