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Abstract The BioModelAnalyzer (BMA) is a web based tool for the
development of discrete models of biological systems. Through a graph-
ical user interface, it allows rapid development of complex models of gene
and protein interaction networks and stability analysis without requir-
ing users to be proficient computer programmers. Whilst stability is a
useful specification for testing many systems, testing temporal specific-
ations in BMA presently requires the user to perform simulations. Here
we describe the LTL module, which includes a graphical and natural lan-
guage interfaces to testing LTL queries. The graphical interface allows
for graphical construction of the queries and presents results visually in
keeping with the current style of BMA. The Natural language interface
complements the graphical interface by allowing a gentler introduction
to formal logic and exposing educational resources.

1 Introduction

Formal verification techniques offer a powerful set of approaches for analysing
and understanding the behaviours of different systems. The advantages of such
approaches are well understood and widely applied in the development of hard-
ware and software systems. Outside of computing the usage of such techniques
has been less widespread. Whilst standard techniques such as SAT solving and
BDDs have been highly successful in individual investigations (see [1–5] for some
recent examples), their broader utility has been limited by the fundamental re-
quirement for proficiency in computing.

To address this skills gap tools such as BioModelAnalyzer (BMA, [6]) and
GinSim [7] have been developed explicitly to better enable users to construct
and analyse biological models. BMA presently allows users to construct models,
perform simulations, and stability analysis. Stability analysis in BMA typifies
the opportunities for algorithm discovery in biology. Standard approaches are
insufficient in analysing many usefully large and complex biological models, so
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a bespoke algorithm [8] is used to analyse the models. Users do not need an
in-depth knowledge of that algorithm to apply it, and BMA enables this, by
effectively encapsulating the computer science. By making model development
and checking simple, this has prompted further algorithm development as mod-
els can be constructed more quickly and easily by users with deep expertise in a
variety of biological systems [9]. As such, tool development has supported both
biologists who wish to use powerful but inaccessible technology and computer
scientists interested in addressing novel challenges that can arise from under-
explored interdisciplinary areas. However, many questions that biologists wish
to address require more complex tools than stability analysis. Some may want
to ensure a specific dynamic behavior is observed; others may wish to explore
instability in more depth. The present release of BMA only allows for such ques-
tions to be answered using simulation based approaches. Claessen et al. recently
reported an LTL (bounded) model checker for biological models [10] that adapts
the stability proving algorithm of Cook et al. [8] to enable faster model check-
ing than provided by naive SAT based approaches. This had, however, not been
integrated into the tool’s front-end and, as such, was not available to most users.

Supporting LTL for users who do not have experience with logic and pro-
gramming, poses distinct problems relative to the stability analysis. In this paper
we report on our solution to make LTL more accessible for biologists. We allow
users two possible approaches for constructing LTL queries. First, we present a
graphical interface that abstracts the nuances of LTL by providing users with
a graphical language, making use of visual cues such as icons, shapes and col-
our to denote operators, formulas and results respectively. Users are then able
to use graphical controls and intuitive gestures such as drag-and-drop to visu-
ally construct queries as well as evaluate results. Second, we present a natural
language interface (NLI), which exposes query creation and testing through a
text-based chatbot (an interactive virtual assistant). The conversational nature
of the chatbot’s interface provides users with a higher level of abstraction over
LTL than the graphical interface as it functions by interpreting intents rather
than requiring explicit instructions. This means that instead of learning how to
encode their queries into semantically valid LTL formulas, biologists can perform
analysis by using natural language to describe queries in terms of cell states over
time.

We further discuss the engineering and design challenges identified in the
construction of this module, and describe how it may be adapted in the future
to provide biologists with more accessible as well as scalable ways to leverage
formal methods in their analysis.

BioModelAnalyzer is available at http://biomodelanalyzer.org/.

2 BMA basics

BMA and the motivations for developing such a dedicated tool for biologists has
been described in depth previously (see, e.g., [6,7,11]). Briefly, users are able to
develop models by “drawing” onto a blank canvas, in the same way that models
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of cell signaling are communicated in scientific literature. Variables representing
molecules within a cell or its environment and their relationships are depicted,
and the resultant directed graph is treated as a qualitative network (QN) [11]. A
QN Q(V, T,N), of granularity N + 1 consists of variables: V = (v1, v2, · · · , vn).
The state of the system is a map s : V → {0, 1, · · ·N}. The set of initial states is
the set of all states. Each variable vi ∈ V has a target function Ti ∈ T associated
with it: Ti : {0, 1, · · · , N}n → {0, 1, · · ·N}, describing the relationship between
the variable and its inputs.

Target functions in qualitative networks direct the execution of the network
from state s = (d1, d2, · · · , dn). Variables in the QN update synchronously, i.e.,
the system is deterministic. The next state s′ = (d′1, d

′
2, · · · , d′n) is computed by:

d′v =


dv + 1 dv < Tv(s) and dv < N,

dv − 1 dv > Tv(s) and dv > 0,

dv otherwise.

(1)

A target function of a variable v is an algebraic function over several variables
w1, w2, · · ·wm. Variables w1, w2, · · · , wm are called inputs of v and v is an output
of each one of w1, w2, · · · , wm.

3 Graphical User Interface (GUI)

LTL queries are substantially more complex than stability testing. Whereas the
workflow of stability testing is simple, and common to every model (that is to
say, attempt to prove stability, and then optionally search for counter examples),
each step in performing an LTL query requires manual intervention. This cannot
be avoided; each query represents a specification that will differ depending on
the specific model being tested. In other biologist-targeted tools, this is achieved
by exporting the model to SMV and expecting the user to independently use
NuSMV or a similar tool [7, 12]. One of the major design principles of BMA is
to avoid the requirement for use of command-line and computing proficiency,
so this is not appropriate here. However, the requirement to write LTL queries
poses some unique challenges. We do not expect users to be comfortable with
complex operator precedence issues and balancing parentheses. Furthermore,
there are some specific challenges that relate to BMA and exploring biological
systems; notably models are expected to have large numbers of variables, and
endpoints are of particular interest due to their role in describing cell fate and
other developmental processes.

Two stage workflow

Our graphical interface addresses these issues through a two stage workflow.
We separate states, and a temporal and logical layer. States are defined as a
conjunction of linear constraints on variable values. Constraints can be set up
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Figure 1: The LTL state editor and the LTL query editor.

by either selecting variables through a drop down menu, similar to the menus
found in file browsers, or by dragging variables from the canvas onto the drop
down menu (Figure 1). This makes adding linear constraints substantially less
complex. LTL states also correspond closely to states that can be observed in
simulations, and as such their construction and use is intuitive to non-experts
(confirmed in user testing).

The second part of the workflow is to use the states within a temporal (and
further logical layer) query (Figure 1). This is achieved by making a new canvas
available for users, onto which they can drop logical and temporal operators
(rendered as bubbles with sockets) and states. Each operator contains the ap-
propriate number of sockets that match its expected number of operands. Op-
erands can be dragged and dropped into sockets. Operands can be states, or
other formulas constructed in the same way. As such, complex queries are cre-
ated by repeatedly nesting different operators. Operators and queries can also
be dragged to a copy zone that effectively allows for rapid copy and pasting in
situations where this is desirable. Operator precedence and parenthesis checking
is effectively enforced by the nested bubbles and missing elements are highlighted
if the user should try to check an incomplete query. The final stage is the testing
of the query, which requires the user to define the length of paths (relating to
bounded model checking).

Default states

In addition to user defined states, we also include default states that can be used.
We include the nullary (state) operators True, self-loop, and oscillation. The self-
loop and oscillation describe states that, respectively, lie on a self loop or within
a (strictly) larger loop. The description of these states through other operators
would be extremely cumbersome. For example, a self loop state is characterised
by the formula

∧
v∈V v = Xv.8 Self-loop and oscillation are important features

in biological models, as developmental processes where end results are known
require reasoning about the values of such end results.
8 To the best of our knowledge, most LTL tools do not support such a direct com-
parison between the value of a variable and its value in the next state.



V

Non-standard temporal operators

User testing revealed that the operators until and weak until are very confusing in
that they allow their first operand not to hold at all. We have supplemented these
operators with the operator Upto, which carries similar meaning in English but
can be assigned the stricter semantics without confusing users who are familiar
with LTL.

Result visualisation

Finally, in response to running a query users are presented with three possible
outcomes (Figure 2). The query is determined to be true for all traces, some
traces or no traces. These results are determined by performing both the query
as stated and the negation of the query on the back-end. Examples of traces that
satisfy or fail to satisfy the query are made available, and can be visualised as
graphs using the existing simulation visualisation tools. In the LTL tool, these
traces are further annotated with the states that are satisfied at each time point,
to aid analysis and interpretation of the results.

Figure 2: An example trace from an LTL query.

4 Natural Language Interface (NLI)

While the GUI makes syntactic aspects of LTL more accessible by handling
operator precedence and formula parenthesisation, biologists are still required to
have an understanding of LTL semantics in order to express biological concepts in
the context of formal logic. Furthermore, the subtle differences between temporal
operators as well as the discrete notion of time in LTL adds complexity, as
biologists have to learn how to reason about biological processes (which are often
stochastic and concurrent) in terms of discrete time-steps. By design, these issues
cannot be addressed directly through the GUI and yet they contribute towards
raising the barrier to entry to LTL-based analysis for users that have little to no
experience with formal logic. In some cases, advanced users might appreciate the
use of a simple text interface and prefer it to the GUI. For example, complicated
and large queries may become unclear in the GUI, c.f., Figure 3. At the same
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time, writing manually the Boolean part describing a “state” comprised of a large
number of variables could be an issue with the NLI.

Figure 3: An example of a complex LTL query in the GUI

Knowledge base

In order to help users learn about the semantics of LTL, we developed a know-
ledge base that consists of definitions as well as example usages of LTL operators
and developmental end states. The user can simply ask the NLI questions about
a given operator in natural language, which the NLI answers using the know-
ledge base. The NLI supports simple questions such as: "what is the meaning
of until?" and "can you show me an example of always operator?". We believe
this is an effective way of filling in knowledge gaps around the semantics of LTL
on the fly. That is, the user can start constructing queries and cross check their
understanding of the operators quickly along the way, reinforcing their learning
at the same time.

Step-by-step tutorials

The NLI also supports step-by-step tutorials, which guide users through an ex-
ample LTL querying exercise using a pre-built BMA model. At each step the NLI
generates intermediate BMA model files as well as screenshots so the users can
verify that they are following the tutorial correctly. The user can access these
tutorials by asking questions such as: "show me the LTL tutorials" and selecting
the complexity of the tutorial they would like to follow. This functionality is
useful as it shows LTL querying in action, helping the user understand how LTL
can be applied in the context of realistic biological models as well as making
them familiar with LTL querying using the GUI at the same time.

Natural language understanding

In addition to understanding basic questions about LTL operators, the NLI can
also interpret LTL queries from natural language. The aim of this feature is to



VII

let biologists conceptualise their analysis as if they were discussing it with a col-
league, rather than inputting instructions to a simulator in a different language.
To that end, the NLI supports questions such as: "I’d like to see a simulation
where ras is 1 to begin with and sometime later proliferation is true" or "show
me a simulation where if notch is greater than 5 then the process always results
in an oscillation".

The queries mentioned above also show how the user can use natural language
to perform inferential cell fate analysis by asking for simulations of the form "if
φ then ψ". This is effective as it provides users with a more intuitive way of
expressing inferential relationships between cell states than the implies operator
in LTL.

Finally, the NLI is able to interpret conversational temporal phrases such as:
"later", "sometime later","in the future" and "never" that are likely to be used
by biologists when conceptualising their analysis but can be hard to encode using
LTL, as multiple temporal modalities are involved. This is beneficial as it handles
very subtle semantical differences that can be overlooked by users who are less
familiar with LTL. An example of this is where a user might not realise that the
eventually operator tests the current state as well as future next states and that
the next operator is required to omit testing the current state, something that
is expressed implicitly in natural language when phrases such as sometime later
are used.

The chatbot can be effective especially when working with multiple operators
where subtle differences in operator ordering can result in formulas that are
semantically inconsistent with the user’s intention. For example, a query that
tests if a cell is never in the state φ can easily be encoded wrongly in LTL as
¬�φ instead of �¬φ, where the former actually means "φ is eventually false".
This results in a query that is inconsistent with the original intention as it will
evaluate to true for traces that contain evaluations of φ as true, as long as φ
evaluates to false at some time step. The same query can be performed more
easily using the chatbot by describing the core intention, for example, as "show
me a simulation where it is never the case that φ is true".

Formula history

A history of user-entered formulas is maintained throughout the session to let
users construct complex formulas by combining simple formulas easily. Each
formula is assigned a "formula pointer", which is a generated name that the
user can change to signify domain specific meaning. Users are able to access
the formula list by instructing the NLI by writing phrases such as: "show me
the formula list". Similarly, existing formulas can be deleted and renamed. This
addresses the GUI related issues identified by experienced users, who prefer a
command line like interface that eliminates overheads such as scrolling and drag-
drop when working with complex formulas.
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Figure 4: High level system architecture

In-line execution

The bot can also execute queries from within the context of a conversation and
provide a textual summary of the results. This makes the NLI fit for exploratory
research as users can leverage formula pointers to rapidly construct very complex
queries and test them in place. For the full results the NLI refers the users back
to the GUI.

5 System overview

The general architecture of the LTL moduele of BMA is presented in Figure 4.
The evaluation of queries is performed in an F# back-end, which is exposed
using a service-orientated architecture (SOA) through a set of REST endpoints.
Taking an SOA approach allows the interfaces to be decoupled from the back-
end, making the architecture more suitable for future expansion of additional
back-end features.

The REST endpoints represent a Web API. This is reflected in several stages
all the way to the back-end, in a traditional ASP.NET Web API 2 stack. Starting
from the outside, a C# controller implements each API function. For instance,
the api/Analyze API is implemented using an AnalyzeController class, and the
Post method of this class takes exactly the arguments (typed — by this time
— from the untyped JSON representation sent over the wire) that the front-end
passes as the payload when it makes a POST call to the api/Analyze REST
endpoint. The second stage is between this thin C# controller implementation
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and the core back-end functionality. This is mediated by a C# interface that
is essentially the set of functions (checkStability, findCExBifurcates, checkLTL,
simulateTick, etc) that can be called in an atomic/synchronous way; the result
returned immediately to the front-end. The interface has no state, and uses types
that are shared between C# and F#.

The back-end runs on the Windows Azure cloud platform. LTL queries put a
significant load on the back-end and we use several approaches to ensure BMA
remains responsive. Firstly, front-end requests and back-end analysis run in two
separate Azure roles (akin to processes in the cloud). This enables us to sup-
port interface updates instantaneously even when the system is busy. Secondly,
Azure’s autoscale feature automatically spawns new instances of servers if the
average CPU usage increases above a given threshold. Finally, long queries are
terminated after a time out period, and the user is notified.

GUI Implementation

The GUI is developed as an HTML5 front-end, written in TypeScript using the
Model-View-Presenter (MVP) architectural pattern: the Model stores the ob-
jects (biological models, proof results, simulation graphs) of the current session;
the View implements the graphics the user sees and interacts with. The imple-
mentation uses and extends JQueryUI HTML5 controls; the Presenter is the
"middle man", which understands and performs all the logic of the front-end.
The Presenter passes actions undertaken in the View by the user to the Model
for the latter’s state to be updated, and similarly passes updates from the Model
back to the View for the canvas to be updated.

Figure 5: MVP implementation in the GUI
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As seen in Figure 5, we take a Pub/Sub (publish-subscribe) approach to
handle View-Presenter communication, decoupling the View logic from the Presenter
logic. The Viewer publishes a set of events to a Command Registry, which the
Presenter subscribes to. As the user interacts with the View, events are asyn-
chronously fired and handled by the Presenter. This adds scalability to the GUI
as additional Presenters can be added easily to handle multiple view events
concurrently, to support more complex GUIs in the future. The Pub/Sub mech-
anism also allows us to perform functional unit testing of the Presenter logic
independently of the View. We do this by using the Jasmine testing library to
"mock" the View logic through a Driver object and invoke the event handlers in
the Presenter directly.

The MVP implementation is a light-weight, custom-built one, not relying on
any existing JavaScript frameworks. The whole implementation is bundled and
minified, and then deployed on to the server.

NLI Implementation

The NLI is developed as an independent Node.js application and written in
TypeScript. It uses technologies such as the Microsoft Bot Framework [13], Mi-
crosoft Cognitive Services [14] and Chevrotain [15]. As seen in Figure 6, the
Bot Framework is used to expose the NLI’s functionality as a chatbot. The Bot
Framework is a software development kit (SDK) that allows cross platform con-
versational agents (i.e., chatbots) to be developed easily. We use this framework
to handle the boilerplate aspects of a conversational agent. For example, client
connectivity, session management and file import/export. While we currently
only support the Skype chat client, the Bot Framework can allow us to support
other chat clients such as Facebook messenger, Telegram and Slack easily in the
future thanks to its homogeneous REST interface, which we have implemented
in the BMA Bot Service.

Figure 6: NLI Architecture

The BMA Bot Service forms the core of the NLI and consists of two main
components: Dialogs and NL-LTL Parser. The NLI generates BMA model files
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whenever a user requests an LTL query to be executed. This model can be
automatically opened in BMA by following a URL sent in the conversation. This
feature relies on Azure blob storage and saves the user the need to download
files from Skype and upload them to BMA.

We used Microsoft’s Language Understanding Intelligent Service (LUIS) to
solve the problem of handling a range of query types through a single interface.
That is, from simple questions about LTL operators to LTL formulas described
in natural language. LUIS is a web service that allows language understanding
models to be built from sample utterances, which can classify natural language
queries based on their underlying intent. In order to build a LUIS model fit for
our problem domain, we worked with biologists to identify the kind of phrases
that they may utter when interacting with the NLI. We used this information
to build a hierarchy of intents (Figure 7) that covered all query types supported
by the NLI and used it to train our LUIS model.

Figure 7: NLI natural language processing infrastructure

As seen in Figure 7, valid queries can be classified as belonging to either
the Model Knowledge, Knowledge Base or NL-LTL Parser intent categories.
Queries that cannot be assigned an intent category are passed through the Bing
spell checker web service once and fed into the system as a new user input,
given spelling errors were corrected in the original query. The Model Knowledge
intent category captures queries that either change the state of the current BMA
model. For example, uploading of a new model or contain references to aspects
relating to an existing model such as formula pointers. Queries that require the
NLI to use its Knowledge Base in order to provide definitions or example usage
of LTL operators as well as run tutorials are labelled as having a Knowledge
Base intent. Finally, queries relating to the construction and execution of LTL
formulas are labelled with an NL-LTL Parser intent and are passed through the
NL-LTL Parser pipeline, where a further set of NLP tasks are performed to infer
logical structure from NL.
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6 Conclusion and Future Work

Providing an extensive front-end for users to use LTL represents a major step
forward in functionality in BMA. In addition to expanding the types of analysis
that can be performed in the tool, the underlying changes, both in terms of
the web app architecture and the visual technique for constructing formulas,
will support the future development of new features. Future work will draw on
these improvements to expand the range of analyses offered and refine existing
features, such as the target function editor, by adapting the LTL query editor.

We are currently working on taking the insights from the graphical editor
for LTL to offer an alternative approach to the construction of target functions.
This will carry some of the advantages of the GUI editing, such as no need
to consider operator precedence and parentheses balancing to another technical
part of model construction. At the same time, we would like to offer an alternative
textual editor interchangeably with both formula creation GUIs.

Some of our most advanced users have been using directly the back-end part
of BMA to do thorough testing of their models. We are looking into better
supporting these users through incorporation of some of their requirements into
the NLI interface. Thus, an advanced user would be able to replace a script
that automates some calls to the back-end with instructions to the NLI interface
to do the same. Furthermore, expanding the natural language understanding
capabilities of the NLI would increase the tool’s effectiveness and improve user
experience. For example, we could replace the reliance on a static dictionary by
using word semantic similarity, as in [16,17].
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