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Abstract
Aims/hypothesis Hospital admissions for hypoglycaemia rep-
resent a significant burden on individuals with diabetes and
have a substantial economic impact on healthcare systems. To
date, no prognostic models have been developed to predict
outcomes following admission for hypoglycaemia. We aimed
to develop and validate prediction models to estimate risk of
inpatient death, 24 h discharge and one month readmission in
people admitted to hospital for hypoglycaemia.
Methods We used the Hospital Episode Statistics database,
which includes data on all hospital admission to National
Health Service hospital trusts in England, to extract admissions
for hypoglycaemia between 2010 and 2014. We developed,
internally and temporally validated, and compared two prog-
nostic risk models for each outcome. The first model included
age, sex, ethnicity, region, social deprivation and Charlson
score (‘base’ model). In the second model, we added to the
‘base’ model the 20 most common medical conditions and
applied a stepwise backward selection of variables (‘disease’

model). We used C-index and calibration plots to assess model
performance and developed a calculator to estimate probabili-
ties of outcomes according to individual characteristics.
Results In derivation samples, 296 out of 11,136 admissions
resulted in inpatient death, 1789/33,825 in one month readmis-
sion and 8396/33,803 in 24 h discharge. Corresponding values
for validation samples were: 296/10,976, 1207/22,112 and
5363/22,107. The two models had similar discrimination. In
derivation samples, C-indices for the base and disease models,
respectively, were: 0.77 (95% CI 0.75, 0.80) and 0.78 (0.75,
0.80) for death, 0.57 (0.56, 0.59) and 0.57 (0.56, 0.58) for one
month readmission, and 0.68 (0.67, 0.69) and 0.69 (0.68, 0.69)
for 24 h discharge. Corresponding values in validation samples
were: 0.74 (0.71, 0.76) and 0.74 (0.72, 0.77), 0.55 (0.54, 0.57)
and 0.55 (0.53, 0.56), and 0.66 (0.65, 0.67) and 0.67 (0.66, 0.68).
In both derivation and validation samples, calibration plots
showed good agreement for the three outcomes. We developed
a calculator of probabilities for inpatient death and 24 h discharge
given the low performance of one month readmission models.
Conclusions/interpretation This simple and pragmatic tool to
predict in-hospital death and 24 h discharge has the potential
to reduce mortality and improve discharge in people admitted
for hypoglycaemia.
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Introduction

Hypoglycaemia is the most common side effect of intensive
glucose treatment [1]. Severe hypoglycaemic episodes have a
negative impact on the quality of life of patients with diabetes
and are possibly associated with an increased risk of vascular
and nonvascular death [2, 3]. Most hypoglycaemic events are
mild and self-treated; severe episodes, conversely, require
third party support and some result in emergency department
and hospital admission, which represents a significant burden
on patients and healthcare systems [1, 4].

In recent years, several risk prediction models have been
proposed for patients admitted to hospital; these models can
assist clinicians to define the prognosis and tailor medical
decisions [5]. The majority of models have been developed
and validated for risk of inpatient death, length of hospital stay
and hospital readmission in different clinical settings, mainly
in patients with cardiovascular diseases [6–10]. To date, how-
ever, no model has been developed for patients admitted to
hospital for hypoglycaemia. As these admissions are generally
characterised by a lower risk of death (2–4%) and a shorter
length of stay (usually <24 h) compared with admissions for
other medical reasons [6, 11–14], the applicability of available
prediction models to patients admitted for hypoglycaemia
would result in biased risk estimates. Moreover, a risk predic-
tion tool for patients admitted for hypoglycaemia would be
particularly useful given the increased trend of patients admit-
ted for hypoglycaemia during the last decade in England and
the USA, and the associated use of healthcare resources [4, 11,
15].

In this context, we used Hospital Episode Statistics (HES)
admission data from England to develop and validate a risk
model for inpatient death, 24 h discharge and one month re-
admission for people admitted to hospital for hypoglycaemia.

Methods

Study design, setting and source of data We extracted data
from HES, which contains information on all finished consul-
tant episodes in the National Health Service (NHS) hospital
trusts in England (www.hscic.gov.uk/hes, accessed 29
November 2016). All hospital admissions reporting the ICD-
10 (www.who.int/classifications/icd/en/) diagnosis field E160
(drug-induced hypoglycaemia without coma), E161 (other
hypoglycaemia) or E162 (hypoglycaemia, unspecified) in
the first position (i.e. hypoglycaemia as the primary reason
of admission), and E10+ (insulin-dependent diabetes
mellitus) or E11+ (non-insulin-dependent diabetes mellitus)
in any of the remaining ICD-10 fields (from second to 20th),
were included.

For each admission episode, we collected data on age, sex,
self-reported ethnicity, region of usual residence, start and end

date of the episode, admission and discharge method
(reporting whether admission resulted in death) and Index of
Multiple Deprivation (IMD, a weighted index of social depri-
vation). We used ICD-10 codes to calculate the Charlson
comorbidity score [16]. For the current analysis, we defined
two temporally distinct derivation and validation samples. In
the derivation samples, we included admissions in 2013 for
inpatient death and 2010–2012 for one month readmission
and length of hospitalisation (defined as 24 h discharge).
Corresponding years for validation samples were 2014 and
2013–2014. We selected these time intervals because trends
of hospital admissions for hypoglycaemia were more stable
during these years [11].

Models specificationWe modelled the three outcomes, inpa-
tient death, one month readmission for hypoglycaemia and
24 h discharge, using complete-case logistic regressions. We
developed two prognostic models: the first, defined ‘base’
model, included age (transformedwith a cubic spline with five
knots to account for the non-linearity of the relationship be-
tween age and hospital admission for hypoglycaemia [11]),
sex, ethnicity (white, other), region (East Midlands, London,
North East, North West, South East, South West, West
Midlands, and Yorkshire and the Humber), social deprivation
(deciles of IMD) and Charlson score for all three outcomes. In
the second model (‘disease’), we added the 20 most common
ICD-10 comorbidities reported in positions second to sixth to
the base model; comorbidities were identified for each out-
come and are reported in ESM Table 1. After their inclusion,
we performed a stepwise backward elimination of individual
factors using the ordinary Akaike’s information criterion to
define the final set of variables [17].

Model performanceWe evaluated the performance of regres-
sion models assessing Nagelkerke R2, discrimination and cal-
ibration. For a specific model, R2 indicates the additional var-
iation in the outcomes compared with a model with only the
intercept. For a logistic regression, discrimination corresponds
to the area under the receiver operating characteristic curve
(C-index); a value of 0.5 indicates model discrimination no
better than chance, while a value of 1 perfect discrimination
[18]. We plotted observed outcomes by decile of predictions
to graphically assess calibration, and calculated calibration
slope and intercept; values around 1 for slope and 0 for inter-
cept indicate correct calibration [19].

Internal and temporal validation We validated models
internally with 300 bootstrap samples to assess possible opti-
mism and temporally by recalculating indices of discrimina-
tion, plotting observed vs predicted outcomes, and estimating
calibration slope and intercept. Finally, we developed a calcu-
lator based on recalibrated models using the calibration slope
and intercept obtained in validation samples [20].
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Guidelines and software for analyses We performed analy-
ses following the general framework proposed by Steyerberg
[20] and Harrell [21], and reported results in line with
TRIPOD (Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis) recommenda-
tions (www.tripod-statement.org. accessed 29 November
2016). We used Stata 14.1 and R 3.2.3 (package rms [22])
for all analyses and reported results with 95% CI. A p value
<0.05 was considered statistically significant.

Results

Characteristics of derivation and validation samples Of
22,113 available admissions for inpatient death, one admis-
sion (0.005%) was excluded due to missing data on age. Of
55,978 available admissions for one month readmission and
24 h discharge, 41 admissions were excluded for one month
readmission (0.073%; one missing information for age and 40
for social deprivation) and 68 for length of hospital stay
(0.121%; one missing information for age, 34 for social dep-
rivation, 27 for time to discharge and six for both social dep-
rivation and time to discharge).

Characteristics of the remaining admissions with complete
data, by outcome and sample, are reported in Table 1. No
major differences were found between the derivation and val-
idation samples. A large proportion of admissions occurred in
patients older than 60 years and of white ethnicity. There were
slightly more admissions in men than women and Charlson
scores were slightly higher in validation samples. The
outcome-specific top 20 most common diseases covered ap-
proximately 50% of all reported comorbidities (ESMTable 1).
Of these, two for readmission and 15 for 24 h discharge were
included in the final models after the stepwise backward elim-
ination. Associations between variables and outcomes in der-
ivation samples are reported in Fig. 1 for base models and
ESM Table 2 for disease models. Performance measures are
summarised in Table 2 and calibration plots are depicted in
Fig. 2.

Model development and internal validation The base and
disease models for inpatient death were developed from
11,136 admissions and 296 (2.7%) deaths (Table 1). Age
and Charlson score were significantly associated with the risk
of inpatient death in both the base and disease models (Fig. 1
and ESM Table 2). Discrimination was very similar compar-
ing the two models: the base model showed a C-index of 0.77
(95% CI 0.75, 0.80), with minimal over-fitting in bootstrap
validation (bias-corrected C-index 0.75), while the disease
model achieved a C-index of 0.78 (0.75, 0.80) with a bias-
corrected value of 0.77 (Table 2). The prognostic models for
one month readmission were derived from 1789 one month
readmissions among 33,825 admissions (5.3%, Table 1).

Ethnicity and region were significantly associated with risk
of readmission in both the base and disease model.
Discriminations were modest, being C-index 0.57 (0.56,
0.59) and 0.57 (0.56, 0.58) for the base and disease models,
respectively; bias-corrected C-indices yielded similar results
(Table 2). Finally, prognostic models for 24 h discharge were
developed from 8396 24 h discharge among 33,803 admis-
sions (24.8%). All variables of the basemodel were associated
with 24 h discharge. In the disease model, 15 further variables
were included; of which, 12 were associated with the outcome
(ESM Table 2). C-indices were 0.68 (0.67, 0.69) for the base
model and 0.69 (0.68, 0.69) for the disease model, with sim-
ilar bias-corrected values (Table 2). Bothmodels showed good
calibration for inpatient death and 24 h discharge; conversely,
one month readmission models had poor calibration, with no
spread between deciles of predicted risk (Fig. 2).

Temporal validation The temporal validation of the two
models showed values that were slightly lower than those
obtained in the derivation sample and very similar when com-
paring base and disease models (Table 2). For inpatient death
(296 events among 10,976 admissions, 2.7%; Table 1),
C-indices were 0.74 (0.71, 0.76) for the base and 0.74 (0.72,
0.77) for the disease model (Table 2). Corresponding values
for one month readmission (1207 events among 22,112 ad-
missions, 5.5%; Table 1) were 0.55 (0.54, 0.57) and 0.55
(0.53, 0.56), and for 24 h discharge (5363 events among
22,107 admissions, 24.3%; Table 1), 0.66 (0.65, 0.67) and
0.67 (0.66, 0.68) (Table 2). Calibration plots showed good
agreement between observed and predicted risk for inpatient
death and 24 h discharge; however, a slightly higher predicted
than observed risk was evident for the base model in the last
(tenth) risk group (Fig. 2).

Individual risk calculator Coefficients obtained in the logis-
tic regressions for inpatient death and 24 h discharge were
used to develop an Excel calculator (see ESM) to estimate
individual absolute predicted risk based on variables included
in the base model (a mobile/desktop app is in produc-
tion). For both outcomes, models were recalibrated using
the calibration slope and intercept estimated in the
validation samples (Table 2). We did not include one
month readmission because of the poor performance of
models for this outcome, and developed the calculator
using only base models following criteria of parsimony
and simplicity, and given the negligible differences in the
performance between the base and disease models. The
calculator allows the input of individual data on age, sex,
ethnicity, Charlson score and England postcode (for
social deprivation) for two patients to visually inspect
the impact of changing a single variable. The calculator
can be developed in other graphical interfaces by using
data reported in Fig. 1 (coefficients), Table 2 (calibration

Diabetologia

http://www.tripod-statement.org


slope and intercept) and ESM Excel file (spline transfor-
mation of age).

Discussion

Main findings Using a large sample of hospital admissions
for hypoglycaemia in England, we developed, internally and
temporally validated and calibrated two prognostic models for

length of hospital stay, inpatient death and readmission. The
two models performed well in terms of fitting (R2 similar to
risk models in other clinical setting [23, 24]) and calibration,
and did not meaningfully differ in the prediction of inpatient
death and length of hospital stay, defined in this study as
same-day discharge. Conversely, models failed to accurately
predict one month readmission for hypoglycaemia. In fact, the
same variables used for inpatient death and length of stay did
not accurately predict the risk for one month readmissions,

Table 1 Characteristics of admissions to hospital for hypoglycaemia

Characteristic Derivation Validation

Inpatient death One month readmission 24 h discharge Inpatient death One month readmission 24 h discharge

Calendar year 2013 2010–2012 2010–2012 2014 2013–2014 2013–2014

Admission, n 11,136 33,825 33,803 10,976 22,112 22,107

Participant, n 9937 28,554 28,533 9819 19,057 19,054

Death, n 296 – – 296 – –

Readmission, n – 1789 – – 1207 –

24 h discharge, n – – 8396 – – 5363

Age at admission, years

<20 638 (5.7) 2121 (6.3) 2121 (6.3) 594 (5.4) 1232 (5.6) 1232 (5.6)

20–29 334 (3.0) 1182 (3.5) 1182 (3.5) 344 (3.1) 678 (3.1) 678 (3.1)

30–39 395 (3.6) 1207 (3.6) 1206 (3.6) 341 (3.1) 736 (3.3) 736 (3.3)

40–49 678 (6.1) 2008 (5.9) 2007 (5.9) 686 (6.3) 1364 (6.2) 1362 (6.2)

50–59 964 (8.7) 2730 (8.1) 2730 (8.1) 960 (8.8) 1924 (8.7) 1924 (8.7)

60–69 1542 (13.9) 4348 (12.9) 4347 (12.9) 1468 (13.4) 3010 (13.6) 3010 (13.6)

70–79 2818 (25.3) 9120 (27.0) 9118 (27.0) 2840 (25.9) 5658 (25.6) 5656 (25.6)

≥80 3767 (33.8) 11,109 (32.8) 11,092 (32.8) 3743 (34.1) 7510 (34.0) 7509 (34.0)

Sex

Women 5430 (48.8) 16,518 (48.8) 16,506 (48.8) 5257 (47.9) 10,687 (48.3) 10,686 (48.3)

Men 5706 (51.2) 17,307 (51.2) 17,297 (51.2) 5719 (52.1) 11,425 (51.7) 11,421 (51.7)

Charlson index 2.29 ± 1.62 2.04 ± 1.46 2.04 ± 1.46 2.37 ± 1.61 2.33 ± 1.62 2.33 ± 1.62

IMD-10a

Least deprived 10% 607 (5.5) 1828 (5.4) 1826 (5.4) 633 (5.8) 1240 (5.6) 1240 (5.6)

Less deprived 10–20% 768 (6.9) 2241 (6.6) 2240 (6.6) 671 (6.1) 1439 (6.5) 1439 (6.5)

Less deprived 20–30% 857 (7.7) 2459 (7.3) 2458 (7.3) 806 (7.3) 1663 (7.5) 1663 (7.5)

Less deprived 30–40% 917 (8.2) 2863 (8.5) 2861 (8.5) 842 (7.7) 1759 (8.0) 1759 (8.0)

Less deprived 40–50% 1027 (9.2) 3108 (9.2) 3103 (9.2) 949 (8.7) 1976 (8.9) 1976 (8.9)

More deprived 10–20% 1436 (12.9) 4747 (14.0) 4743 (14.0) 1563 (14.2) 2999 (13.6) 2999 (13.6)

More deprived 20–30% 1359 (12.2) 4223 (12.5) 4222 (12.5) 1369 (12.5) 2728 (12.3) 2727 (12.3)

More deprived 30–40% 1195 (10.7) 3538 (10.5) 3537 (10.5) 1192 (10.9) 2387 (10.8) 2387 (10.8)

More deprived 40–50% 1101 (9.9) 3314 (9.8) 3312 (9.8) 1174 (10.7) 2275 (10.3) 2273 (10.3)

Most deprived 10% 1869 (16.8) 5504 (16.3) 5501 (16.3) 1777 (16.2) 3646 (16.5) 3644 (16.5)

Ethnicity

White 9225 (82.8) 28,185 (83.3) 28,166 (83.3) 9030 (82.3) 18,255 (82.6) 18,250 (82.6)

Other 1911 (17.2) 5640 (16.7) 5637 (16.7) 1946 (17.7) 3857 (17.4) 3857 (17.4)

Data reported as number (percentage) or mean ± SD
a IMD score in deciles

Complete-case data (i.e. non-missing) are shown—there was one missing information for inpatient death (age), 41 for readmission (one age and 40 IMD-
10) and 68 for length of hospital stay (one age, 34 IMD-10, 27 time to discharge and six both IMD-10 and time to discharge)

Diabetologia



underlying the possibility that other, unmeasured factors are
more relevant in identifying patients at higher risk of recurrent
admissions for hypoglycaemia. For all outcomes, model per-
formances were similar in temporal validations. These analy-
ses allowed the development of a tool to assess individual risk
based on basic information that are routinely collected in
patients admitted to NHS hospital trusts in England.

Interpretation in the context of available evidence In the
last decade, hospital admissions for hypoglycaemia have con-
sistently increased in England, as well as in the USA [11, 15].
Although only a fraction of hypoglycaemic episodes result in
hospitalisation, admissions are generally reserved for patients
potentially at higher risk of complications and have

considerable resource implications for national healthcare sys-
tems [4]. Studies have also shown that a significant proportion
of admissions for hypoglycaemia occur in people previously
admitted for the same reason [11, 15]. Therefore, the availabil-
ity of prognostic models for length of hospital stay, risk of
death and hospital readmission may be a useful tool to support
clinicians and decision makers.

In recent years, various clinical risk models for inpatient
death have been developed and validated in different clinical
settings, including people with myocardial infarction [6],
valve replacement [7] or abdominal aortic aneurism [8], or
those admitted to intensive care units [25]. Similarly, validated
models for readmissions are available for all-cause and cause-
specific readmissions, such as cardiovascular, gastrointestinal

Variable OR (95% Cl)
1.28 (1.01, 1.61)
0.83 (0.66, 1.04)

3.15 (0.57, 17.48)
0.25 (0.00, 26.83)

0.17 (0.92, 1.49)

0.91 (0.63, 1.32)

0.81 (0.48, 1.36)
0.70 (0.43, 1.16)
0.83 (0.44, 1.56)
0.82 (0.51, 1.31)
1.08 (0.69, 1.69)
0.75 (0.44, 1.27)
0.91 (0.56, 1.49)
0.64 (0.37, 1.08)

1.18 (0.61, 2.27)
1.40 (0.74, 2.65)
1.05 (0.54, 2.03)
1.69 (0.93, 3.07)
1.11 (0.59, 2.09)
1.08 (0.57, 2.03)
1.02 (0.54, 1.94)
1.22 (0.65, 2.28)
1.19 (0.64, 2.21)
1.34 (1.28, 1.42)

OR (95% Cl)

1.00 (0.99, 1.01)
0.98 (0.97, 1.00)
1.45 (1.09, 1.94)
0.19 (0.04, 0.82)

0.02 (0.93, 1.12)

0.68 (0.58, 0.79)

0.84 (0.66, 1.07)
1.34 (1.09, 1.64)
0.97 (0.76, 1.25)
1.14 (0.93, 1.38)
0.84 (0.68, 1.05)
0.80 (0.63, 1.03)
0.90 (0.72, 1.12)
1.10 (0.89, 1.37)

0.83 (0.62, 1.12)
0.80 (0.59, 1.07)
0.98 (0.74, 1.28)
1.02 (0.78, 1.34)
1.17 (0.91, 1.50)
1.07 (0.83, 1.38)
1.04 (0.80, 1.35)
1.02 (0.78, 1.33)
1.07 (0.83, 1.37)
1.03 (1.00, 1.07)

OR (95% Cl)
1.00 (0.99, 1.00)
0.98 (0.97, 0.99)
1.14 (0.98, 1.33)
0.84 (0.37, 1.89)

1.13 (1.07, 1.19)

1.13 (1.05, 1.22)

0.87 (0.76, 0.99)
1.46 (1.30, 1.64)
1.24 (1.09, 1.42)
1.19 (1.06, 1.33)
1.36 (1.22, 1.53)
1.26 (1.12, 1.43)
1.12 (1.00, 1.26)
0.88 (0.78, 1.00)

0.92 (0.80, 1.07)
1.05 (0.91, 1.21)
0.98 (0.86, 1.13)
0.91 (0.80, 1.05)
0.77 (0.68, 0.88)
0.91 (0.80, 1.04)
0.81 (0.71, 0.93)
0.92 (0.81, 1.06)
0.84 (0.73, 0.95)
0.75 (0.73, 0.76)

Inpatient death One month readmission 24 h discharge

Age_1
Age_2
Age_3
Age_4

Male

Other

East Midlands

West Midlands
Yorkshire Humber

IMD-10 (ref least deprived 10%)

0.1 0.2 0.4 1 2 4 0.1 0.2 0.5 0.70.4 0.7 1 1.5 2 1 1.5 2

OR OR OR

Less deprived 10−20%
Less deprived 20−30%
Less deprived 30−40%
Less deprived 40−50%
More deprived 10−20%
More deprived 20−30%
More deprived 30−40%
More deprived 40−50%
More deprived 10%

Charlson score

London
North East
North West
South East
South West

Sex (ref female)

Ethnicity (ref white)

Region (ref East England)

Fig. 1 Associations of variables with outcomes for base model (deriva-
tion samples). Age_1, Age_2, Age_3 and Age_4 indicate restricted cubic
spline transformation of age. ORs are reported per unit increase of

Charlson score. Constants of the models were: -16.864 for inpatient mor-
tality, -2.701 for one month readmission and 0.086 for 24 h discharge

Table 2 Model performance indices in derivation and validation samples

Model Derivation Validation

Nagelkerke
R2 (%)

C-index
(95% CI)

Bias-corrected
C-index

Nagelkerke
R2 (%)

C-index
(95% CI)

Calibration
slope

Calibration
intercept

Inpatient death

Base 12.1 0.77 (0.75, 0.80) 0.75 8.1 0.74 (0.71, 0.76) 0.77 0.00

Disease 11.8 0.78 (0.75, 0.80) 0.77 9.0 0.74 (0.72, 0.77) 0.86 -0.01

One month readmission

Base 1.0 0.57 (0.56, 0.59) 0.56 0.5 0.55 (0.54, 0.57) 0.70 0.03

Disease 0.9 0.57 (0.56, 0.58) 0.56 0.4 0.55 (0.53, 0.56) 0.66 0.03

24 h discharge

Base 10.6 0.68 (0.67, 0.69) 0.68 8.4 0.66 (0.65, 0.67) 0.83 0.04

Disease 11.1 0.69 (0.68, 0.69) 0.69 8.9 0.67 (0.66, 0.68) 0.82 0.05
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or pulmonary diseases [9, 26–30]. More limited, on the other
hand, are validated models for length of hospital stay for
patients with, for example, chronic obstructive pulmonary dis-
ease [31], gastrointestinal bleeding [32] or stroke [10]. Studies
aiming to develop clinical prediction models are appreciably
different in terms of variable accessibility, model specification
procedures, temporal and geographical settings and, most im-
portantly, population studied. It is therefore not surprising that
the final variables included in the models, the strength of their
associations with outcomes and the occurrence of the out-
comes are inconsistent across studies. This is in part due to
differences in the aetiology and pathophysiology of diseases
(which could influence, for example, the selection of vari-
ables) as well as to differences in their severity (for example,
risk of inpatient death following decompensated heart failure
vs hypoglycaemia). Therefore, the precise definition of a
homogeneous population to whom the prediction models apply
is of crucial importance.

Strength and limitations To our knowledge, no model has
been developed to date to predict hospital outcomes in patients
admitted for hypoglycaemia. A major strength of this study is

the availability of a large nationwide database with detailed
information on hospital admissions. Furthermore, information
was missing only in a very low proportion of admissions, and
models were internally and temporally validated.

At the same time, several points should be considered for
the interpretation of these findings. First, in all models we
used only variables available in the HES database. We may
not have included important prognostic variables that could be
particularly relevant for one month readmission. Insulin ther-
apy and diabetes duration are related to a higher risk of severe
hypoglycaemia and might confound the association between
factors included in the analysis, such as age and comorbidities,
and risk of readmission [33]. Lack of detailed data on glucose-
lowering therapies could explain the low performance of
models for this outcome. Similarly, lack of information on
attendance at educational programmes to avoid recurrent
severe hypoglycaemia might have influenced our results. It
should be noted, however, that a recent systematic review
has confirmed initial observations about the poor to moderate
performance of risk models for one month hospital
readmissions [28], even in those including an extensive panel
of potential predictors [9]. Moreover, although several studies
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Fig. 2 Calibration plots for base and disease models in derivation and
validation samples. Inpatient death: base model, derivation (a) and vali-
dation (b) sample; disease model, derivation (c) and validation (d) sam-
ple. One month readmission: base model, derivation (e) and validation (f)

sample; disease model, derivation (g) and validation (h) sample. 24 h
discharge: base model, derivation (i) and validation (j) sample; disease
model, derivation (k) and validation (l) sample. Error bars indicate 95%
CI
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have evidenced multiple clinical risk factors for severe
hypoglycaemia, the large majority of these analyses reported
only associations that do not necessarily translate into better
prognostic ability [34].

Second, the ICD-10 codes E10+ (insulin-dependent diabetes
mellitus) and E11+ (non-insulin-dependent diabetes mellitus)
have been used only to define the population under investigation
(people with diabetes) and could not be considered as a proxy of
treatment. Indeed, it is possible that individuals with insulin-
treated type 2 diabetes have been coded as E11+. Conversely,
while in principle E10+ and E11+ should respectively identify
individuals with type 1 and type 2 diabetes, we could not
exclude that some E10+ patients had insulin-treated type 2 dia-
betes. Finally, for some patients the HES data has inconsistent
coding of E10+/E11+ over time (change of diabetes type).
Therefore, we could not clearly separate the two groups for the
analyses as they included non-well-phenotyped patients.

Third, variable selection in prognostic models is well
recognised as the most difficult step in model development.
At two extremes, selection of variables can be based only on
the expert knowledge of subject matter or only on statistical
methods, although the latter approach has been criticised for
unstable selection of predictors and bias estimation of associ-
ations [20]. In this analysis, we developed a simple model,
responding to criteria of parsimony and clinical knowledge,
based on six simple items of information, and a secondmodel,
with more detailed specification of comorbidities, based on a
statistical method to define the final set of variables. The per-
formance of the two models, however, was very similar and
justified the use of the variables in the base model for
predicting individual risk.

Fourth, HES data are routinely collected for administrative
rather than research purposes; as such, there is some potential
for inaccuracies in data collection and recording.

Finally, we only considered death occurring during
hospitalisation and not short- or long-term mortality after dis-
charge, and investigated readmissions only for hypoglycaemia.

Clinical and research implications These prediction models
were developed to estimate individual-level risk using simple
clinical and demographic data. The models for length of stay
and inpatient death performed well and, along with clinical
judgement, could be used by decision makers to personalise
targets and strategies. On the other hand, models failed to
predict hospital readmission accurately. Given the substantial
cost associated with hospital readmissions in the UK and the
high prevalence of one month readmission in patients admit-
ted for hypoglycaemia [11, 15, 35], further studies are war-
ranted to address this important knowledge, clinical and pub-
lic health gap.

Notwithstanding the importance and the implications of
length of stay as a quality indicator across hospitals [36], there
are still methodological uncertainties about the best modelling

approach to analyse such data and further research is required.
Logistic regression estimating discharge at meaningful time
points, time-to-event analysis or mixture models have been
suggested, with unclear advantages in simulations studies of
one method over another [37–39]. Accounting for HES data-
base characteristics, we opted to perform a logistic regression
using 24 h as the specific time point. Indeed, in HES length of
stay can be calculated as the difference between two dates,
thus resulting in admissions of length of zero (24 h discharge,
i.e. same date for entry and exit) or multiples of 1 day. As
about 25% of discharges occurred within 24 h, time-to-event
analysis was not a suitable approach to analyse these data. In
similar circumstances where a significant proportion of dis-
charges occur within 24 h, a more detailed description of
length of hospitalisation with time-to-event analysis is possi-
ble only if length of stay is reported in fraction of day (i.e.
hours).

We performed a validation of the models for admissions
during two different periods (temporal validation). These re-
sults, therefore, pertain only to admissions for hypoglycaemia
in England and full external validation (temporal and spatial)
is required to validate models accounting for geographical and
temporal differences.

ConclusionA prediction model for risk of inpatient death and
24 h discharge in individuals admitted to hospital for
hypoglycaemia has been developed and validated. Individual
risk can be estimated using simple information that is collect-
ed routinely in hospitalised patients. While further studies are
required to validate this model and to assess the relevance of
glucose-lowering therapies in risk prediction, this simple and
pragmatic tool can improve the quality of care through
personalised approaches and optimise resource allocation.
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