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Abstract

This paper investigates the chaos synchronization between two linearly coupled chaotic systems. Some sufficient

conditions of global asymptotic synchronization are attained from rigorously mathematical theory. Also, a new method

for analyzing the stability of synchronization solution is presented. Using this method, some sufficient conditions of

linear stability of the synchronization chaotic solution are gained. The influence of coupling coefficients on chaos

synchronization is further studied for three typical chaotic systems: Lorenz system, Chen system, and newly found L€uu
system. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Chaos, as a very interesting nonlinear phenomenon, has been intensively studied in the last three decades [10,13]. It is

found to be useful or has great potential in many disciplines such as in collapse prevention of power systems, biomedical

engineering applications to the human brain and heart, thorough liquid mixing with low power consumption, secret

communication technology, to name just a few [10,13,24].

Over the last decade, many new types of synchronization have appeared: chaotic synchronization [3,4], lag syn-

chronization [9], adaptive synchronization [2], phase synchronization [6], and generalized synchronization [9], to

mention only a few. Since the discovery of chaos synchronization [3], there has been tremendous interest in studying the

synchronization of chaotic systems [10]. Recently, synchronization of coupled chaotic systems has received considerable

attention [1,2,5,7]. Especially, a typical study of synchronization is the coupled identical chaotic systems [1,6].

In 1963, Lorenz found the first classical chaotic attractor [12]. In 1999, Chen found another similar but topologically

not equivalent chaotic attractor [11,21,22], as the dual of the Lorenz system, in a sense defined by Van�ee�ccek and �CCeli-
kovsk�yy [23]: The Lorenz system satisfies the condition a12a21 > 0 while Chen system satisfies a12a21 < 0. Very recently,

L€uu et al. produced a new chaotic system [14,15], which satisfies the condition a12a21 ¼ 0, thereby bridging the gap

between the Lorenz and Chen attractors [15–17].

Some numerical results were reported about the coupled identical Lorenz systems [6]. And two kinds of methods

were applied for analyzing the stability of synchronization solution [6]. However, both methods concern the compu-

tation of Lyapunov exponents. In this paper, we further study the chaos synchronization between two linearly coupled

chaotic systems from rigorously mathematical theory. Several sufficient conditions of global asymptotic synchroniza-

tion are given. Furthermore, a new method is introduced for analyzing the stability of synchronization solution. That is,

the in-phase solution decomposition method, which can transform the stability of synchronization solution into lower-
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dimensional problem. Using this method, a sufficient condition of linear stability of the synchronization solution is

attained. The impact of coupling coefficients on chaos synchronization is investigated for the classical Lorenz system,

Chen system, and newly found L€uu system. Computer simulations are also given for illustration and verification.

2. Three kinds of representative chaotic systems

The Lorenz system is known to be a simplified model of several physical systems. At the origin, it was derived from a

model of the earth’s atmospheric convection flow heated from below and cooled from above [12]. Furthermore, it has

been reported that Lorenz equations may describe such different systems as laser devices, disk dynamos and several

problems related to convection [8]. Recently, the Lorenz attractor has just been mathematically confirmed to exist [20].

The Lorenz system is described by

_xx ¼ aðy � xÞ;
_yy ¼ cx� xz� y;
_zz ¼ xy � bz;

8><
>: ð1Þ

which has a chaotic attractor as shown in Fig. 1(a) when a ¼ 10, b ¼ 8=3, c ¼ 28.

Chen system is a typical chaos anti-control model, which has a more complicated topological structure than Lorenz

attractor [11]. The Chen system can be obtained by merging together two simple attractors after performing a mirror

operation [17]. Furthermore, it has been implemented by circuitry [25] and has widely applicable prospect in secret

communication. The nonlinear differential equations that describe the Chen system are:

_xx ¼ aðy � xÞ;
_yy ¼ ðc� aÞx� xzþ cy;
_zz ¼ xy � bz;

8><
>: ð2Þ

which has a chaotic attractor as shown in Fig. 1(b) when a ¼ 35, b ¼ 3, c ¼ 28.

Fig. 1. (a) Lorenz chaotic attractor; (b) Chen chaotic attractor; (c) L€uu chaotic attractor.
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L€uu system is a typical transition system, which connects the Lorenz and Chen attractors and represents the transition

from one to the other [15,16,18,19]. The L€uu system is described by

_xx ¼ aðy � xÞ;
_yy ¼ �xzþ cy;
_zz ¼ xy � bz;

8<
: ð3Þ

which has a chaotic attractor as shown in Fig. 1(c) when a ¼ 36, b ¼ 3, c ¼ 20.

In the following, we will further study the chaos synchronization of two identical coupled chaotic systems based on

three typical chaotic systems. Also, we will compare the influence of coupling coefficients on chaos synchronization for

three systems.

3. Chaos synchronization between linear coupled systems

Synchronization of two identical Lorenz systems has been widely investigated under different conditions over the last

decade [1]. However, most studies have only provided numerical or local dynamical analysis about the coupled Lorenz

system. In the following, we will consider a general linear coupled Lorenz system and give some global asymptotic

synchronization conditions for two linearly coupled Lorenz systems from theory.

Consider the following linear coupling of two identical Lorenz systems:

_x1x1 ¼ aðx2 � x1Þ þ d1ðy1 � x1Þ;
_x2x2 ¼ cx1 � x1x3 � x2 þ d2ðy2 � x2Þ;
_x3x3 ¼ x1x2 � bx3 þ d3ðy3 � x3Þ;
_y1y1 ¼ aðy2 � y1Þ þ d1ðx1 � y1Þ;
_y2y2 ¼ cy1 � y1y3 � y2 þ d2ðx2 � y2Þ;
_y3y3 ¼ y1y2 � by3 þ d3ðx3 � y3Þ;

8>>>>>>><
>>>>>>>:

ð4Þ

where xj; yj ðj ¼ 1; 2; 3Þ are status variables, provided that the orbit is close enough to the basin of attraction, and

di ði ¼ 1; 2; 3Þ are coupled coefficients. Especially, when d1 6¼ 0, d2 ¼ d3 ¼ 0, then the coupled system (4) is x-coupled.
Similarly, d2 6¼ 0, d1 ¼ d3 ¼ 0 is y-coupled, and d3 6¼ 0, d1 ¼ d2 ¼ 0 is z-coupled.

In general, when di ði ¼ 1; 2; 3Þ satisfy F ðd1; d2; d3Þ < 0, where F ðd1; d2; d3Þ < 0 is a condition of coupling coefficients,

two oscillators will operate independently in their own different chaotic orbits separately, i.e., they are not synchro-

nization. However, if there is a suitable coupling structure and a fittest coupling current intensity, for example, satis-

fying F ðd1; d2; d3Þ > 0, then the two identical oscillators will run in the same chaotic orbit simultaneously. That is to say,

the two identical Lorenz systems with linear coupling will approach accurate synchronization,

xiðtÞ ¼ yiðtÞ ¼ siðtÞ ði ¼ 1; 2; 3Þ: ð5Þ

In fact, for any coupling coefficients di ði ¼ 1; 2; 3Þ, the synchronization solution (5) is always the solution of coupled

system (4), and locating the invariant subspace fðx; yÞ jxðtÞ ¼ yðtÞg. However, the synchronization solution (5) is un-

stable under the condition F ðd1; d2; d3Þ < 0. And this unstability is caused by the maximum horizontal Lyapunov ex-

ponent becoming a positive number.

Define a difference system nðtÞ, gðtÞ, fðtÞ with

nðtÞ ¼ x1ðtÞ � y1ðtÞ;
gðtÞ ¼ x2ðtÞ � y2ðtÞ;
fðtÞ ¼ x3ðtÞ � y3ðtÞ:

8<
: ð6Þ

Then we have

�x1x3 þ y1y3 ¼ �x3ðn þ y1Þ þ y1ðx3 � fÞ ¼ �x3n � y1f;
x1x2 � y1y2 ¼ x2ðn þ y1Þ � y1ðx2 � gÞ ¼ x2n þ y1g:

�
ð7Þ

According to Eqs. (4)–(7), we get the following system:

_nn ¼ �ðaþ 2d1Þn þ ag;
_gg ¼ ðc� x3Þn � ð1þ 2d2Þg � y1f;
_ff ¼ x2n þ y1g � ðbþ 2d3Þf;

8<
: ð8Þ

where x2; x3; y1 are status variables of system (4).
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The coefficient matrix of system (8) is

AðtÞ ¼
�ðaþ 2d1Þ a 0

c� x3 �ð1þ 2d2Þ �y1
x2 y1 �ðbþ 2d3Þ

0
@

1
A; ð9Þ

then we have the following symmetric matrix:

ðAðtÞ þ ATðtÞÞ
2

¼
�ðaþ 2d1Þ ðcþ a� x3Þ=2 x2=2

ðcþ a� x3Þ=2 �ð1þ 2d2Þ 0

x2=2 0 �ðbþ 2d3Þ

0
@

1
A: ð10Þ

Let aðtÞ, bðtÞ be the minimum and maximum eigenvalues of matrix ðAðtÞ þ ATðtÞÞ=2 ¼ BðtÞ. From the theorem in

[26], we get the following lemma.

Lemma 1. Assume that the differential equation _XX ¼ AX has a solution X ðtÞ; thus we have

kX ð0Þk exp
Z t

0

aðsÞds
� �

6 kX ðtÞk6 kX ð0Þk exp
Z t

0

bðsÞds
� �

: ð11Þ

In fact, it is easily attained by the following equation:

dkXk2

dt
¼ dðX TX Þ

dt
¼ X T ðAþ ATÞ

2

� 
X :

Therefore, if 9e > 0; such that bðtÞ < �e; then for any initial value X ð0Þ; we have X ðtÞ ! 0 with exponential rate.

Note that the matrix BðtÞ is a symmetric matrix, and all eigenvalues of BðtÞ are real numbers. Let the eigenvalues be

ki; i ¼ 1; 2; 3, and satisfying k1 6 k2 6 k3.

It is very interesting that, for two identical Lorenz systems, if the initial value ðx1ð0Þ; x2ð0Þ; x3ð0ÞÞ 6¼
ðy1ð0Þ; y2ð0Þ; y3ð0ÞÞ, then the trajectories of two identical Lorenz systems will quickly separate each other and become

irrelevant. However, if the coupling coefficients satisfy certain condition, then the two coupled Lorenz systems will

approach global synchronization for any initial value.

In the following, assume that di > 0 ði ¼ 1; 2; 3Þ, then we have Theorem 1.

Theorem 1. If the coupled coefficients d1; d2; d3 satisfy the condition:

r0 ¼ ðaþ 2d1Þð1þ 2d2Þðbþ 2d3Þ �
b2ðaþ cÞ2

16ðb� 1Þ M > 0;

s0 ¼ ðaþ 2d1Þð1þ 2d2Þð1þ aþ 2d1 þ 2d2Þ þ ðbþ 2d3Þð1þ aþ 2d1 þ 2d2Þð1þ aþ bþ 2ðd1 þ d2 þ d3ÞÞ

� b2ðaþ cÞ2

16ðb� 1Þ ðaþ 2d1 þMÞ > 0;

then for any initial value ðx1ð0Þ; x2ð0Þ; x3ð0Þ; y1ð0Þ; y2ð0Þ; y3ð0ÞÞ; the two coupled Lorenz systems will approach global
synchronization as t ! þ1; provided that the orbit is close enough to the basin of attraction, where
M ¼ maxf1þ 2d2; bþ 2d3g.

Proof. The characteristic equation of matrix (10) is

k3 þ pk2 þ qk þ r ¼ 0; ð12Þ

where

p ¼ 1þ aþ bþ 2ðd1 þ d2 þ d3Þ; ð13Þ

q ¼ ðaþ 2d1Þð1þ 2d2Þ þ ð1þ aþ 2d1 þ 2d2Þðbþ 2d3Þ �
1

4
x22 �

1

4
ðx3 � c� aÞ2; ð14Þ

r ¼ ðaþ 2d1Þð1þ 2d2Þðbþ 2d3Þ �
1

4
ð1þ 2d2Þx22 �

1

4
ðbþ 2d3Þðx3 � c� aÞ2: ð15Þ
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Therefore, we have

s ¼ pq� r

¼ ðaþ 2d1Þð1þ 2d2Þð1þ aþ 2d1 þ 2d2Þ þ ðbþ 2d3Þð1þ aþ 2d1 þ 2d2Þð1þ aþ bþ 2ðd1 þ d2 þ d3ÞÞ

� 1

4
ðaþ bþ 2d1 þ 2d3Þx22 �

1

4
ð1þ aþ 2d1 þ 2d2Þðx3 � c� aÞ2: ð16Þ

Furthermore, it has been shown that there is a bounded region C � R3 containing the whole attractor such that

every orbit of (1) never leaves it. As shown by Leonov et al. [27] enclosure of the attractor is given:

C ¼ ðx; y; zÞ 2 R3 jx2
n

þ y2 þ ðz� a� cÞ2 ¼ C
o
; ð17Þ

where

C ¼ b2ðaþ cÞ2

4ðb� 1Þ :

Thus we can get the boundary of y2 þ ðz� a� cÞ2 about status variables y; z:

y2 þ ðz� a� cÞ2 6 b2ðaþ cÞ2

4ðb� 1Þ : ð18Þ

Since the orbit is close enough to the basin of attraction, we can get the following approximate estimate:

x22 þ ðx3 � a� cÞ2 6 b2ðaþ cÞ2

4ðb� 1Þ ; ð19Þ

then we have

r ¼ ðaþ 2d1Þð1þ 2d2Þðbþ 2d3Þ �
1

4
ð1þ 2d2Þx22 �

1

4
ðbþ 2d3Þðx3 � c� aÞ2;

P ðaþ 2d1Þð1þ 2d2Þðbþ 2d3Þ �
M
4

b2ðaþ cÞ2

4ðb� 1Þ ¼ r0 > 0;

sP ðaþ 2d1Þð1þ 2d2Þð1þ aþ 2d1 þ 2d2Þ þ ðbþ 2d3Þð1þ aþ 2d1 þ 2d2Þð1þ aþ bþ 2ðd1 þ d2 þ d3ÞÞ

� 1

4
ðaþ 2d1 þMÞ b

2ðaþ cÞ2

4ðb� 1Þ ¼ s0 > 0;

where M ¼ maxf1þ 2d2; bþ 2d3g.
Obviously, we have

p ¼ 1þ aþ bþ 2ðd1 þ d2 þ d3Þ > 0;

q ¼ pq
p

¼ r þ s
p

> 0:

From the Routh–Hurwitz conditions, we know that all characteristic roots ki ði ¼ 1; 2; 3Þ of Eq. (12) are negative,

i.e. ki < 0 ði ¼ 1; 2; 3Þ.
Moreover, since k1 þ k2 þ k3 ¼ �p and k1k2k3 ¼ �r, then 9e > 0, such that kiðtÞ < �e ði ¼ 1; 2; 3Þ. According to

Lemma 1, Theorem 2 holds. And the proof is completed. �

Remarks.

1. Theorem 1 gives only sufficient conditions for global synchronization of linearly coupled Lorenz system; in other

words if the coupling coefficients do not satisfy the above conditions, it does not mean that the coupled Lorenz sys-

tem (4) cannot realize chaos synchronization. In fact, numerical simulation reveals that some coupling coefficients

can make the coupled systems be synchronization but not satisfy the above sufficient conditions.

2. Similarly, we can attain the sufficient conditions for linearly coupled Chen system, L€uu system.

3. We can get a better estimate than (19) for the boundary of F ðx2; x3Þ ¼ x22 þ ðx3 � a� cÞ2. In fact, we can seek the

maximum value of F ðx2; x3Þ under the condition of satisfying Eq. (4). We can use the polar coordinate to compute

the accurate maximum value of F ðx2; x3Þ, but it is very complicated, since the coupled system (4) is a six-dimensional
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autonomous system. By example, we can easily calculate the maximum value of F ðy; zÞ ¼ y2 þ ðz� cÞ2 satisfying the

Lorenz system (1).

When function F ðy; zÞ attains the maximum value, we have

_FF ¼ 2y _yy þ 2ðz� cÞ_zz ¼ 2

�
� y2 � b z

�
� c
2

�2
þ bc2

4

�
¼ 0; ð20Þ

that is,

y2 þ b z
�

� c
2

�2
¼ bc2

4
: ð21Þ

Then we get the following parameter equations:

x ¼ x;

y ¼ c
ffiffiffi
b

p

2
cos t;

z ¼ cð1þ sin tÞ
2

:

8>>>><
>>>>:

ð22Þ

Substituting Eq. (22) into Eq. (1), we have

_xx ¼ a
c
ffiffiffi
b

p

2
cos t � x

 !
;

� c
ffiffiffi
b

p

2
sin t ¼ cx� x

cð1þ sin tÞ
2

� c
ffiffiffi
b

p

2
cos t;

c
2
cos t ¼ x

c
ffiffiffi
b

p

2
cos t � bcð1þ sin tÞ

2
:

8>>>>>>><
>>>>>>>:

ð23Þ

By complicated algebraical operation, we get the solution of Eq. (23)

sin t ¼ � 1

b� 1
; cos t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 2b

p

b� 1
; x ¼ 1ffiffiffi

b
p þ

ffiffiffiffiffiffiffiffiffiffiffi
b� 2

p
; ð24Þ

and it is easily verified that €FF ðtÞ < 0, thus the maximum value of function F ðy; zÞ satisfying Eq. (1) is

F ðy; zÞ ¼ b2c2

4ðb� 1Þ : ð25Þ

In fact, this result concurs with the theoretical value of Zylinder [27].

4. The stability of synchronization solution

In this section, we will introduce a new method for analyzing the stability of synchronization solution.

Let the differential equation be

_XX ¼ F ðX Þ; ð26Þ

where X 2 Rn. Suppose that Eq. (26) has a solution X ¼ /ðtÞ.
Then we consider the following general linearly coupled system

_XX ¼ F ðX Þ � DðX � Y Þ;
_YY ¼ F ðY Þ � DðY � X Þ;

�
ð27Þ

where D ¼ ðdijÞn�n is the coupling matrix. Obviously, Eq. (27) has a solution UðtÞ ¼ ð/ðtÞ;/ðtÞÞT. In the following, we

will investigate the stability of synchronization solution UðtÞ.
For convenience, we denote the coupled system (27) by

dZ
dt

¼ GðZÞ; ð28Þ

where Z ¼ ðX ; Y ÞT.
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Consider the variational equation of coupled system (28) at synchronization solution UðtÞ
dW
dt

¼ DGðUðtÞÞW ¼ A� D D
D A� D

� 
W ; ð29Þ

where

A ¼ oF ðX Þ
oX

����
X¼/ðtÞ

:

Define a permutation operator x: Rn � Rn ! Rn � Rn,

x
X
Y

� 
¼ Y

X

� 
: ð30Þ

Obviously, it satisfies:

xGðZÞ ¼ GðxZÞ; ð31Þ

and UðtÞ is a fixed point of it. According to Eq. (30), we know that the operator x and derivative operator

hðtÞ ¼ DGðUðtÞÞ are exchangeable, that is,

xh ¼ hx: ð32Þ

Let S be representational matrix of x on Rn � Rn and then

S ¼ 0 I
I 0

� 
;

where I is n-order unit matrix.

S has two invariant subspaces:

S1 ¼
x
x

� � �
; dimðS1Þ ¼ n;

and

S2 ¼
x
�x

� � �
; dimðS2Þ ¼ n:

Since x and h are exchangeable, S1 and S2 are also invariant subspaces of h, respectively. The action of h on S1 and
S2, however, can be expressed as, separately:

(a) hðtÞ jS1� AðtÞ,
(b) hðtÞ jS2� AðtÞ � 2D.

In fact, let

P ¼ I I
�I I

� 
;

then

P�1 ¼ 1

2

I �I
I I

� 
;

where In�n is a unit matrix.

Substituting the linear transformation W ¼ PU into variable equation (29), we have

dU
dt

¼ P�1
A� D D

D A� D

 !
PU ;

¼
A� 2D 0

0 A

 !
U :

ð33Þ

Therefore, the variational equation (29) is decomposed into two independent equations:

dW1

dt
¼ AðtÞW1 ð34Þ
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and

dW2

dt
¼ ðAðtÞ � 2DÞW2: ð35Þ

This means that the space of the synchronization solution of coupled system (27) consists of that of Eq. (34) and that of

Eq. (35).

It is noticed that for any coupled matrix D, the variational Eq. (29) can be decomposed into two independent Eqs.

(34) and (35). Furthermore, when the coupled matrix D changes, it only influences Eq. (35), and Eq. (34) is a invariant.

Numerical simulation reveals that the synchronization solution UðtÞ of coupled system (27) is stable for some coupled

matrix D. Therefore, we will focus on the solution of Eq. (35), and seek some suitable conditions for coupled matrix D.

In fact, the invariant subspaces S1 and S2 are corresponding to Eqs. (34) and (35) separately. Furthermore, S1 is

corresponding to the movement of chaos synchronization solution /ðtÞ, and all its Lyapunov exponents are corre-

sponding to those of single chaos oscillator (26), and the maximum Lyapunov exponent must be a positive number. At

the same time, all Lyapunov exponents of S2 are the horizontal Lyapunov exponents of invariant subspace S1.
Therefore, the synchronization solution is stable if and only if all horizontal Lyapunov exponents are negative. For

convenience, we call S1 the synchronization subspace and S2 the associate subspace. In the following, we will give a

sufficient condition of coupling matrix for the stability of synchronization solution from rigorously mathematical

theory. It is noticed that the sufficient condition does not compute Lyapunov exponent, and it is only the function of

coefficient matrix A.

From Lemma 1, we have

kW2ð0Þk exp
Z t

0

aðsÞds
� �

6 kW2ðtÞk6 kW2ð0Þk exp
Z t

0

bðsÞds
� �

; ð36Þ

where aðtÞ and bðtÞ are the minimum and maximum characteristic roots of matrix BðtÞ ¼ ð1=2ÞðAðtÞ þ ATðtÞÞ � 2D.
Let Eq. (26) be the Lorenz system and coupling matrix

D ¼ d
1 0 0
0 0 0
0 0 0

0
@

1
A: ð37Þ

Then we have the symmetric matrix

BðtÞ ¼

�a� 2d
aþ c� z

2

y
2

aþ c� z
2

�1 0

y
2

0 �b

0
BBBBB@

1
CCCCCA; ð38Þ

and its characteristic equation is

k3 þ pk2 þ qk þ r ¼ 0; ð39Þ
where

p ¼ 1þ aþ bþ 2d;

q ¼ bþ ðaþ 2dÞðbþ 1Þ � 1

4
y2 � 1

4
ðz� c� aÞ2;

r ¼ bðaþ 2dÞ � 1

4
y2 � b

4
ðz� c� aÞ2;

then

s ¼ pq� r ¼ bð1þ bÞ þ ð1þ bÞðaþ 2dÞð1þ aþ bþ 2dÞ � 1

4
y2ðaþ bþ 2dÞ � 1

4
ðz� c� aÞ2ð1þ aþ 2dÞ:

According to Eqs. (18), we have

r > bðaþ 2dÞ � b3ðaþ cÞ2

16ðb� 1Þ ð40Þ

and

s > bð1þ bÞ þ ð1þ bÞðaþ 2dÞð1þ aþ bþ 2dÞ � b2ðaþ cÞ2

16ðb� 1Þ ðaþ bþ 2dÞ: ð41Þ

536 J. L€uu et al. / Chaos, Solitons and Fractals 14 (2002) 529–541



We assume

aþ 2d >
b2ðaþ cÞ2

16ðb� 1Þ ¼ r0: ð42Þ

According to Eq. (41), we consider the following equation:

f ðxÞ ¼ x2 þ x 1

 
þ b� b2ðaþ cÞ2

16ðb2 � 1Þ

!
þ b� b3ðaþ cÞ2

16ðb2 � 1Þ ¼ 0: ð43Þ

Let r1 and r2 (r1 6 r2) be the characteristic roots of Eq. (43). Since system (1) is chaos, then we have

r1r2 ¼ b 1

 
� b2ðaþ cÞ2

16ðb2 � 1Þ

!
< 0;

that is, r1 < 0 < r2.
Substituting r0 into Eq. (43), we get

f ðr0Þ ¼
b5ðaþ cÞ4

256ðb� 1Þ2ðbþ 1Þ
þ b2ðaþ cÞ2ð1þ bþ b2Þ

16ðb2 � 1Þ þ b > 0; ð44Þ

this means that r0 > r2 (see Fig. 2) and implies s > 0.

From Eq. (42), we have

d >
b2ðaþ cÞ2

32ðb� 1Þ �
a
2
¼ d0: ð45Þ

When d > d0, from Eq. (39), we get

p ¼ 1þ aþ bþ 2d > 0;

q ¼ pq
p

¼ r þ s
p

> 0:

Therefore, according to Routh–Hurwitz conditions, if d > d0, then all characteristic roots of Eq. (39) are negative.

Moreover, since k1 þ k2 þ k3 ¼ �p, k1k2k3 ¼ �r, then 9e > 0, such that ki < �e ði ¼ 1; 2; 3Þ. Thus we have Theorem 2.

Theorem 2. If d > ððb2ðaþ cÞ2=32ðb� 1ÞÞ � ða=2ÞÞ; then the synchronization solution UðtÞ of the coupled Lorenz system
(27) is stable.

In fact, the Poincar�ees mapping of Eq. (35) is compressible. Also, when t ! þ1, the solution W2ðtÞ of Eq. (35)

approaches 0 with exponential rate.

Fig. 2. The graph of curve f ðxÞ.
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Remarks.

1. Theorem 2 gives only sufficient condition for the stability of the synchronization solution UðtÞ of linear coupled

Lorenz system; in other words if the coupling coefficients do not satisfy the above condition, it does not mean that

the synchronization solution UðtÞ of coupled Lorenz system (27) is not stable.

2. This method is easily applied to some similar linear coupled systems and can be extended to multi-coupled chaotic

systems. In fact, we have introduced a new method for analyzing the stability of synchronization solution. At first,

we can decompose the coupled system into two lower-dimensional systems by using a linear transform, that is, the

synchronization subsystem and associate subsystem. Then we can estimate the maximum characteristic root of the

associate subsystem using an approximate formula. Finally, we can get the conditions of the stability for synchro-

nization solution. We must point out that this in-phase solution decomposition method need not compute the

Lyapunov exponents, and it is a rigorously mathematical method.

5. The influence of coupling coefficients on chaos synchronization

In this section, we will further investigate the impact of coupling coefficients on chaos synchronization for the

coupled Lorenz system, coupled Chen system, and coupled L€uu system, respectively.

Fig. 3 shows the maximum horizontal Lyapunov exponents of coupled Lorenz system: (a) x-coupled, that is

D¼ diagð1; 0; 0Þ; (b) y-coupled, that is D¼ diagð0; 1; 0Þ; (c) z-coupled, that is D¼ diagð0; 0; 1Þ; (d) x; y; z-coupled, that is
D¼ diagð1; 1; 1Þ.

(a) (b)

(c) (d)

Fig. 3. The maximum horizontal Lyapunov exponents of coupled Lorenz system. (a) x-coupled; (b) y-coupled; (c) z-coupled, (d) x; y;
z-coupled.
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Fig. 4 displays the maximum horizontal Lyapunov exponents of coupled Chen system. (a) x-coupled; (b) y-coupled;

(c) z-coupled, (d) x; y; z-coupled.
Fig. 5 shows the maximum horizontal Lyapunov exponents of coupled L€uu system. (a) x-coupled; (b) y-coupled;

(c) z-coupled, (d) x; y; z-coupled.
From Theorem 2, when d > ðb2ðaþ cÞ2=32ðb� 1ÞÞ � ða=2Þ, that is d > 187:5333, the synchronization solution of

coupled Lorenz system (27) is stable from our theory. However, numerical simulation shows that when d > 3:3, the
synchronization solution is stable. This means that theoretical result concurs with the numerical result, but the theo-

retical condition deserves improving in the future.

For comparison, we summarize the stability domain of coupling coefficients for synchronization solution in Table 1.

Remarks.

1. For x-coupled, the three systems have similar stability domains of coupling coefficients. That is, when coupling co-

efficient d oversteps some critical value, the synchronization solution becomes stable.

2. For y-coupled, the three systems have analogous stability domains of coupling coefficients. Furthermore, the system

that has more complicated topological structure will need larger coupling coefficients to realize chaos synchroniza-

tion. Since the Chen system has the most complicated topological structure, then Chen system needs largest coupling

coefficients to reach chaos synchronization. It is noticed that the stability domain of coupled Lorenz system concerns

the result in [6].

3. For z-coupled, the three systems have analogous type of stability domains of coupling coefficients. It is noticed that

the stability domain of coupled Chen system is very narrow, but the stability domain of coupled L€uu system is very

broad.

(a) (b)

(c) (d)

Fig. 4. The maximum horizontal Lyapunov exponents of coupled Chen system. (a) x-coupled; (b) y-coupled; (c) z-coupled, (d) x; y; z-
coupled.
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4. For x; y; z-coupled, the three systems have similar stability domains of coupling coefficients. Moreover, the system

that has more complicated topological structure needs larger coupling coefficients to realize chaos synchronization.

5. According to Table 1, we can see that the different coupling structures, such as x-coupled and z-coupled, have dif-

ferent types of stability domains of coupling coefficients. Also, the more connection of coupling signal the system

has, the easier the system realizes chaos synchronization. For x-coupled and x; y; z-coupled, when d > 0:4, the
x; y; z-coupled Lorenz system can reach chaos synchronization; however, when d > 3:4, the x-coupled Lorenz system

can reach chaos synchronization.

6. Conclusion

In this paper, we study the chaos synchronization between two linearly coupled systems. We attain some sufficient

conditions for global synchronization using rigorously mathematical theory. Also, we introduce a new method for

(a) (b)

(c) (d)

Fig. 5. The maximum horizontal Lyapunov exponents of coupled L€uu system. (a) x-coupled; (b) y-coupled; (c) z-coupled, (d) x; y; z-
coupled.

Table 1

Stability domain of coupling coefficients for synchronization solution

Coupled system x-coupled y-coupled z-coupled x; y; z-coupled

Lorenz system [3.4, þ1] [0.35, þ1] [0.8, 999] [0.4, þ1]

Chen system [11.1, þ1] [2.2, þ1] [2.1, 11.5] [1.1, þ1]

L€uu system [12.1, þ1] [1.3, þ1] [1.5, 10 000] [0.6, þ1]
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analyzing the stability of synchronization solution of coupled system. By using this method, we investigate the stability

of synchronization solution for the classical Lorenz system. For comparison, the impact of coupling coefficients on

chaos synchronization is further explored for Lorenz system, Chen system, and newly found L€uu system. We notice that

the global synchronization and stability are rather complex, and they deserve further study in the near future.
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