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Abstract— The stability criterion of networked control sys-
tems with both the network-induced delays and data packet
dropouts is investigated. A Lyapunov-Krasovskii functional can-
didate, which makes use of the information of the lower, upper
bounds and the middle point of the time-varying network-
induced delay interval simultaneously, is proposed and a tighter
bounding for an integral term of the delay is estimated to drive
a less conservative stability condition for networked control
systems. No redundant matrix variable is introduced. Finally,
two numerical examples are given to show the effectiveness of
the proposed stability criterion.

I. INTRODUCTION

Networked control systems (NCSs) are feedback control
systems wherein the control loops are closed through a real-
time network. Recently, great importance has been attached
to the study of stability analysis and control design of
NCSs due to their low cost, reduced weight and power
requirements, simple installation and maintenance, and high
reliability. A linear continuous plant and a continuous con-
troller was the concern of [1]. However, the insertion of a
real-time network introduces time delays due to time-sharing
of the communication media. The existence of a network-
induced delay can degrade the performance of an NCS, and
can even destabilize the system. Zhang et al. studied the
stability of an NCS under network-induced delay [2]. One
of the important issues is to find a less conservative stability
criterion of an NCS.

In recent decade, more and more attention has been paid
on stability analysis of time-delay systems with interval time-
varying delay [3], [4]. NCSs are typical systems with interval
time-varying delay [7], [8]. As for NCSs, Park et al. used
Moon inequality to calculate the maximum allowable delay
bound (MADB) for NCSs [9], [10]. Yue et al. presented a
new model for an NCS and investigated the H∞ control
problem considering both the network-induced delay and
data dropout [5], [7]. Jiang et al. [6] proposed a new
Lyapunov-Krasovskii functional as follows

V1(t) = xT (t)Px(t) + τm

∫ 0

−τm

ds

∫ t

t+s

ẋT (θ)R1ẋ(θ)dθ
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+
∫ t

t−η

xT (s)Q2x(s)ds + η

∫ 0

−η

ds

∫ t

t+s

ẋT (θ)R2ẋ(θ)dθ

+
∫ t

t−τm

xT (s)Q1x(s)ds + δ

∫ −τm

−η

ds

∫ t

t+s

ẋT (θ)Sẋ(θ)dθ

which made use of the information of both the lower and
upper bounds of the time-varying network-induced delay to
obtain a less conservative stability criterion than existing
results, where the definition of τm and η can be found in
Section II, P = PT > 0, Q1 = QT

1 > 0, Q2 = QT
2 >

0, R1 = RT
1 > 0, R2 = RT

2 > 0, S = ST > 0 of
appropriate dimensions. [11] retained the information [6]
had lost when evaluating the bounds of some cross terms
to drive a less conservative result than [6]. How to find a
less conservative stability condition than some existing ones
for an NCS motivate current study.

In this paper, we will use the following Lyapunov-
Krasovskii functional

V2(t) = V1(t) +
∫ t

t−τa

xT (s)Q3x(s)ds

+τa

∫ 0

−τa

ds

∫ t

t+s

ẋT (θ)R3ẋ(θ)dθ (1)

which makes use of the information of the lower, upper
bounds and the middle point of the time-varying network-
induced delay interval simultaneously, to obtain a less con-
servative condition in terms of a linear matrix inequality for
an NCS, no redundant matrix variable will be introduced,
where Q3 = QT

3 > 0, R3 = RT
3 > 0 of appropriate

dimensions, and τa = 1
2 (τm + η), τm ≥ 0, η ≥ 0.

In [6], by using

−δ

∫ t−τm

t−η

ẋT (s)Sẋ(s)ds

= −δ

∫ ikh

t−η

ẋT (s)Sẋ(s)ds− δ

∫ t−τm

ikh

ẋT (s)Sẋ(s)ds

≤ −(ikh− t + η)
∫ ikh

t−η

ẋT (s)Sẋ(s)ds

−(t− τm − ikh)
∫ t−τm

ikh

ẋT (s)Sẋ(s)ds

a stability condition has been derived based on an inequality
from Lemma 1, where δ = η − τm. In order to obtain a
tighter bounding for this term, τa will be introduced to bisect
the time-varying network-induced delay interval as [τm, τa]
and [τa, η], the conservatism of evaluating the bounds of
some weighted cross terms will be reduced. Therefore a less
conservative result will be obtained. Numerical examples will
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be given to show the effectiveness of the proposed stability
criterion.

Notation: For symmetric matrices X and Y , the notation
X ≤ Y (respectively X < Y ) means that X−Y is negative
semidefinite (respectively, negative definite). The term Rn

denotes the n-dimensional Euclidean space. The term Rm×n

denotes the set of all the real m×n matrices. I is the identity
matrix of appropriate dimensions.

II. PROBLEM STATEMENT

We consider the following system controlled through a
network {

ẋ(t) = Ax(t) + Bu(t)
x(t0) = x0

(2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rn is the input
vector, A and B are known parameter matrices of appropriate
dimensions, x0 is the initial condition.

First, since there exist communication delay τ sc between
the sensor and the controller and computational delay τ c in
the controller, the following control law is employed for the
system (2)

u(t+) = Kx(t−τ sc
k −τ c

k), t ∈ {kh+τ sc
k +τ c

k}, k = 1, 2, . . .
(3)

where h is the sampling period and K is a given controller
gain.

Second, substituting (3) into (2) yields

ẋ(t) = Ax(t) + BKx(kh), (4)
t ∈ [kh + τk, (k + 1)h + τk+1), k = 1, 2, . . .

where the communication delay τ ca between the controller
and the actuator is considered, and the time-delay τk = τ sc

k +
τ c
k + τ ca

k denotes the time from the instant kh when sensor
nodes sample sensor data from a plant to the instant when
actuators transfer data to the plant. Also considering the data
packet dropout, the closed-loop system (4) can be modified
as [5]

ẋ(t) = Ax(t) + BKx(ikh), (5)
t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, . . .

where ik, k = 1, 2, ... are some integers and {i1, i2, i3, ...} ⊂
{0, 1, 2, ...}. Obviously, ∪∞k=1[ikh + τk, ik+1h + τk+1) =
[t0,∞), t0 ≥ 0. In this paper, u(t) = 0 is assumed before
the first control signal reaches the plant. If ik+1 < ik, then
the new data packet reaches the plant before the old one.
At this time, the old data packet should be discarded and its
successive data packet used instead. Therefore, it is necessary
to find an appropriate network scheduling method that can
discard the old data packet when the new one reaches the
plant before the old one. In the following discussion, we
assume that ik+1 > ik, k = 1, 2, 3, ....

Throughout this paper, the following assumptions and
lemma are needed.

Assumption 1: The sensor is clock-driven; the controller
and actuator are event-driven.

Assumption 2: There exist two constants τm ≥ 0 and
η ≥ 0 such that

(ik+1 − ik)h + τk+1 ≤ η, τk ≥ τm, k = 1, 2, ... (6)

Remark 1: since x(ikh) = x(t − (t − ikh)), defining
τ(t) = t − ikh, t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, ...,
rewrite (5) as

ẋ(t) = Ax(t) + BKx(t− τ(t)) (7)

where τ(t) is piecewise linear with derivative τ̇(t) = 1 for
t 6= ikh + τk and τ(t) is discontinuous at the points t =
ikh + τk , k = 1, 2, .... It is clear that τk ≤ τ(t) ≤ (ik+1 −
ik)h+τk+1 ≤ η for t ∈ [ikh+τk, ik+1h+τk+1), k = 1, 2, ....

Thus, the system (5) is equivalent to the linear system
(7) with interval time-varying time-delay. Therefore, an ap-
proach to stability analysis and design for time-delay systems
can be extended to handle the same issues for NCSs, which
was also confirmed by [12].

To end this section, we introduce the following lemma
which is useful in deriving a stability criterion for system
(5).

Lemma 1: [13] For any constant matrix W ∈ Rn×n,W =
WT > 0, scalar γ > 0, and vector function ẋ : [−γ, 0] −→
Rn such that the following integration is well defined, then

−γ

∫ t

t−γ

ẋT (ξ)Wẋ(ξ)dξ

≤
[

x(t)
x(t− γ)

]T [
−W W
W −W

] [
x(t)

x(t− γ)

]
III. NEW STABILITY CRITERIA

We consider asymptotic stability for system (5). Using
Lyapunov-Krasovskii functional (1), we have the following
result.

Proposition 1: For some given scalars τm and η, the
closed-loop system (5) is asymptotically stable, if there exist
symmetric positive-definite matrices P > 0, Qi > 0, Ri >
0(i = 1, 2, 3) and S > 0 of appropriate dimensions such that

Ψ1 , Φ + ΓT
1 SΓ1 < 0, (8)

and
Ψ2 , Φ + ΓT

2 SΓ2 < 0 (9)

where

Φ =


Φ11 Φ12 R1 R2 R3

ΦT
12 Φ22 S S 3S

R1 S Φ33 S S
R2 S S Φ44 S
R3 3S S S Φ55


δ = η − τm, τa =

1
2
(τm + η),

Θ = τ2
mR1 + η2R2 + τ2

aR3 + δ2S,

Φ11 = PA + AT P +
3∑

i=1

Qi −
3∑

i=1

Ri + AT ΘA,

Φ12 = PBK + AT ΘBK,Φ22 = (BK)T ΘBK − 5S,

Φ33 = −Q1 −R1 − 3S, Φ44 = −Q2 −R2 − 3S,
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Φ55 = −Q3 −R3 − 5S,

Γ1 =
[

0 I I −I −I
]
,

Γ2 =
[

0 I −I I −I
]
.

Proof. Taking the derivative of V2(t) with respect to t along
the trajectory of (5) yields

V̇2(t) = xT (t)(PA + AT P )x(t) + 2xT (t)PBKx(ikh)
+xT (t)Q1x(t)− xT (t− τm)Q1x(t− τm)
+xT (t)Q2x(t)− xT (t− η)Q2x(t− η)
+xT (t)Q3x(t)− xT (t− τa)Q3x(t− τa)
+ẋT (t)(τ2

mR1 + η2R2 + τ2
aR3 + δ2S)ẋ(t)

−τm

∫ t

t−τm

ẋT (s)R1ẋ(s)ds− η

∫ t

t−η

ẋT (s)R2ẋ(s)ds

−τa

∫ t

t−τa

ẋT (s)R3ẋ(s)ds− δ

∫ t−τm

t−η

ẋT (s)Sẋ(s)ds

for t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, .... Use Lemma 1
to obtain

−τm

∫ t

t−τm

ẋT (s)R1ẋ(s)ds

≤
[

x(t)
x(t− τm)

]T [
−R1 R1

R1 −R1

] [
x(t)

x(t− τm)

]
,

−η

∫ t

t−η

ẋT (s)R2ẋ(s)ds

≤
[

x(t)
x(t− η)

]T [
−R2 R2

R2 −R2

] [
x(t)

x(t− η)

]
,

−τa

∫ t

t−τa

ẋT (s)R3ẋ(s)ds

≤
[

x(t)
x(t− τa)

]T [
−R3 R3

R3 −R3

] [
x(t)

x(t− τa)

]
As for

−δ

∫ t−τm

t−η

ẋT (s)Sẋ(s)ds

Case I: t− τm ≤ ikh ≤ t− τa,

−δ

∫ t−τm

t−η

ẋT (s)Sẋ(s)ds

= −δ

∫ t−τa

t−η

ẋT (s)Sẋ(s)ds−δ

∫ ikh

t−τa

ẋT (s)Sẋ(s)ds

−δ

∫ t−τm

ikh

ẋT (s)Sẋ(s)ds

≤ 2
[

x(t− τa)
x(t− η)

]T [
−S S
S −S

] [
x(t− τa)
x(t− η)

]
+2

[
x(ikh)

x(t− τa)

]T [
−S S
S −S

] [
x(ikh)

x(t− τa)

]
+2

[
x(t− τm)

x(ikh)

]T[
−S S
S −S

] [
x(t− τm)

x(ikh)

]
then, we have

V̇2(t) ≤ ξT (t)Ψ1ξ(t),
t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, . . .

where

ξT (t) =
[

ξT
1 (t) ξT

2 (t)
]
,

ξT
1 (t) =

[
xT (t) xT (ikh)

]
,

ξT
2 (t) =

[
xT (t− τm) xT (t− η) xT (t− τa)

]
One can see that if Ψ1 < 0, then there exists some scalar
λ1 > 0 such that V̇2(t) ≤ −λ1x

T (t)x(t) for t ∈ [ikh +
τk, ik+1h + τk+1), k = 1, 2, ....

Case II: t− τa < ikh ≤ t− η,

−δ

∫ t−τm

t−η

ẋT (s)Sẋ(s)ds

= −δ

∫ ikh

t−η

ẋT (s)Sẋ(s)ds− δ

∫ t−τa

ikh

ẋT (s)Sẋ(s)ds

−δ

∫ t−τm

t−τa

ẋT (s)Sẋ(s)ds

≤ 2
[

x(ikh)
x(t− η)

]T [
−S S
S −S

] [
x(ikh)

x(t− η)

]
+2

[
x(t− τa)
x(ikh)

]T [
−S S
S −S

] [
x(t− τa)
x(ikh)

]
+2

[
x(t− τm)
x(t− τa)

]T[
−S S
S −S

] [
x(t− τm)
x(t− τa)

]
then, we have

V̇2(t) ≤ ξT (t)Ψ2ξ(t),
t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, . . .

One can see that if Ψ2 < 0, then there exists some scalar
λ2 > 0 such that V̇2(t) ≤ −λ2x

T (t)x(t) for t ∈ [ikh +
τk, ik+1h+τk+1), k = 1, 2, .... Therefore, if (8) and (9) hold,
then there exist some scalar λ = min(λ1, λ2) > 0 such that
V̇2(t) ≤ −λxT (t)x(t) for t ∈ [ikh + τk, ik+1h + τk+1), k =
1, 2, .... Similar to the proof of [14] one can obtain that the
system (5) is asymptotically stable. This completes the proof.

Remark 2: Proposition 1 provides a delay-dependent sta-
bility criterion for the system (5). In deriving the criterion, we
employ τa to bisect the time-varying network-induced delay
interval as [τm, τa] and [τa, η] which reduce the conservatism
of evaluating the bounds of some weighted cross terms.

IV. NUMERICAL EXAMPLES

In this section, two examples are given to show the
effectiveness of the results derived in this paper.

Example 1: Consider the following system controlled
over a network

ẋ(t) =
[

0 1
0 −0.1

]
x(t) +

[
0

0.1

]
u(t) (10)

The network-based controller is designed with K =[
−3.75 −11.5

]
. Using stability criteria in some existing

literature and this paper (Proposition 1 for τm = 0), the max-
imum allowable transfer intervals (MATIs) of the delay, that
guarantees the asymptotic stability of system (10) controlled
over a network are listed in Table I. It is clear to see that
for this example, some existing results have been improved.
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TABLE I
MATIS BASED ON DIFFERENT METHODS IN SOME EXISTING

LITERATURE AND THIS PAPER

Method MATI
Zhang et al. [2] 4.5× 10−4s
Park et al. [9] 0.0538s
Kim et al. [10] 0.7805s
Yue et al. [5] 0.8871s

Jiang et al. [6] 1.0081s
Proposition 1 1.0239s

TABLE II
MATIS OF THE DELAY IN [4] AND THIS PAPER

τm Jiang and Han [4] This paper
0.01s 1.0086 1.0243
0.05s 1.0105 1.0257
0.10s 1.0132 1.0274
0.15s 1.0161 1.0292
0.20s 1.0193 1.0310

Moreover, MATIs that guarantee asymptotic stability of the
system (10) controlled over a network is given in Table
II for different lower bound of the time-varying network-
induced delay by using the method proposed in this paper
and Proposition 1 in [4]. One can see that this paper can
provide better results than Proposition 1 in [4].

Example 2: Consider the following system

ẋ(t) =
[
−2 0
0 −0.9

]
x(t) +

[
−1 0
−1 −1

]
x(t− τ(t))

Table III lists the comparison between the results derived
in this paper and those in [11] for different τm. From the
table, one can see that the stability results obtained in this
paper are less conservative than those in Shao [11].

V. CONCLUSION

In this paper, the problem of stability of networked
control systems has been considered. A less conservative
condition has been proposed in terms of a linear matrix
inequality based on a new Lyapunov-Krasvoskii functional
which using the information of the lower, upper bounds and
the middle point of the time-varying network-induced delay
interval simultaneously. Numerical examples have been given
to demonstrate the effectiveness of the proposed stability
criterion.

TABLE III
MATIS OF THE DELAY IN [11] AND THIS PAPER

τm 1 2 3 4
Shao [11] 1.8737 2.5049 3.2591 4.0744
This paper 1.9177 2.5326 3.2737 4.0787
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