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On the Asymptotic Continuum 
Analysis of Quasistatic Elastic-
Plastic Crack Growth and Related 
Problems 
The present work provides rigorous substantiation of certain crucial asymptotic 
expressions which constitute the basis of a number of previous near-tip analyses of 
quasistatic elastic-plastic crack growth. This is accomplished as part of an in
vestigation of the general features of two-dimensional near-tip continuum fields for 
quasistatic elastic-plastic crack growth, under general unsteady conditions, for a 
broad class of constitutive behavior and crack loading conditions. The approach 
employed and results obtained are also applicable to a number of geometrically 
similar problems, such as the plane strain analysis of the continuum fields near the 
leading and trailing edges of a quasistatically moving distributed surface load. 

1 Introduction 
The complete elastic-plastic analysis of the stress and 

deformation fields in a body containing a quasistatically 
growing crack is of sufficient mathematical complexity to 
prohibit (thus far) closed-form solutions. To make these 
problems analytically tractable, attention is focused on the 
region very close to the moving crack tip, where the general 
continuum mechanical governing equations can be ap
proximated by simplified asymptotic forms. Another reason 
for focusing on the near-tip fields is that they would be ex
pected, on physical grounds, to play a crucial role in the 
behavior of a cracked solid. 

In view of the complexity of the general (nonlinear) elastic-
plastic continuum governing equations, it is important to 
ensure that their reduced forms, which are employed in 
asymptotic analyses, are correct. A principal goal of the 
present paper is to attempt to provide a rigorous basis for the 
asymptotic forms employed in the growing crack analyses of 
Rice et al. [1], Rice [2], Drugan et al. [3], and other re
searchers (whose work is reviewed in [2, 3]). In addition, I will 
sharpen the asymptotic expressions used in these studies, as 
well as demonstrate their validity for a wider class of 
problems than those thus far analyzed. 

The results presented herein have already facilitated a 
higher-order analysis (Drugan, [4]) of the plane-strain crack 
growth problem studied by Drugan et al. [3], this higher-order 
analysis differing from typical perturbation analyses in that 
the higher-order structure of the continuum fields is derived 
rather than assumed. Furthermore, I anticipate that the 

Contributed by the Applied Mechanics Division for publication in the JOUR
NAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, February, 1984; final revision, September, 1984. 

V11 

Fig. 1 Cartesian coordinates x-i, x j , x3 are fixed in the body; polar 
coordinates r, 0 are centered at the tip and move with it through the 
material as the crack grows 

present results may be suggestive, if not directly applicable, in 
the analysis of a number of yet unsolved problems (e.g., crack 
growth for more general constitutive models). 

The geometry of the crack problems considered is as 
depicted in Fig. 1: a Cartesian coordinate system x{, x2, x3 is 
fixed in the body, with xx pointing in the direction of crack 
growth, a being the measure of crack length, and x3 lying 
parallel to the crack front (which is presumed to be straight). 
A polar coordinate system r, 9 lies in the xx, x2 plane, is 
centered at the crack tip, and moves with it through the 
material as the crack grows; 6 is measured from the line ahead 
of the crack. The unit vectors e and h correspond to the radial 
and angular directions, respectively, of this translating polar 
coordinate system. Therefore 

dr/dXj = e,, dd/dXi =hjr (1.1) 
where 

e, =h2 =cos0, e2= -hl=sin6, e3=/<3=0. (1.2) 
Here and throughout the paper, Latin indices ;', j , k, and / 
have range 1, 2, 3, obey the Einstein summation convention, 
and indicate Cartesian components of tensors. 

The two order symbols 0[w(/-)] and o[w(r)] will be used, 
where here w(r) is an arbitrary gauge function chosen for 
purposes of illustration. A function d(r) can be characterized 
as 
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d(r) = 0[w(r)] 

if 

lim 
r-0 

d(r) 

w(r) 

d(r) can be characterized as 

d(r) = o[w(r)] 
if 

lim 
r-0 

d(r) 

w(r) 

as r—0 

<oo; 

as r—0 

= 0. 

A clear discussion of the use of order symbols and gauge 
functions is given by Van Dyke [5]. 

2 Assumptions 

2.1 Geometry. The analysis to follow will treat two-
dimensional crack problems. In particular, the crack front is 
assumed to be straight and, with reference to Fig. 1, the 
continuum fields of stress, strain, body force, etc., are 
assumed independent of x3 . Thus, the stress field near an 
advancing crack tip will be regarded as 

ffy = ay(r,e,0. (2.1) 

In addition, I will neglect the effects of geometry changes due 
to ongoing deformation on the formulation of stresses and 
stress rates, and on the form of the equilibrium equations. 
This is equivalent to the usual "small strain" (i.e., small 
displacement gradient) assumption. 

2.2 Material. The principal constitutive restrictions on 
the class of solids considered are that deviatoric components 
of stress are assumed to be bounded, that the elastic part of 
total strain is linearly related (although with arbitrary 
anisotropy) to the stress state, that stress is derivable from a 
positive-definite elastic strain energy function, and that 
inelastic deformation proceeds in accordance with the 
principle of maximum plastic resistance (discussed in the 
following). The latter three constitutive assumptions, together 
with the requirements of equilibrium and a continuous 
displacement field, are sufficient to prove that the stress field 
near a quasistatically growing crack tip must be fully con
tinuous (Drugan and Rice, [6]). This property of the stress 
field renders more plausible the assumption, employed 
throughout the present paper, that au(r,d,t) are differentiable 
with respect to each independent variable for small r > 0. 
Since the study of Drugan and Rice [6] assumes continuity of 
all displacement components, their proof of full stress 
continuity does not apply for the special case of plane stress, 
where the thickness direction displacement component need 
not be continuous (Hill, [7]). Thus the derivations to follow 
are valid for the cases of plane strain, antiplane strain, and 
general combinations of these two. The special case of plane 
stress is discussed separately in Section 6. 

The principle of maximum plastic resistance may be stated 
as 

(Oij-apdefj^O (2.2) 

where o,j is the stress state (at yield) corresponding to the 
plastic strain increment defj, and afj is any other stress state 
that is at or below yield. As discussed by Rice [8, 9], this 
principle, especially in its small strain form as employed here, 
results from a number of different viewpoints and is thus 
believed to be a sensible characterizer of metal plasticity. 

Note that the constitutive assumptions delineated in the 
foregoing, and hence the resulting requirement of full stress 
continuity near a quasistatically advancing crack tip, restrict 
but do not exclude inelastic behavior characterized by strain 
hardening, as well as inelastic behavior that is time-
dependent. The latter is true since, as shown by Rice [8], the 
principle of maximum plastic resistance is also a sensible 

restriction for urns-dependent inelastic deformation in metals 
if the concept of the yield surface is replaced by that of the 
inelastic flow potential surface. This means that inequality 
(2.2) applies if cr° is understood to represent a stress state lying 
within or on the current flow potential surface. Drugan and 
Rice [6] point out that their proof of stress continuity is valid 
for isotropically hardening solids, and also for a large class of 
anisotropically hardening solids defined by the requirement 
that the current yield locus at any step of the deformation 
incorporate all prior yield loci. I emphasize that time-
dependent and strain-hardening material behaviors are in
cluded in the present treatment provided that the material 
model employed disallows unbounded deviatoric stresses. 
Since many established models of time-dependent or strain-
hardening behavior permit unbounded derivatoric stresses, 
the primary application of the results derived here is to solids 
which are elastic-ideally plastic, but in the generalized sense 
that some rate sensitivity or strain hardening is permitted 
before deviatoric stresses saturate to finite levels. 

2.3 Equilibrium. This study treats problems of the 
quasistatic type, meaning that the inertia terms in the 
equations of motion are negligible. Such processes are 
governed by the equilibrium 

doij/dXj+f^Q (2.3) 

where a^ = ay, are components of the stress tensor, and/ , are 
components of the body force vector which are also assumed 
to be bounded. These equations may be rephrased in terms of 
the translating polar coordinate system by regarding au = 
Ojj(r,6,t) in light of the assumptions of Section 2.1, and by 
using (1.1): 

(doij/d6)(hj/r) + (dou/dr)ej +f, = 0. (2.4) 

In terms of polar components of stress, these equations are 
dorr 1 dare a„-am 

1 -| yj - y 
or r dd r 

d°r(J 1 

dr r 36 
2°r6 

+fe=0 

dr 
+ -

r dd 
+ - + A = o 

(2.5a) 

(2.5b) 

(2.5c) 

where z=x}. 

3 Asymptotic Structure of the Stress Field 

Since a principal goal of the study is rigorous derivations of 
asymptotic forms of general continuum expressions and 
governing equations, and since these involve first partial 
derivatives of stress with respect to the independent variables 
in (2.1), it is necessary to establish the asymptotic order of 
such first partial derivatives. This will be accomplished by 
employing the assumptions of Section 2. 

3.1 Radial Derivative of Stress Components. To establish 
the asymptotic order of the terms da^/dr, we begin by con
sidering the equilibrium equations (2.5) when multiplied by r. 
In this form they suggest the plausibility of the assumption 
that 

rdojj/dr exist in the limit as/-—0, (3.1) 

in light of the boundedness assumptions o n / , and deviatoric 
stress components. On the basis of (3.1) we may write 

l im rdcjy/d/'l =AiJ(0,t) 

where Aij(d,t) are as yet unknown. It follows that 

dau/dr = Aij(8,t)/r + o(l/r) as r - O . (3.3) 

Integrate this with respect to r for r small to obtain 

ou=-AiJ(e,t)ln(R/r) + o[ln(R/r)] a s r - 0 , (3.4) 

(3.2) 
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where R is an undetermined constant having length dimen
sions. Divide this equation by [ln(R/r)}\ 

Ojj/[ln(R/r)\= -A,j(Q,t) + o{\) a s r - 0 . (3.5) 

In terms of deviatoric stress components Sy(s<j/; - 1/3 btjokk), 
(3.5)is 

sIJ/[ln(R/r)]=-A,J+-&,JAkk+o(\) as r - 0 . (3.6) 

Now, take the limit of (3.6) as r—0, invoking the boundedness 
of s,j to obtain 

Au(e,t)--SuAkk(e,t)^0. (3.7) 

This shows, via (3.2), that 

lim [rasy/drl =0, (3.8) 

which now may be employed to elucidate the asymptotic 
structure of the hydrostatic stress component o u / 3 . 

Asymptotic Boundedness of Hydrostatic Stress Com
ponent. To prove that hydrostatic stress is bounded as r—0, 
we enforce circumferential equilibrium, equation (2.5b), in 
the rearranged form 

dam/dd= -2ari)~-rdarl,/dr-rf(l. (3.9) 

Integrating (3.9) with respect to Oat fixed/- ^ Oand /gives 

<% = - 2 j _ orl)d<t> - j _ (rda,(l/dr)d<t> - j _ _ rf,d<P, (3.10) 

assuming traction-free crack faces; if the crack faces were 
subject to a traction of finite magnitude, (3.10) would contain 
an additional bounded term which would not affect the proof. 
Now making use of the bounded body force assumption and 
the result (3.8), we examine (3.10) as r—0 to find 

aeo=-2\ or0d4> + o{\) as r - 0 , (3.11) 

which shows that am is bounded as /•—0 since arl) is by 
assumption (Section 2). Thus, coupling (3.11) with the 
assumption that all deviatoric stress components are bounded 
proves that the hydrostatic component of stress is bounded in 
the limit of r~0, and therefore that all components of stress 
are bounded in that limit. Applying this result to (3.5) in the 
limit as r —0 now shows 

Aij(e,t) = 0 (3.12) 

so that from (3.2) we obtain the important conclusion 

dojj/dr = o(l/r) as r - 0 . (3.13) 

Since many previous studies of near-tip fields depend on the 
veracity of (3.13), I next provide an alternate proof to the one 
in the foregoing. Here, instead of (3.1), I assume that for 
sufficiently small r„ > 0: 

(/') do/j/dr are defined on the open interval 0 < r < r o for 
each fixed d,t, and 

(//') Idojj/drl aremonotonic in ronO < r<r0. 

First, if \da,j/dr\ are nonincreasing as r—0, then obviously 
r \datJ/dr\ — 0 as r—0, so we need only consider the case of 
increasing \dou/dr\ as r—0. The stress continuity proof of 
Drugan and Rice [6] when applied to the radial behavior of ay-
holds for r > 0 , but since all deviatoric components of stress su 

are assumed bounded (Section 2), they are continuous on the 
closed interval [0,ro]. Then f o r 0 < r < r o 

\sil{r,d,t)-sij{0,0,t)\ 

= \rds,j(tfi,t)/dr\ > \rds,j(r,0,t)/dr\, (3.14) 

where the equality is the mean value theorem, with £ lying 
somewhere in the open interval (0,r) and since therefore £<r , 
the inequality in (3.14) follows from Assumption (//) in the 
foregoing. Since the first term of (3.14) vanishes as r—0 due 
to continuity of stJ, so too does the last term, thus proving 
(3.8). Result (3.8) then permits use of circumferential 
equilibrium to prove boundedness of hydrostatic stress as 
r—0, as in the preceding equations (3.9)-(3.11). This means 
that hydrostatic stress must also be continuous on the closed 
interval [0,ro], so that (3.14) may now be written for the 
hydrostatic stress component, and this combines with the 
foregoing proof of (3.8) to prove (3.13). 

Results that are more strict than (3.13) are obtained by 
reapplying part of the first proof of (3.13); in particular, the 
slightly stronger requirement that 

^ / a ' ' = ° [ ^ ( k o ] a s ' - ° (3-15) 
is a crucial result (e.g., see Drugan, [4]). To prove (3.15), we 
strengthen (3.1), on the basis of result (3.13), to the assump
tion that 

r[ln(R/r)]d<jjj/dr exist in the limit as r - 0 , (3.16) 

and hence write 

lim \r[ln(R/r)]da,/dr)=Bu(0j) (3.17) 
r-0 

where Bjj(0,t) are initially unknown. Now, following steps 
similar to those from (3.2-3.5), we find that (3.17) leads to 

Oij/ln[ln(R//•)]= -£ y (0 , / ) + o(l) a s r - 0 . (3.18) 

Taking the limit of this as r-0, enforcing the boundedness of 
ay, shows B^(0,t) = 0, which via (3.17) demonstrates (3.15). 

3.2 Circumferential and Time Derivatives of Stress 
Components. If in addition to the assumptions of Section 2 I 
assume that da^/dd and do^/dt admit the following asymp
totic representations (where here no summation is implied by 
repeated indices) 

dou/dO = au(r)Cij(0,t) + o[aij(r)] a s r - 0 (3.19) 

d<7iJ/dt = bij(r)Dij(8,t) + o[blj(r)] a s r - 0 (3.20) 

where the functions ajJt btj, Cijy and Z)y are initially un
specified except that Cy- and Z?y are bounded but not iden
tically zero, then the maximum asymptotic orders of these 
quantities must be 

do,-,730 = 0(1) a s r - 0 (3.21) 

da,j/dt = 0(1) a s r - 0 . (3.22) 

I will prove (3.21) and (3.22) by contradiction. Beginning 
with (3.22), only the (11) component will be treated since the 
proof for any other component is identical. Suppose 

ld<7M/drl-oo as r - 0 . (3.23) 

From assumption (3.20), 

dou/dt = bu(r)Du(0,t) + o[blt(r)] as r - 0 , (3.24) 

which can be integrated with respect to time at fixed r, 0 to 
give 

au=bu(r)\ Du(8,T)dT + F(r,8) + o[bu(r)] a s r - 0 , (3.25) 

where F(r,d) is a function of integration. Expression (3.25) 
could meet the boundedness requirement on an in the limit of 
r—0 only if F(r,0) were to cancel the singularity of the bu(r) 
term as r—0, but this is not possible for general / since bu (r) 
is multiplied by a function of / (which cannot be identically 
zero since Du(0,t) =£ 0). Thus (3.25) requires b{i(r) to be 
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bounded as r~0, which via (3.24) contradicts our supposition 
(3.23). 

The proof of (3.21) is identical to that given for (3.22) if the 
roles of 8 and t are interchanged and assumption (3.19) is 
employed in place of (3.20). 

4 Asymptotic Form of Equilibrium Equations 

The asymptotic bounds on stress derivatives proved in 
Section 3 will now be applied to show how the general 
equilibrium equations and other important expressions 
simplify for small r. In the case of the equilibrium equations, 
the results (3.15) and (3.21) are employed, showing that 
equilibrium requires (via(2.4)) 

(dcj,y/30)/!y+ol [/«(/?//•)]-'! =0 as / - -0 (4.1) 

or (via (2.5)) 

dorl)/dQ + orr-ow + o\[ln(R/r)]-l\=0 a s / - -0 (A.2a) 

dom/d6 + 2ore + o\[ln(R/r)}-l\=0 a s r - 0 (4.2/?) 

daez/dQ+arz+o{[ln(R/r)]-[} =0 a s / - -0 . (4.2c) 

5 Asymptotic Forms of Stress Rate 
Constitutive laws for the types of inelastic materials 

considered here usually involve the stress rate at a material 
point, by. Following Rice [2], a convenient expression for this 
quantity results from applying the chain rule to (2.1): 

by = (do ,j/36)6 + (dojj/dry+dojj/dt 

= (dou/d6)as\n6/r-(doij/dr)dcos6 + dou/dt (5.1) 

where a superposed dot denotes time rate at a material point, 
and we have employed 6 = a sind/r and r= —a cos6, which 
result from the translation of the crack tip polar coordinate 
system with the growing crack. 

Application of the results (3.15), (3.21), and (3.22) to 
expression (5.1) yield the two useful asymptotic forms 

bij = (do,j/d6)asm6/r-(dou/dr)acos6 + Q(\) a s / - -0 (5.2) 

bij = (dau/d6)dsmd/r + o\[rIn(R/r)]-i} a s r - 0 . (5.3) 

Previous analyses of lowest-order growing crack-tip fields 
by Rice et al. [1], Rice [2], and Drugan et al. [3] are based on 
the asymptotic results (4.2) and (5.3) (although in the weaker 
forms obtained by using (3.13) instead of (3.15)), which were 
assumed by those authors to be valid on the basis of the stress 
boundedness requirement of their elastic-ideally plastic 
constitutive models. A principal objective of this paper was to 
prove these pivotal hypotheses, while at the same time 
strengthening them and demonstrating that their applicability 
extends to the more general material class delineated in 
Section 2. 

6 Applicability to Plane Stress 

All preceding results are valid for the general class of 
materials specified in Section 2.2, where it was mentioned that 
the derivations of Sections 3-5 exclude the special case of 
plane stress, to which the Drugan and Rice [6] proof of 
continuity of all stress components does not apply. However, 
Pan [10] has proved that the stress field near a growing plane 
stress crack must be fully continuous for an isotropic elastic-
ideally plastic material which obeys the Prandtl-Reuss flow 
rule and Huber-Mises yield condition. Thus, for this specific 
material type at least, the principal results (3.15), (3.21), 
(3.22), (4.1), (4.2), (5.2), and (5.3) also apply to the plane 
stress case. 

7 Results for Stationary Crack Tip Analysis 

The derivations in Sections 3-5 are valid for the stress and 

Fig. 2 Distributed load moving quasistatically, with velocity V, across 
the surface of an elastic-plastic body under plane strain conditions 

stress rate fields near a quasistatically growing crack tip. 
Their extension to the case of a stationary crack is not 
automatic, since those results rely on the continuity of the 
stress field, which is necessary near a growing crack for the 
constitutive assumptions discussed (Drugan and Rice [6], Pan 
[10]), but not required near a stationary crack. However, 
some conclusions relevant to stationary crack tip analysis are 
still possible from the perspective of the preceding sections. In 
particular, (3.15) and hence (4.1) and (4.2) must hold if the 
dependence of oy on r is continuous, which would seem to be 
a reasonable assumption in the limit as the crack tip is ap
proached (since if a stress discontinuity surface were to exist, 
one would anticipate it to emanate from the tip, and hence to 
affect only the ^-dependence of ay in the limit as r—0). This 
supports the assumption made by Rice and Tracey [11] in 
their analysis of the fields near a stationary crack tip in an 
isotropic elastic-ideally plastic Prandtl-Reuss-Mises solid, 
namely that rdau/dr^0 as r—0, and hence that the first term 
of (2.4) is asymptotically dominant. 

If the loading applied to a cracked solid changes quasi
statically while the crack remains stationary, a plausible 
assumption for many materials is that the near-tip stress field 
changes continuously with time. Whenever this is true, 
assumption (3.20) leads as before to (3.22), and since a = 0 
for a stationary crack (5.2) reduces to 

a,, =0(1) as/--(J. (7.1) 

For materials that exhibit a linear relationship between the 
stress state and the elastic part of total strain, (7.1) implies 
that all elastic strain rate components must be bounded at a 
stationary crack tip given the assumptions stated above. 

8 Application to Related Problems 

The derivations of Sections 3-5 are applicable to many 
problems which share a similar feature with the crack growth 
problems that motivated this work; in particular, problems 
that involve the quasistatic motion of certain geometric or 
load inhomogeneities through, or across the surface of, an 
elastic-plastic body. Just as for the crack problems, these 
results help elucidate the structure of the stress and stress-rate 
fields in the neighborhood of such a moving geometric or load 
inhomogeneity. 

I mention just one example that will hopefully be suf
ficiently suggestive of the nature of related problems for 
which the results of this work can prove useful. Consider the 
plane strain problem of the quasistatic motion of a distributed 
load across the surface of an elastic-plastic body, as 
illustrated in Fig. 2. For any elastic-plastic material within the 
class described in Section 2, the structure of the stress and 
stress-rate fields in the vicinity of the leading and trailing 
edges of the distributed loading is delineated by the results of 
Sections 3-5; i.e., the asymptotic equations and expressions 
derived in those sections apply for rx, #, and r2, 62 of Fig. 2. 
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