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Abstract 
 

This chapter compares Piaget’s theory of development with Feigenbaum and Simon’s (1962, 

1984) EPAM theory. An attempt is made to map the concepts of assimilation and accommodation 

in Piaget’s theory onto the concepts of familiarisation and accommodation in EPAM. An EPAM-

like model of the balance scale task is then presented, with a discussion of preliminary results 

showing how it accounts for children’s discontinuous, stage-like development. The analysis 

focuses on the transition between rules, using catastrophe flags (Gilmore, 1981) as criteria. It is 

argued that some symbolic models may be described as dynamical systems, in the same way as 

some non-symbolic models. 

 

1 Introduction 

Although this is still an area of controversy, recent research supports  Jean Piaget’s 

suggestion that cognitive development occurs in a non-linear, stagewise fashion 
(Raijmakers, van Koten & Molenaar, 1996; Thomas & Lohaus, 1993; however, see 

Brainerd, 1993, for reservations about the reality of stages). There have been several 
attempts to model this course of development using neural networks (e.g., McClelland & 
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Jenkins, 1991), although success has been limited hitherto (Raijmakers et al., 1996). In 

this paper, I will discuss an alternative approach, which uses a variant of EPAM1 

(Feigenbaum & Simon, 1984), a symbolic theory of cognition.  

The chapter is organised as follows: first, I will give a brief summary of Piagetian 

theory. Second, I will present Feigenbaum and Simon’s (1962, 1984) theory of EPAM, 

and will compare it to the main features of Piaget’s theory; in particular I will attempt to 

map the concepts of assimilation and accommodation in Piaget’s theory onto the 

concepts of familiarisation and accommodation in Feigenbaum and Simon’s EPAM 

theory. I will then present an EPAM-like model of the balance scale task, and will 
discuss preliminary results on how well it accounts for children’s discontinuous, stage-
like development. The analysis will focus on the transition phase between rules, and will 
employ catastrophe theory (Thom, 1975), and in particular, the catastrophe flags 
proposed by Gilmore (1981; see also van der Maas & Molenaar, 1992). Finally, I will 
discuss the relationship between symbolic models (such as EPAM and ACT* [Anderson, 
1983]) and dynamical systems. 

1.1 Key mechanisms of change in Piaget’s theory 

Adaptation occurs whenever an organism-environment interaction modifies the organism 
so that its chances of survival are enhanced. At the core of Piaget’s theory (e.g., Piaget, 
1936) lies the assumption that two fundamental, complementary, and undissociable 
mechanisms—assimilation and accommodation—are necessary for an organism to 
adapt, both biologically and cognitively. Accommodation is the mechanism by which the 
organism changes its internal structure as a function of the properties of an external 
object. Assimilation is the mechanism by which the organism changes the object so that 
it fits into its own structures. It is assumed that adaptation is reached when an 
equilibrium is reached between the two mechanisms.  

 Beyond this general characterisation, the two mechanisms have never been 
precisely specified within Piagetian theory, which has led several authors (e.g. Flavell, 
1963; Klahr, 1995) to see them as one of its main theoretical weaknesses. This is 
particularly damaging for the theory, since another key concept—scheme—depends 
directly upon these two mechanisms. Schemes, which are the structures on which 

assimilation and accommodation operate, “refer to classes of total acts, acts which are 
distinct from one another and yet share common features” (Flavell, 1963). 

 

                                                           
1Elementary Perceiver And Memoriser  
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1.2 Computer modelling of developmental transitions 

Earlier information-processing accounts of Piaget’s theory (Siegler, 1981; Klahr & 

Wallace, 1976)  have used a rule-based formalism. Despite Klahr and Wallace’s efforts 

in this direction, and despite the potential offered by cognitive architectures such as Soar 

(Newell, 1990) or ACT* (Anderson, 1983), the mechanisms allowing creation of new 

rules and transitions from old rules to new ones have never been spelled out in detail 

within a computational framework. The best effort in this direction is the work of  

McClelland and Jenkins (1991), who attempted to show how a (non-symbolic) 

connectionist model could simulate stage-like development using continuous learning. I 
will come back to this work later in the paper. 

 Contrary to a widely held opinion (e.g., Raijmakers et al., 1996, p. 102), 
however, and as will be illustrated below, there is nothing in symbolic models that make 
them unsuitable for learning in adaptive interaction with the environment or for 
implementing self-modifying systems with no fixed architecture. Actually, one of the 
attractive features of symbolic models (in particular production systems) is that they 
allow one to simulate complex dynamical systems evolving over time. In this respect, the 
use of symbolic models may be seen as the equivalent for cognitive science of 
differential and difference equations in physics (Newell & Simon, 1972). This use of 
computer simulations is not antithetical to the use of the mathematical theory of 
dynamical systems, but may be complemented by it. (See Klahr, 1995, for an insightful 
discussion of the differences and similarities between symbolic and non-symbolic 
models of cognition, in particular with respect to developmental questions). 

 

1.3 EPAM 

EPAM (Feigenbaum & Simon, 1962, 1984) is a general theory of human learning and 
memory, whose main goal is to formalise some of the invariants of cognition.  EPAM 
can be visualised as “sandwiched” between a sensory-perceptual front end, which 

includes (parallel) mechanisms for feature extraction, and a semantic back end, which 
consists in semantic and procedural memory (Feigenbaum & Simon, 1984). Five 
postulates underlie EPAM: 

 
1. Attentional mechanisms operate serially  
2. Chunks are the basic units on which the system operates  

3. Fixation of a chunk in LTM requires a constant amount of processing time per 
chunk (about 8 seconds)  

4.  Immediate memory (3 - 7 chunks) stores material temporarily  
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5. The central processing mechanisms fixate any part of the stimulus to which they 

attend. Attention is modifiable by strategies, instruction, etc. 

 

Learning is seen as the growth of a discrimination net (DN), where nodes include 

the symbolic representation of objects, and where tests check the presence of features or 

parts of objects (see Figures 1 and 2). When perceived, an object is sorted  to a node in 

the DN by a sequence of tests. Two cases may occur: (a) the characteristics of the 

external object match or partially match the internal representation (the image) of the 

node that has been reached, or (b) they mismatch it. The outcome of the match is used in 

two complementary learning mechanisms. Familiarisation adds information to a node 
when the internal representation matches a subset of the characteristics of the object. 
Discrimination creates a new node in the DN when there is a mismatch. Several time 
parameters (e.g., 8 seconds to create a new node) limit the degrees of freedom of the 
theory when applied to new domains. 

 

 

G 

1st? 

G_F 
Response:  ? 

... 

3rd? 

F X 

G_X 
Response:  ? 

 

Figure 1. Example of a discrimination tree grown by EPAM in a paired-associate task, consisting in learning 

pairs of nonsense syllables. Shaded circles stand for nodes, diamonds for tests, and ellipses for the internal 

representation of a node. 

 
One of the strengths of EPAM is that it has been able to offer detailed and often 

accurate simulations for a wealth of empirical phenomena in various domains:  verbal 
learning and memory (Feigenbaum & Simon, 1984), letter perception (Richman & 

Simon, 1989), concept formation (Gobet, Richman, Staszewski & Simon, 1997; 
Richman, 1991), acquisition of syntactic categories (Gobet & Pine, 1996), and chess 
expertise (de Groot & Gobet, 1996; Gobet & Simon, 1996; Simon & Gilmartin, 1973). 
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In comparison to other cognitive architectures such as ACT*, Soar or neural nets, 

EPAM has the advantage of being a simple and parsimonious model, with few degrees 

of freedom (mainly subjects’ strategies). Like other architectures, EPAM learns and 

makes quantitative predictions. 

EPAM has features that suggest complex dynamic behaviour: it models behaviour 

as an adaptive interaction with the environment; its main data structure is a recursive 

tree, which, by the way it is constructed, has fractal properties; and, finally, its two 

learning mechanisms act on information in ways that are not unlike stretching and 

folding, which have been shown to lie at the source of chaotic behaviour in many 

systems (Stewart, 1989). 
Recently, it has been proposed that EPAM could be extended to account for 

procedural and semantic memory (Gobet, 1996), by combining three learning 
mechanisms : (a) EPAM’s perceptual learning mechanisms;  (b) mechanisms connecting 
nodes from two nets and generating productions  (condition-action pairs); and (c) 
mechanisms connecting nodes from three nets and generating semantic links.  
 
                                                                                   

 

Define Epam (Current-node, Observation) 
 If Current-node is a leaf, 
  Then if there is a positive difference between Observation and Current-node’s 
  image, 

   Then Discriminate and return new image. 

   Else Familiarise and return image. 
  Else let Test be the test at the current-node, 
  Find Component of Observation referred to in Test, 
  If the Component is a list of components, 

   Then set Component to Epam (Root-node, Component), 
  Set Current-node to the child that corresponds to Observation’s value on Test, 

  Return Epam(Current-node, Observation). 
 

 

Figure 2: The EPAM learning  algorithm.           
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1.4 Comparison of Piaget’s theory and EPAM 

Admittedly, Piaget’s theory and EPAM address different questions: the former is 

interested in development, the latter in learning. However, the similarities between these 

approaches are obvious, and they will be discussed here in some detail.  

Accommodation implies that it is the organism that changes, not the perceived 

properties of the external object. Thus, accommodation covers both discrimination 

(creation of a new node) and familiarisation (addition of new features to the internal 

representation through pointers to other nodes). Accommodation also covers the creation 

of production and semantic links in the extended version of EPAM mentioned above. 
Assimilation implies that the perceived properties of the object change to fit to the 
structures of the organism. In EPAM, this occurs during recognition of an object, as 
follows: an object is recognised when a node is accessed by sorting through the 
discrimination net; the image (i.e. internal representation of the object) is used for 
further information processing, such as imagery or problem solving. Now, the properties 
of this image may be different from the properties of the object itself, either because the 
object has been misclassified or because the internal representation of the object under-
represents the properties of the object. In both cases, the properties of the object have 
been changed as a function of the structures of the organism. Thus, these two situations 
correspond to Piaget’s notion of assimilation. Note that EPAM provides mechanisms for 
what Piaget (1936) calls reproductive, recognitory, and generalising assimilation. 

The presence of stages in development may be explained as follows. Conditions and 
actions are determined by tests, and these tests are in turn determined by biological 
features, for example ability to carry out a given movement, or level of development of 
the perceptual acuity. Changes in these biological determinants lead to a restructuring of 
the net, and therefore to the creation of new clusters of productions (= schemes). The 
same explanation can be given at a cognitive level. Changes in cognitive structures lead 
to changes in the way tests are carried out, which lead to the creation of new nodes 
through discrimination, which in turn leads to the creation of new schemes. 

If a sufficiently good mapping between the two theories can be reached, this would 
mean that the same mechanisms lead to development and to learning. The main changes 
are in the way tests evolve over time. In the first case, biological maturation provokes 

disequilibrium, and in the second case, cognitive “maturation.” In both cases, 
disequilibria are caused by the fact that tests that were adequate at the time of learning 
are not adequate anymore, because the elements constituting the tests themselves have 

changed, either by changes in the biological substratum (e.g. increase in visual acuity in 
the infant) or by changes in the cognitive substratum (i.e. increase in knowledge). Tests 
are just nodes in LTM, whose contents may be changed by familiarisation and whose 

access may be modified by discrimination. 
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1.5 A first look at stage-like learning in EPAM 

To illustrate the dynamics of EPAM, let us consider a simple task domain, consisting in 

learning random strings of digits, and let us vary the probability of application of the 

familiarisation and discrimination mechanisms. With some of these probability values, 

stagewise behaviour can be obtained. Figure 3, which plots the percentage of strings 

correctly recognised as a function of the number of learning trials, shows a particular 

clear “jump” after 11 trials. However, to explore EPAM’s properties in more detail, it is 

preferable to look at a richer domain: the balance scale task. 
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Figure 3.  Stagewise learning by EPAM in a simple task.  
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2 Discontinuities in the balance scale task 

The balance scale task, introduced by Inhelder and Piaget (1955), has been extensively 

studied in developmental psychology, by Siegler (1976, 1981) among others. In the 

standard version of the task, a balance scale is presented to the child, with some weights 

placed on a peg to the left of the fulcrum, and some weights placed on a peg to the right 

of the fulcrum. A lever prevents the balance from tipping. The child has to predict on 

which side, if any, the scale would go down if it were free to move. 

 

2.1 Siegler’s analysis of the task 

Siegler (1976) identified a series of four rules that offer a good description of children’s 
behaviour. Rule 1 pays attention to the number of weights on each side, but not to the 
distance from the fulcrum. Rule 2 is the same as Rule 1, except that it takes distance into 
account when the weights are the same, proposing that the side with the weights furthest 
from the centre will go down. Rule 3 refines Rule 2 and adds the case where weights are 
not equal: if the distances are equal, then the side with the most weights will go down; if 
the distances are not equal, then Rule 3 guesses among the three possible outcomes. 
Finally, Rule 4 replaces the guessing behaviour with a correct application of the torque 
principle  (The side with the greatest Weights x Distance product will go down. If the 
products are equal, then the scale will stay in equilibrium). 

Siegler devised six types of problem that allowed him to differentiate between the 
use of each rule. In balance problems, weights and distances are identical on both sides. 
In weight problems, distances are the same, and weights differ. In distance problems, 
weights are the same, and distances differ. In the remaining three conflict problems, both 
weights and distances differ and are in conflict (the weight is greater on one side and the 
distance is greater on the other). In conflict-weight problems, the torque is greater on the 
side with the greater weight; in conflict-distance problems, the torque is greater on the 
side with the greater distance; in the conflict-balance problems, weights and distances 
cancel out, and the torque is the same on both sides. 

Balance and weight problems lead to 100% correct responses with all four rules. 
For distance problems, there is a dramatic improvement between Rule 1 (which 
incorrectly predicts “balance”) and the other rules (always correct). Conflict-weight 

problems obtain 100% correct responses with all rules except Rule 3, where guessing 
leads to a correct answer one third of the time. Finally, with conflict-distance and 
conflict-balance problems, there is an improvement from Rule 1 and Rule 2 (both 

incorrect all the time), to Rule 3 (chance responding), to Rule 4 (always correct).  
Siegler (1976, 1981) found that the behaviour of about 93% of his subjects 

(children older than four) could be explained in terms of one of the four rules, the 
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criterion being that 20 out of 24 of the responses should correspond to the predictions of 

one of the rules. Finally, children seemed to progress through the different rules as they 

grew older, with the qualifications that Rule 2 is highly unstable and that Rule 4 is not 

always attained.  

 

2.2 Connectionist account of stagewise development in the balance scale task 

McClelland and Jenkins (1991), as well as McClelland (1995),  have proposed that their 
connectionist model could account for the stagewise development shown by children. 
Recently, Raijmakers et al. (1996) have criticised this claim. Using strict criteria for the 
acceptance of abrupt transitions  (the so-called catastrophe flags [Gilmore, 1981] 
derived from catastrophe theory [Thom, 1975]), they show that McClelland and Jenkins’ 
(1991) simulations do not show abrupt transitions. In particular, the simulations of the 
transition between Rule 1 and Rule 2 did not satisfy three of the eight catastrophe flags: 
bimodality of the dependent variable, sudden jump, and non-accessibility region (the 
five other flags—anomalous variance, hysteresis, divergence, divergence of linear 
response, and critical slowing down—are typically difficult to use with psychological 
data; see van der Maas & Molenaar, 1992).  

In the remainder of this paper, I will explore how an EPAM-like model fares in this 
task, focusing, as in Raijmakers et al.’s analysis of McClelland’s model, on the transition 
between Rule 1 and Rule 2. The comparison with connectionist models is interesting, as 
Richman and Simon (1989) have claimed, in their study of the context effects in letter 
perception, that connectionist models and EPAM share important features, although they 
stand on different sides of the symbolic/sub-symbolic divide. 

 

2.3 EPAM account of the balance scale task 

The model consists of the juxtaposition of two discrimination nets—one net for the 
conditions, and one net for the actions of productions—which implements a simple 
production system (Gobet, 1996). The condition net encodes the perceptual 

representation of the external problem, while the (somewhat degenerated) action net 
encodes the possible responses (“left”, “right”, or “balance”). The discrimination and 
familiarisation mechanisms are as described above. As in McClelland and Jenkins 

(1991), it is assumed that children pay attention to the weight dimension first. In the 

simulations, problems where weight is the key predictor (i.e., problems with the same 
distance from the fulcrum on both sides) were listed ten times more often than other 
problems. In addition, the model pays attention to the weight attribute before paying 

attention to the distance attribute. 
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There are three parameters in the model: fam, the probability of carrying out 

familiarisation, disc, the probability of carrying out discrimination, and answer, the 

probability of creating a link between the condition discrimination net and one of the 

three nodes of the action discrimination net. These were set as follows: fam = .15; 

disc = .55; and answer = .90. Failure to carry out one of the three cognitive 

operations may reflect load on working memory, diverted attention, or time pressure 

from the environment. Note that with low values for these parameters, the model fails to 

even reach Rule 1, and with high values, the model rapidly reaches the Rule 4 level. 

 

2.4 Training of the model 

During training, the model is presented with a sequence of problems and their solution, 
as in the simulations with connectionist models (McClelland & Jenkins, 1991; 
Raijmakers et al., 1996). The training  corpus was created as follows: all 625 possible 
problems are generated, and problems where weight is the key predictor are inserted  
into the corpus ten times more often than other problems.  
 

2.5 Testing of the model 

The program was tested after learning each group of 100 problems. Learning was turned 
off during testing. Twelve problems were randomly generated for each of Siegler’s six 
categories (a total of 72 problems). The fit of the program to the four rules was judged 
using the same criterion as in Siegler’s (1976) research: the program is said to “use” a 
rule if it gives the same response as the rule on at least 83.3% of the 72 problems. 
  

3 Results of simulations 

In general, the model is sensitive to the order of the learning problems, and different 

orders lead to different progressions through Siegler’s four rules, some rules being 
skipped in some runs. In addition, there is sometimes a lot of variability from trial to 
trial within the same run. In general, the discrete learning mechanisms of EPAM lead to 

a learning curve that is less smooth than with connectionist models. 

Only runs where the model approximates all the first three rules will be considered. 
The analysis will focus on four runs of the model. In these runs, the model fits any of the 
rules 78% of the time on average, which is slightly a worse fit than that reported by 

McClelland and Jenkins (85%).  
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As with McClelland and Jenkins’ model, the EPAM model seems to change in a 

stagewise fashion when rules are plotted as a function of time. However, as correctly 

pointed out by Raijmakers et al. (1996), more stringent criteria are necessary to reach 

firm conclusions about the stagelike character of the model. Raijmakers et al.’ criteria 

are used below to judge EPAM’s behaviour. They consist in three of the catastrophe 

flags: bimodality of distribution, inaccessibility region, and presence of jumps. 

 

3.1 Bimodality of distribution and inaccessibility region 

Figure 4 shows the frequency distribution of the testing trials from the first time Rule 1 
reaches criterion to the last time Rule 2 reaches criterion. The outcome is similar to 
Raijmakers et al.’s (1996) simulations of McClelland and Jenkins (1991) model, in that, 
contrary to what is predicted by catastrophe theory for a genuine discontinuity, there is 
no clear bimodality of the scores. In addition, the predicted inaccessibility region—
roughly the central portion of the scores—is not present in the diagram. 
 

 

0

10

20

30

40

F
re

q
u

en
cy

0 1 2 3 4 5 6 7 8 9 10 11 12

Scores
 

 

Figure 4.  Frequency distribution of the scores for the testing trials from the first time Rule 1 reaches criterion 

to the last time Rule 2 reaches criterion. 

 

3.2 Sudden jump 

I followed a similar approach to that proposed by Raijmakers et al. (1996) to test the 
presence of a sudden jump. For each series of scores, the transition point is identified 

(first time Rule 2 reaches criterion uniquely, or third time Rule 2 reaches criterion in 
conjunction with Rule 1). Then, the four series are aligned on the same transition point, 

session 15. Presence of a jump is tested by using multiple regression with time (session 
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number) and position with respect to possible jump (0 before, and 1 after) as 

independent variables. Catastrophe theory predicts that, in the case of a genuine jump, 

the time variable should not be significant, while the position variable should. 

Regression analysis shows that neither variable is a statistically significant predictor of 

score. The only measure that can count as evidence for a jump is the increase in variance 

after session 15. Note also that the scores after the transition between Rule 1 to Rule 2 

are lower than those presented in McClelland and Jenkins (1991). 
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Figure 5.  Mean proportion correct (four runs) in the testing phase for the trials lying between the first time 

Rule 1 reaches criterion to the last time Rule 2 reaches criterion. The vertical bars indicate the standard 

deviations. The series are shifted such that at time 15, all simulations reach Rule 2 for the first time uniquely, 

or for the third time in presence of Rule 1. 

 
 

4 Conclusion 

In this paper, I have investigated how an incremental, self-organising symbolic system 

could account for stagewise development. As with connectionist models, it was 
expected that rules would emerge from the interaction of several nodes.  

The preliminary results presented above indicate that EPAM mimics rule-based 

behaviour, but that it does not meet the strict criteria of discontinuity derived from 
catastrophe theory. In this respect, EPAM behaves in a way quite similar to 
connectionist models. As with connectionist models, the space of possible parameters is 

huge, and the effects of slight changes in the learning algorithms are often unclear. 
Therefore, it would be premature to conclude that all EPAM or connectionist models 

will fail to show genuine stagewise development. 
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The similar behaviour of EPAM and of the neural nets studied by McClelland and 

Jenkins (1991) suggests that the distinction between symbolic and non-symbolic systems 

is not as clear-cut as is often thought. The best example of the difficulty of applying this 

classification is perhaps offered by Anderson’s (1983) ACT* (now, ACT-R) 

production-system architecture, one of the most popular symbolic architectures. The 

ACT* architecture includes both mechanisms allowing the creation and selection of 

productions, and mechanisms allowing activation to be spread across nodes. Activation 

itself is governed by a set of differential equations (Anderson, 1983, p. 22). Thus, ACT* 

uses activation mechanisms that are characteristic of neural nets. But is ACT* a 

dynamical system? van Gelder (in press; see also in this volume) defines a dynamical 
system as a “set of quantitative variables changing continually, concurrently and 
interdependently over quantitative time in accordance with dynamical laws described by 
some set of equations.”  By this definition, the symbolic ACT* definitely qualifies as a 
dynamical system. (One could argue that ACT* as implemented on a digital computer 
lacks the continuity requirement of van Gelder’s definition. But, then, so would any 
simulation of a dynamical system on a digital computer.) It seems important to stress 
that “symbolic” and “dynamical” are orthogonal properties of a system: some symbolic 
models can be characterised as dynamical systems, and some non-symbolic models 
cannot. 

The symbolic system described in this chapter learns by growing a discrimination 
net as a function of the input from the environment. It thus embodies a self-organising, 
dynamical system. In addition, it shows complex behaviour characterised by non-
linearities. As a consequence, it makes the view that symbolic systems are not capable of 
implementing self-modifying systems (e.g., Raijmakers et al., 1996) untenable. 
Incidentally, as shown by Vera and Simon (1993), the same conclusion applies to the 
view that symbolic systems cannot be situated in their environment. 

At present, the idea of varying the probability of discrimination and familiarisation 
mechanisms is new within the EPAM framework, and the underlying dynamics are still 
poorly understood. Future work should establish whether true stage-like discontinuity 
can emerge from such an approach, or whether additional mechanisms need to be added, 
such as the creation of semantic links between the nodes (Gobet, 1996) or the creation of 

templates (Gobet & Simon, 1996), which are data structures allowing the storage of 
variable values. 
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