
Vector-Field Consistency for Ad-hoc Gaming

Nuno Santos, Lúıs Veiga, Paulo Ferreira

INESC-ID/Technical University of Lisbon
Distributed Systems Group

Rua Alves Redol N 9, 1000-029 Lisboa
[nuno.santos, luis.veiga, paulo.ferreira]@inesc-id.pt

Abstract. Developing distributed multiplayer games for ad-hoc net-
works is challenging. Consistency of the replicated shared state is hard to
ensure at a low cost. Current consistency models and middleware systems
lack the required adaptability and efficiency when applied to ad-hoc gam-
ing. Hence, developing such robust applications is still a daunting task.
We propose i) Vector-Field Consistency (VFC), a new consistency model,
and ii) the Mobihoc middleware to ease the programming effort of these
games, while ensuring the consistency of replicated objects. VFC uni-
fies i) several forms of consistency enforcement and a multi-dimensional
criteria (time, sequence and value) to limit replica divergence, with ii)
techniques based on locality-awareness (w.r.t. players position). Mobihoc
adopts VFC and provides game programmers the abstractions to manage
game state easily and efficiently. A Mobihoc prototype and a demonstrat-
ing game were developed and evaluated. The results obtained are very
encouraging.

Key words: Consistency Management, Replicated Objects, Locality-
Awareness, Multiplayer Games.

1 Introduction

The growing utilization of personal appliances such as PDAs and cell phones en-
ables the proliferation of ad-hoc networks. Ad-hoc networks form spontaneously
between two or more devices communicating via wireless interfaces. Due to their
entertaining nature and motivated by this technological advance, distributed
multiplayer games are particularly interesting to deploy in such environments.
Once an ad-hoc network is formed, people may play these games irrespective of
the place they are (e.g. public transports, restaurants) without the need for a
structured network and without incurring into any connectivity expenses.

In distributed multiplayer games there is a need for data sharing between the
network nodes (e.g. player positions, maps, scores). Enforcing data consistency
requires additional communication for update propagation and synchronization
operations. In ad-hoc networks, communication-intensive operations are criti-
cal and have a twofold negative impact. Firstly, the high latency, the reduced
network bandwidth and the small processing capability of devices brings over-
heads that dramatically hinder game playability. Secondly, extensive access to

the network causes devices batteries to consume rapidly. In order to circumvent
these negative impacts, game programmers tend to use programming tweaks,
low level optimizations and error-prone message-passing approaches to keep the
shared data consistent. As a side effect, software becomes harder to manage and
less reliable.

Current approaches to optimistic consistency [1] relax the strict consistency
model to reduce communication expenses. The common assumption is that ap-
plications may allow data inconsistencies up to a certain limit and enable appli-
cation programmers to specify these limits according to the semantics of appli-
cations. The criteria for slacking consistency varies: by divergence between the
values of replicas, on a time-basis [2], by applying application based predicates on
replica values [3, 4], sequential ordering [5], or combining several approaches [4,
6]. However, these proposals are inadequate to cope with the dynamics of dis-
tributed games: consistency requirements change often and quickly throughout
the game execution, namely w.r.t. the players’ position in the virtual world.
The above mentioned systems lack the required adaptability and are inefficient
when applied to the ad-hoc scenario. On the other hand, current middleware
for multiplayer games embodies the notion of locality-awareness (traceable to [7,
8]) but offer a very limited consistency model [9], or use it just to drive load-
balancing [10] and network traffic between servers [11].

In this paper, we propose a new consistency model for replicated objects
called Vector-Field Consistency (VFC) and present Mobihoc, a middleware adopt-
ing VFC to support multiplayer distributed games in ad-hoc networks. A Mo-
bihoc prototype was implemented on the J2ME platform. To demonstrate its
feasibility, a distributed version of Pacman was implemented on top of Mobihoc.
Both Mobihoc and Pacman were deployed and evaluated in real mobile phones
(Nokia 6600) with good performance results.

VFC is an optimistic consistency model allowing bounded divergence of the
object replicas. The VFC novelty is the following. VFC selectively and dynami-
cally strengthens/weakens replica consistency based on the ongoing game state
while elegantly managing i) how the consistency degree changes throughout game
execution, and ii) how the consistency requirements are specified. The first issue
is dealt by employing locality-awareness techniques. It considers that through-
out the game execution, there are certain ‘observation points’ we call pivots
(e.g. the player’s position) around which the consistency is required to be strong
and weakens as the distance from the pivot increases. Since pivots can change
with time (e.g. if the player moves), objects consistency needs can also change
with time. The second issue is handled by providing a 3-dimensional vector for
specifying consistency degrees. Each dimension of the vector bounds the replica
divergence in time (delay), sequence (number of operations) and value (mag-
nitude of modifications) constraints. Game programmers parameterize VFC by
specifying both the pivots and the consistency degrees according to game logic.

The advantages of VFC are manyfold. First, it is flexible and easily perceived
by game programmers: the consistency model based on pivots is intuitive and
the parameterization settings allow the game programmer to specify the consis-

tency requirements for a wide range of game scenarios. Second, from the players
viewpoint, VFC allows user experience to proceed within acceptable parameters
in the sense that, as far as the players are concerned, the rules of the game
are being abided to, and users are provided with all the relevant information
(e.g. immediate surroundings, opponents’ scores) to make sensible game deci-
sions. Also, by intelligently selecting the critical updates to send and postponing
the less critical ones, VFC is efficient in the utilization of resources, it reduces
network bandwidth usage and masquerades latency. Thus, for each particular
game, programmers are able to specify the consistency requirements that enable
a more efficient use of the network by tolerating bounded inconsistencies that do
not jeopardize the overall game state and the players experience. This is mostly
useful for those games where the number of updates to propagate is high and the
interactivity with the user is demanding. Despite addressing multiplayer games,
VFC and Mobihoc can also be used to develop any other cooperative applications
based on replicated shared-data.

This paper is organized as follows. Section 2 briefly describes the VFC con-
sistency model. Section 3 presents the Mobihoc architecture. Section 4 describes
the implementation details of Mobihoc. Section 5 presents and discusses the
obtained experimental results. Section 6 surveys the relevant related work and
Section 7 draws some conclusions.

2 Consistency Model

In VFC, objects are positioned within a virtual world, an abstraction of an N-
dimensional space. Without loss of generality, we consider the virtual world to
be 2-dimensional. In many games these abstractions map immediately to the
game semantics; for example, in the Pacman game, the virtual world is a 2-
dimensional maze populated with objects such as avatars, ghosts and dots. Each
node of the network has a local view consisting of a full local replica of the
virtual world. Each view may have bounded inconsistencies. VFC characterizes
how these inconsistencies are managed.

The remainder of this section describes the two main ideas underlying the
VFC model: consistency zones describe how the consistency of object replicas
varies in each view (see Section 2.1), and consistency vectors characterize the
consistency degrees (see Section 2.2). Section 2.3, proposes two generalizations
of the basic VFC model and systematizes the parameters for setting VFC from
the game programmers’ viewpoint.

2.1 Field-Generated Consistency Zones

Within a particular view, object consistency depends on their distance to a pivot
(P). It is characterized by a position in the virtual world and it can move over
time. A pivot can be an object (e.g. the Pacman player) or just a function (e.g.
an editor cursor). Figure 1.a illustrates a virtual world populated with objects
o1, o2, o3, o4 and o5. The pivot (o5) is signed with a star.

o
2

o
1

o
3

x

y

0

o
4

z
1

z
2

z
3

z
4

P

o
5

Consistency

Zones

7

6

0

o
2

o
1

o
3

o
4

z
1

z
2

z
3

z
4

P

o
5

px

py

a. Conceptual consistency zones. b. Simplified consistency zones.

Fig. 1. Consistency zones centered on a pivot within a virtual world.

7

6

0

o
2

o
1

o
3

o
4

o
5

P
A

o
6

7

6

0

o
2

o
1

o
3

o
4

o
6

P
B

o
5

a. Node A view. b. Node B view.

Fig. 2. Two views of the same virtual world.

By analogy with the electric (−→E) and the gravitational (−→G) fields, a pivot
generates a ‘consistency field’ determining the consistency of each object as a
function of the distance between the object and the pivot. Thus, pivots generate
consistency zones, iso-surfaces, ring shaped, concentric areas around them, such
that the objects positioned within the same consistency zone are enforced the
same consistency degree. For example, in Figure 1.a, pivot P is in the center
of four consistency zones labeled zi, where 0 ≤ i ≤ 4. Objects o2 and o3 are
enforced the same consistency degree since they are in z3.

Each consistency zone maps to a consistency degree (ci) of a consistency scale.
A consistency scale C = 〈c1, . . . , cn〉 is an ordered set of ci, each specifying the
consistency to be enforced within zone zi. The property ci > ci+1 holds, meaning
that ci enforces stronger consistency than ci+1. Thus, consistency zones are
arranged monotonically; consistency degrees become weaker as the distance to
P increases. In Figure 1.a, darker consistency zones impose stronger consistency
requirements. For example, if P represents the player and the other objects are
ghosts of the Pacman game, ghosts consistency weakens as they are farther from
the player. Specification of consistency degrees is detailed in Section 2.2.

Consider λi the radius of the outer circumference of zi. We define zi as fol-
lows: i) if i = 1 then z1 is the circle of radius λ1, ii) if i > 1 then zi refers

to the area enclosed between zi and zi−1 (a ring). Thus, if a pivot P is sur-
rounded by n consistency zones, it is necessary and sufficient to specify λi to
all i where 1 ≤ i < n. The consistency zone zn refers to the area beyond the
circumference of radius λn−1. This is represented by vector Z = [λ1, ..., λn−1].
Since it is computationally expensive to determine if an object is within a radial
surface, we define consistency zones as concentric squares instead of concentric
circles, as depicted in Figure 1.b. Also, λ represents not the radius of the outer
circumference, but half the side of the outer square. For example, consistency
zones of Figure 1.b are defined by Z = [1, 2, 3] and objects are distributed by
the following zones: {o1, o5} → z1, {o2, o3} → z2, {o4} → z3.

Determining the consistency degree of an object depends on its relative po-
sition w.r.t. the pivots. Thus, the same object may have different consistency
degrees in different views. Figure 2 illustrates this by depicting the views of two
nodes, A (Figure 2.a) and B (Figure 2.b), respectively, with pivots PA and PB .
Both pivots generate the consistency zone pattern Z = [1, 2, 3]. Hence, for ex-
ample, o2 → z2, in A, while o2 → z4 in B. This implies that o2 consistency is
stronger in A than in B, which is expected since o2 is closest to a pivot in A.

2.2 Consistency Degree Vectors

VFC describes the consistency degrees as 3-dimensional consistency vectors κ =
[θ, σ, ν]. κ bounds the maximum objects divergence in a particular view, i.e.
between the objects latest updates and their replicas in that view. In short, for
each object o, κ bounds the staleness of o in a particular view. Each dimension is a
numerical scalar defining the maximum divergence of the orthogonal constraints
time (θ), sequence (σ), and value (ν)1, respectively.

– Time – Specifies the maximum time a replica can be without being refreshed
with its latest value, irrespective of the number of updates performed in-
between. Consider that θ(o) provides the time passed from the last replica
update. The time constraint κθ enforces that, at any time, θ(o) < κθ. This
scalar quantity measures time in seconds.

– Sequence – Specifies the maximum number of lost replica updates, i.e. up-
dates that were not applied to a replica. Similarly, consider that σ(o) indi-
cates the number of lost updates. The sequence constraint κσ enforces that,
at any time, σ(o) < κσ. The unit is the number of lost updates.

– Value – Specifies the maximum relative difference between replica contents
or against a constant (e.g. top-value). Consider that ν(o) provides this dif-
ference. The value constraint κν enforces that, at any time, ν(o) < κν . The
unit of variation is a percentage. It captures the effects of updates on the
object internal state and is implementation dependent (e.g. it may reflect a
drift regarding the player score or the player life charge).

The overall maximum divergence is obtained by the disjunction of all the κ
vector dimensions. For example, consider the consistency vector κ = [0.1, 6, 20].
1

Although in modern Greek, the vee sound is written using the letter β, we prefer to use the letter
ν, for its resemblance with the latin v.

7

6

0

o
2

o
1

o
3

P1

o
4

P2
z

0

z
1

z
2

Fig. 3. Multi-pivot generalization.

o
1

o
2

P o
4

o
5

o
3

o
6

o
7

z
0

z
1

z
0

z
1

z
2

o
8

1

2

Fig. 4. Multi-zones generalization.

Parameter Description

Oi Subset of objects that the consistency specification refers to. Oi are exclusive meaning that
for every two φi and φj of φ, if o ∈ Oi ⇒ o 6∈ Oj . Moreover, for every object o, there must
be a φi such that o ∈ Oi.

Z Consistency zone vector Z specifying how to draw the consistency zones around the pivots. It
is #Z sized and specifies #Z + 1 consistency zones.

C Consistency scale characterizing the consistency degrees for applying into the consistency zones.
It is #C sized with #C = #Z + 1 consistency degrees.

V Set identifying the pivot objects for each view of the virtual world.

Fig. 5. Table describing the φ parameters of VFC.

Hence, at maximum, replicas are outdated in κθ = 0.1 seconds or κσ = 6 lost
updates or with a κν = 20% variation in the replica internal state. To indicate
the least possible requirements, i.e. no requirements on that dimension, we use ‘.’
(mathematically, this symbol represents ‘∞’). For example, κ = [0.1, 6, .] imposes
no consistency constraints whatsoever regarding the replica internal state.

In VFC, consistency degrees are specified by κ vectors. In order to specify
a consistency scale obeying ci > ci+1 with κi and κi+1 vectors, the condition
κi+1 > κi must hold, i.e. for every κi+1u

≥ κiu and there is at least one v such
that κi+1v

> κiv , u, v ∈ {θ, σ, ν}. For example, C = 〈[0.2, 2, 10], [0.2, 5, 10]〉 is a
valid consistency scale: [0.2, 2, 10] stands for a stronger consistency degree than
[0.2, 5, 10] because the number of admitted lost updates is higher in the latter
(5) than in the former (2) and the other dimensions are equal. Also, we define
κM = [., ., .] as the highest consistency degree, and κm = [0, 0, 0] as the lowest
consistency degree, such that κm ≤ κi ≤ κM .

2.3 VFC Generalization

In this section we introduce two generalizations allowing a broader utilization
of the VFC model: multi-pivot and multi-zones generalizations. The multi-pivot
generalization admits more than one pivot per view. Figure 3 illustrates such
a case, with two pivots P1 and P2 in the same view. Objects are assigned the
consistency degree w.r.t. the closest pivot.

Mobihoc
Server-Side

Mobihoc
Client-Side

API

Virtual Machine/OS

Network Layer
Serialization Layer

Consistency

Management

Block

Object Pool

Primary

Session

Manager

Notification Services

Application

Server Side

API

Virtual Machine/OS

Network Layer
Serialization Layer

Object Pool

Replica

Session

Manager

Object Adaptation Layer

Application

Client Side

Activity Manager

Fig. 6. Mobihoc architecture.

The multi-zones generalization allows different sets of objects to be charac-
terized differently w.r.t. their consistency requirements. For example, in Pacman,
objects standing for ghosts and for rooms may be characterized with different
consistency requirements. Thus, n sets of objects may be assigned specifically:
i) consistency zones, ii) consistency degrees, and iii) pivots. Specification of each
set is designated by φi, where 1 ≤ i ≤ n; φ refers to all φi. Figure 4 shows an
example of two object set specific settings φ1 and φ2. The former characterizes
objects {o1, o2, o4, o5}. The latter characterizes objects {o3, o6, o7, o8}. Both have
the same pivot but different consistency zone specifications.

Summary. In order to specify the consistency requirements, game programmers
need to provide the VFC φ settings by describing individual object sets φi. Each
φi setting is described by φi = [Oi, Z, C, V], where Oi ⊆ O. Figure 5 presents a
table summarizing these parameters. As an example, the φ settings relative to
Figure 2 can be described by φ1 = [O,Z, C, P], where O = {o1, o2, o3, o4, o5, o6},
Z = [1, 2, 3], C = 〈κm, [., 1, .], [., 2, .], κM 〉 and, finally, V = {A → {o6}, B →
{o5}}. In this example, there is a single object set φ1.

3 Architecture

Mobihoc is a middleware platform aimed at supporting the design of multiplayer
distributed games for ad-hoc networks. Mobihoc enforces VFC by managing
the game state between the network nodes and provides programmers with the
adequate means to parameterize VFC according to game semantics.

Mobihoc follows a client-server architecture (see Figure 6).2 Upon the estab-
lishment of the ad-hoc network, one of the nodes becomes the server. Naturally,
the server device may also act as a client allowing all nodes to participate in the
game. The server has a coordinating role regarding data management: write-
lock management, update propagation and VFC enforcement. The client-server
protocol is orchestrated by the Session Manager components of each peer. Com-
munication is performed between clients and the server on a star like topology
using the services of components Network Layer and Serialization Layer.

2
The rationale for this choice is mainly due to the limitations of the Bluetooth technology that

imposes a single node of the network to relay all messages between any two nodes.

The remainder on this section presents, firstly, the mechanisms for read-
ing/writing objects (Section 3.1) and, secondly, the mechanisms for VFC en-
forcement (Section 3.2), and exposes other relevant architecture components.

3.1 Read & Write Objects

The shared data is a collection of objects. Each node maintains local replicas
of all objects in the Object Pool container. The server maintains a primary
copy of the object pool while the clients keep replicas of such objects. From the
architectural viewpoint, there is no restriction whatsoever w.r.t. the representa-
tion of data (e.g. object graphs, tuples, relations). Also, the Object Adaptation
Layer maps the application data representation to the Mobihoc internal data
representation.

Mobihoc allows clients to read and write objects through its API. Read oper-
ations are performed on the local replicas without locking requirements (clients
may read stale data). Write operations need to acquire locks in order to pre-
vent the loss of updates. The server manages locks centrally; clients exchange
messages with the server to acquire and release them. Object updates are sent
to the server when clients release locks. The server propagates the new object
versions to the other nodes according to the VFC specification.

With the exception of lock messages (for obtaining and releasing locks), nodes
operate periodically w.r.t. the interactions between them. The server, periodi-
cally, sends a message to all clients defining a round. This has a twofold impli-
cation. In each round, the server sends round messages to the clients; updates
are piggybacked on the round messages and merged at client pools at reception
time. On the other hand, it enables the execution of synchronized application
handler functions (activities) at the client side. Whenever a round message is
received the Activity Manager executes client activities. This feature may be
used by many games based on turns. For example, activities may be used to up-
date players locations, scores or other game state information. Since updates are
received and merged before executing activities, the game programmers know
that local replicas are stable when their activities execute.

3.2 Enforcement of the VFC Model

The Consistency Management Block (CMB) at the server side enforces the VFC
model. The CMB coordinates the propagation of updates to clients according to
the VFC consistency parameters specified by each client. There are two phases:
the setup phase and the active phase. During the setup phase, clients register
the objects to be shared and send their consistency parameters (VFC φ set-
tings) to the server; the CMB aggregates all the clients φ settings. The active
phase is when clients may access the registered objects. In this phase, the server
processes: 1) write requests (sent asynchronously by the clients piggybacked in
lock release messages), and 2) round events (triggered periodically). The CMB is
involved in handling both these events. It provides two functions that are called

CMB-Update-Received(o, uo)

1 D[o] ← 1

2 Enqueue(U, 〈o, uo〉)

CMB-Round-Triggered(t, M)

1 Merge(O, U)

2 u ← New-Vector()

3 for o ← 1 to #O

4 do if D[o] = 1

5 then Add(u, O[o])

6 D[o] ← 0

7 for c ← 1 to #C

8 do Piggyback(M [c], u)

a. CMB update handler. b. CMB round handler.

Fig. 7. Pseudo-code of CMB Version 1.

by the Session Manager (SM): CMB-Update-Received and CMB-Round-
Triggered. As both functions are called, the CMB accumulates and computes
the required information to build the clients’ consistency views according to
the previously specified φ settings. When called by the SM, the CMB-Round-
Triggered function returns the updates to be sent to each client, which the
SM piggybacks in the round messages.

In spite of implementing VFC, the CMB module offers a generic interface al-
lowing Mobihoc to support different consistency models. The remainder of this
section describes the internals of CMB that enforce VFC. The description of
the CMB algorithm is performed gradually as three versions are progressively
presented for a better understanding: 1) the CMB sends every client all updates
performed since the last round event, 2) the CMB supports consistency degrees
(κ vectors), 3) the CMB provides full VFC support, i.e. update sending obeys
the φ settings specified by clients. For each step we describe the algorithms un-
derlying CMB-Update-Received and CMB-Round-Triggered functions.

Version 1. In order to guarantee that all updates received since the last round
event are sent to all clients in the next round, the CMB keeps track of which
objects became dirty (i.e. were written) meanwhile in array D. Only the dirty
objects are propagated to clients. Figure 7 presents the pseudo-code of the al-
gorithms implementing this semantics. D has an entry per object of the object
pool. Whenever the server receives an update, CMB-Update-Received is in-
voked setting the object as dirty in D and putting the update in the queue
of pending updates U . At each round event, CMB-Round-Triggered is exe-
cuted: it merges the pending updates in the object pool and sends all pending
updates piggybacked in round messages to clients after testing the D dirty flags.
D is then cleared meaning that the new versions were sent to all clients.

Version 2. This version considers that, instead of sending all updates to every
client, there is a consistency vector κ, common to all clients. κ specifies when and
which updates must be propagated to clients. Figure 8 presents the pseudo-code
of the algorithms that support consistency vectors. The κ consistency vector ex-
presses three orthogonal dimensions (time, sequence and value). Each dimension
is evaluated independently and auxiliary data structures (S arrays) are kept for
each dimension. Without loss of generality, we assume there is a single and fixed

CMB-Update-Received(o, uo)

1 Sσ [o] ← Sσ [o] + 1

2 if Sσ [o] ≥ κσ or

3 |ν(uo)− Sν [o]| ≥ κν

4 then D[o] ← 1

5 Enqueue(U, 〈o, uo〉)

CMB-Round-Triggered(t, M)

1 Merge(O, U)

2 u ← New-Vector()

3 for o ← 1 to #O

4 do tδ ← t− Sθ[o]

5 if D[o] = 1 or tδ ≥ κθ

6 then Add(u, O[o])

7 D[o] ← 0

8 Sθ[o], Sσ [o], Sν [o] ← t, 0, ν(O[o])

9 for c ← 1 to #C

10 do Piggyback(M [c], u)

a. CMB update handler. b. CMB round handler.

Fig. 8. Pseudo-code of CMB Version 2.

κ vector for all clients, thus all clients receive the same updates obeying κ. Each
dimension is evaluated as follows:

– Time – Sθ keeps the time of the last sent update. Whenever this time exceeds
the one specified by κθ, the update is sent (see Figure 8.b lines 4-5) and the
CMB internal state (D and S arrays) is reset. The time is approximated to
a multiple of the round period.

– Sequence – Sσ is simply a counter of the number of updates that where
received by the server since the last update was sent. There is a counter per
object. When an update is received, this counter is incremented. When the
counter exceeds the value κσ, the object is set to dirty in D in order to send
the update in the next round (see Figure 8.a lines 1-4).

– Value – This qualitative dimension implies querying the object state to test
when the difference to the last propagated version exceeds κν . This query is
evaluated by a function ν, provided by the game programmer and dependent
of the game semantics. Sν keeps the query result of the last propagated
version and do the test of Figure 8.a line 3 whenever an update is received.

Version 3. In order to fully support VFC, it is required to maintain per client
consistency views. This imposes two extensions w.r.t. the CMB Version 2: 1) D
and S become bidimensional matrices where the additional dimension regards
individual client views, and 2) κ vectors are computed per object, per view,
according to clients φ settings. To this extent, additional data structures are
required: K, Z, C and P . K is a bidimensional matrix storing per object κ
vectors of each view, that are valid during a time slot. Z, C and P refer to the
data structures related to the clients φ settings (see Section 2.3).

Calculating κ vectors is straightforward (see Figure 9, lines 11-18). Function
Φ(c, o) → 〈Z,C, P 〉 retrieves the φ settings referring to o for each client view
s: Z, C and P . The algorithm proceeds as follows: 1) determines in which con-
sistency zone zcloser the object is, and 2) resolves and stores in K the object
consistency degree κ. Regarding the first step, since the object may be positioned
in more than one consistency zone, each one belonging to a pivot, it is necessary
to know which of these consistency zones imposes strongest consistency require-
ments. This is found by detecting which pivot is closer to the object, hence the

CMB-Update-Received(o, uo)

1 for c ← 1 to #C

2 do if D[c, o] = 1

3 then continue

4 κ ← K[c, o]

5 Sσ [c, o] ← Sσ[c, o] + 1

6 if Sσ[c, o] ≥ κσ or

7 |ν(uo)− Sν [c, o]| ≥ κν

8 then D[c, o] ← 1

9 Enqueue(U, 〈o, uo〉)

CMB-Round-Triggered(t, M)

1 Merge(O, U)

2 for c ← 1 to #V

3 do u ← New-Vector()

4 for o ← 1 to #O

5 do κ ← K[c, o]

6 tδ ← t− Sθ [c, o]

7 if D[c, o] = 1 or tδ ≥ κθ

8 then Add(u, O[o])

9 D[c, o] ← 0

10 Sθ [c, o], Sσ [c, o], Sν [c, o] ← t, 0, ν(O[o])

11 〈Z, C, P 〉 ← Φ(c, o)

12 zcloser ← −
13 for p ← 0 to #P

14 do 〈px, py〉 ← 〈P [p].x, P [p].y〉
15 〈ox, oy〉 ← 〈O[o].x, O[o].y〉
16 z ← Max(|px − ox|, |py − oy|)
17 zcloser ← Min(zcloser, z)

18 K[c, o] ← C[Z[zcloser]]

19 Piggyback(M [c], u)

a. CMB update handler. b. CMB round handler.

Fig. 9. Pseudo-code of CMB Version 3

z variable to evaluate the distance to a pivot and zcloser to keep the shortest
one. Finding the distance from object o to a pivot P = 〈px, py〉 implies discov-
ering in which P centered square of side l the object 〈ox, oy〉 is positioned such
that z = l/2 = Max(|px − ox|, |py − oy|). Since consistency zones are delimited
by squares centered in P , it is enough to compare z with half the length of
the squares that bound a certain consistency zone (e.g. s1 for the inner square
and s2 for the outer square). Thus, the object is ensured to be in a determined
consistency zone if s1 < z ≤ s2. The operation that provides the number of
the consistency zone based on zcloser is Z[zcloser] in line 18. After determin-
ing which is the consistency zone of the closest pivot, determining which is the
corresponding consistency degree is simply done by consulting the C table.

4 Implementation

A prototype of Mobihoc was implemented on J2ME. Mobihoc can be deployed
on J2ME MIDP 2.0 CLDC 1.0 compliant devices. The prototype design follows
the architecture of Figure 6. In this section, we specify the most relevant imple-
mentation details of the internal components (Section 4.1) and provide a brief
insight on how the game programmers specify the VFC φ settings (Section 4.2).

4.1 Implementation Internals

We adopted Bluetooth to support communication between the network nodes.
The Network Layer (see Figure 6) uses JSR 82, the J2ME Bluetooth API, for
discovery of nearby devices and services, management of active connections and
sending/receiving data. Internally, the Network Layer is multithreaded in order

Client

Idle Subscribing

msgSubscribeRes=no

subscribe/

msgSubscribeReq

Subscribed

msgSubscribeRes

= yes

msgPublishAll

Submitting

submit/

msgSubmitReq

msgSubmitRes

msgPublishAll

Active

enable/

msgEnable

msgEnableAll

msgRoundAllunlock/msgUnlock

Locking

msgRoundAll

lock/

msgLockReq msgLockRes
Deactivating

disable/

msgDisable

msgDisableAll

msgDisableAll

msgDisableAll

Server

Idle

Setup

msgSubscribeReq/msgSubscribeRes=yes

msgSubmitReq/msgSubmitRes,msgPublishAll

msgLockReq/msgLockRes

msgUnlock/-

msgSubscribeReq/msgSubscribeRes=no

msgSubmitReq/msgSubmitRes=no
msgEnable/

msgEnablAll

alarm/msgRoundAll

Active

msgDisable/

msgDisablAll

a. Client-side state machine. b. Server-side state machine.

Fig. 10. Client and server Session Manager state machines.

to prevent blocking and increase parallelism. All messages exchanged between
peers are implemented as Java objects.

Due to the lack of binary object serialization support in J2ME, a Serial-
ization Layer was implemented in order to (un)marshal objects (see Figure 6).
It requires objects to implement a specific interface allowing the middleware
to read and write the object fields. The game programmer does not have to
implement this code; a compiler was developed that transparently extends the
application source code accordingly. Naturally, since it is not possible to access
the already compiled class code, there are several limitations concerning the ob-
jects that can be serialized. The fields of the serializable objects are required to
be: i) Java primitive types or, ii) serializable objects or, iii) arrays of primitive
types/serializable objects or, iv) Vector and Hashtable objects of the Java API.
Message objects exchanged via the Network Layer observe these restrictions.

Game programmers are invited to share data as Java object graphs. The
current implementation of the Object Adaptation Layer maps directly the ob-
jects of the graph into objects individually managed and stored in the object
pools. Further optimizations may assemble clusters of application level objects
to be managed as single units. Notice that, since these objects require to be
(de)serialized in order to be exchanged between clients and server, game pro-
grammers must follow the constraints imposed by the Serialization Layer.

The Mobihoc core consists of the CMB and the Session Manager components.
The CMB internals implement the algorithms presented in Figure 9, regarding
both the functionality and the data structures. The Session Managers of both the
client and server sides execute the protocol that provides the Mobihoc services to
the game programmers. Each implements its own state machine (see Figure 10).
Shaded circles represent the states; arrows between the states represent state
transitions. State transitions are triggered by events. Each arrow description has
two parts separated by a slash: the left side is the event name, the right side is the
outgoing message sent to the remote peer. Straight arrows represent incoming
messages, dashed ones represent API requests or internal events.

Due to space constraints it is not possible to fully explain the details of the
Session Manager state machines. Briefly, Session Managers coordinate in order

to enforce the two phases already presented in Section 3: the setup and the active
phases. Broadly speaking, first, the server declares its intention to accept client
connections and enters the Setup state. Then, clients connect to the server and
subscribe into its services. Clients may now submit to the server the objects to
be shared, which the server forwards to every client. When the server receives an
enable request, it switches to the Active state and the system enters the active
phase. While in this state, the server sends periodic round messages and handles
lock and release requests. Updates are received by the server piggybacked with
the release messages. The system leaves this phase when clients send the server
a disable request causing the server to switch to the Idle state.

4.2 Integration with Programming Languages

For a consistency model to be widely used, it should be seamlessly integrated
with popular programming languages, such as Java and C#. In this section, we
describe how programmers can programmatically specify VFC φ settings.

Pivots are registered by name and objects are associated with them using
the Mobihoc overloaded methods setPivot(String, Object) and setPivot(
String, Object []). Sets of objects are selected by applying VFC declar-
ative tags to object classes in source code, represented as Java annotations
(@VFCPlane{}, @VFCZone{}) or .Net attributes ([VFCPlane()], [VFCZone()])
with parameters stating zone ranges and κ-tuple components (e.g. @VFCZone{int
range, float time, int sequence, float valueDiff}).

Java support for annotations is limited. In J2SE, it disallows multiple applica-
tions of the same annotation (even with different parameters) to the same class.
Therefore, we make use of composite annotations (e.g. @VFCPlane{} that en-
capsulates the parameters of multiple @VFCZone{} annotations). In J2ME, there
is no support for annotations whatsoever. Therefore, they are parsed as source
code comments and classes extended to bear annotation parameters as private
static fields. In .Net (including .Net CF) there is support for multiple application
of attributes to classes which eases programmers’ lives (e.g. [VFCZone(range,
time, sequence, valueDiff]) applied as [VFCZone(10,0.5,5,0.2)], [VFC
Zone(20,1.5,15,0.6)] and [VFCZone(30,4.5,25,0.9)]).

To allow inspection of objects by Mobihoc, classes must implement the
IVFCConsistency interface that describes three methods: getPosition for ob-
jects to provide their current coordinates in the virtual world, getValue to
provide their internal data to be propagated, and valueDiff to provide an
application-dependent measure (in percentage) of difference w.r.t. contents of
another object.

5 Evaluation

The Mobihoc prototype was evaluated in a twofold perspective: quantitative
(Section 5.1) and qualitative (Section 5.2). The former consisted on a Mobihoc

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10

x1000
Object pool size (# objects)

E
va

lu
at

io
n

 t
im

e
(m

s)

100%

50%

0%

Updates

40kB

20kB

0kB

28kB

14kB

0kB

16kB

8kB

0kB

4kB

2kB

0kB

Fig. 11. Evaluation of CMB Version 3 round handler.

440

3231 31

71

1

10

100

1000

1 10 100 1000 10000

Message size (# bytes)

P
ro

p
ag

at
io

n
 t

im
e

(m
s)

Fig. 12. Evaluation of message propagation delays.

performance study; several mini-benchmarks were implemented for this pur-
pose. The latter evaluated the effectiveness of Mobihoc in developing distributed
games. We implemented a distributed Pacman game for this purpose. The code
was deployed and executed in Nokia 6600 phones.

5.1 Quantitative Evaluation

The main objective was to study the impact of VFC enforcement on the overall
Mobihoc performance. VFC is implemented in Mobihoc according to the CMB
Version 3 algorithm (see Figure 9). Due to space limitations, we focus our at-
tention on the most costly operation – the CMB-Round-Triggered function.
This function not only performs intensive computations but it is also executed
periodically, once per round. Observing the algorithm of Figure 9, it is straight-
forward to see that, disregarding the cost of the merging operation in line 1, the
overall cost is proportional to the number of clients. Thus, we implemented a
micro-benchmark in order to evaluate the algorithm cost for a single client.

Several experiments were conducted by running this micro-benchmark on
Nokia 6600 phones and measuring the execution time of the CMB-Round-
Triggered function (at the server side) by varying two factors: i) the number
of objects in the pool (between 1000 and 10000 objects), and ii) the percentage
of updates piggybacked in the round messages to the client (0%, 50% and 100%
simulated update percentages).3 Additionally, experiments were conducted with
the following fixed conditions: i) the simulated φ settings included 1 pivot and
small C and Z (arrays with 3 positions); ii) object payload was 4 bytes (e.g. 2
small integers for space coordinates). Figure 11 presents the performance mea-
surements. Each result is annotated with the corresponding volume of data to
be sent to the client.

In order to better perceive the real impact into the overall system perfor-
mance, we also measured the cost of wireless communication. For this purpose,
we implemented a second micro-benchmark, deployed it and executed it on two

3
Updates are piggybacked in the round message if the test of line 7 is true. The micro-benchmark

simulated this setting according to the update percentage provided as input.

Fig. 13. Two phones enroled in a distributed Pacman game. Fig. 14. Game view in one phone.

Nokia 6600 phones to measure network propagation time using Bluetooth. The
size of the messages varied from 1 to 10000 bytes. Figure 12 presents the ob-
tained propagation times which allows us to establish a comparison w.r.t. the
VFC evaluation result.

Results show that as the number of updates (sent to clients) grows, the VFC
overheads increases. Thus, we infer that performance is influenced by the VFC
parameterization: weak consistency requirements cause less updates to be sent,
increasing efficiency. Also, considering a reasonable number of objects, the com-
putation time is less than the corresponding transmission time in the network.
Hence, the VFC computation costs can be masqueraded if they are performed in
parallel with the transmission of the updates to clients and there is still time to
attend game logic and rendering on the clients. Further, since the propagation
time is nearly stable for messages below 200 bytes, the CMB may be enhanced
to adapt the number of updates in order to increase efficiency.

5.2 Qualitative Evaluation

To evaluate Mobihoc qualitatively, we implemented a distributed multiplayer
version of the popular Pacman game. Our version of the game considers a maze
divided into a matrix of 8 × 8 rooms; each room is assigned a 2-coordinate
position. Players have access to the whole maze; yet, during the game, each
player’s device only shows the room where its avatar is in at that instant. If two
players’ avatars are in the same room, they can see each other. Figure 13 is a
snapshot of two devices enroled in a Pacman game match. It captures a moment
were both avatars are in the same room. Figure 14 displays a magnified screen of
one of these devices showing the details of the game in that room, particularly
the avatars and the room coordinates (0, 0) at the center of the screen.

The implementation of this game explores Mobihoc and VFC features for
sharing the game state as follows. The maze is mapped to a bi-dimensional
8 × 8 virtual world. The game state referring to rooms, players and ghosts is
implemented as objects with a position in the virtual world. Rooms are assigned
a fixed coordinate regarding its overall location in the maze. Both players and

ghosts, regardless of having fine grained positions within each room relevant for
the game semantics, w.r.t. consistency, are also assigned a position referring to
the room where they are at each moment. For each player, we consider that there
is only one pivot assigned to its avatar. Also, we defined Z = [0, 1] characterizing
three consistency zones. The first zone affects the objects in the same room as
the avatar; here, consistency is required to be strong. The second refers to the
avatar adjacent rooms; it is a weaker consistency zone and it is relevant mainly
when the avatar leaves the current room. The weakest consistency zone is beyond
the adjacent rooms. We defined three consistency degrees based on the sequence
dimension (σ).

This game, while being very simple and using few VFC features, demon-
strates the usability of VFC and Mobihoc. Our experience, from the application
programmer viewpoint, is that the model is intuitive, it is simple to describe
consistency requirements and to programmatically use Mobihoc employing VFC
as a consistency model. We believe it is straightforward to describe consistency
requirements for more demanding game scenarios.

6 Related Work

In this section, we discuss relevant work related to ours. Since we are addressing
consistency enforcement for multiplayer games in ad-hoc networks, we focus on:
i) other work regarding optimistic consistency (see [1] for a thorough survey)
in the presence of replicated data, ii) game development for ad-hoc and mobile
networks using resource constrained devices such as PDAs and mobile phones, iii)
other techniques leveraging locality-awareness (in games) to improve middleware
performance and scalability, and iv) middleware support for game development
and deployment.

Optimistic Concurrency and Divergence Bounding Optimistic consis-
tency techniques are mostly used in loosely-coupled scenarios (e.g. mobile com-
puting). We find they are also suitable to multiplayer games in ad-hoc networks,
as they may be employed to circumvent known issues associated with low band-
width and high latency.

Real-time guarantees [2] allow an object replica to remain stale and still be
used (i.e., without being refreshed) for a specified maximum time, before the
replica must be made consistent. Order bounding [5] is used to limit the number
of uncommitted updates that may be applied to a replica. This allows given
transactions to proceed faster because they can ignore the effects of a bounded
number of transactions preceding them.

Numeric bounding is introduced in TACT [4, 6], a multi-dimensional consis-
tency model that proposes its combination with order bounding. Numeric bound-
ing is based on the notion of defining maximum quotas for allowable updates to
each replica (e.g. $10 for a number of replicas of a $100 bank balance). Once the
quota has been completely used by a replica (e.g. to withdraw money from the
account), the replica can no longer be updated until it is made consistent w.r.t.

operations performed on the other replicas. Although TACT proposes a multi-
dimensional model for consistency enforcement and limiting replica divergence,
it does not embody any notion of locality-awareness. There is no notion of spacial
relation neither among individual data objects nor among users. The middleware
is oblivious to them. State is simply represented as individual database records
or shared/replicated variables in servers. Therefore, it cannot be used in game
scenarios where the consistency degree required for an object varies with player
position and corresponding sensing and acting ranges. Numeric bounding is also
related with escrow techniques [3] on data updates which are employed by mobile
databases during disconnection periods, such as reservations in Mobisnap [12].

In VFC, besides introducing support for locality-awareness in existing opti-
mistic consistency techniques, we are also able to extend them. We leverage the
fact that in the ad-hoc networks we address, there is a central node in charge
of routing that is able to monitor all object updates. Therefore, we are able to
further extend escrow and numeric bounding techniques, allowing application
programmers to define limits on the value divergence resulting from updates
performed by other nodes (instead of simply limiting their own updates in a
conservative manner).

Game Development for Ad-hoc and Mobile Networks. The work in [13]
compares the two dominant platforms for ad-hoc gaming (Java J2ME, and .Net
Compact Framework) w.r.t. portability and performance of native code invoca-
tion, numerical and graphic code. It also studies the performance of several com-
munication strategies (namely packet forwarding). Though providing insights on
the environments we are addressing, it assumes a strict consistency model, with
a centralized game server.

The work in [11] is focused on traffic selection according to its urgency (im-
mediate forwarding) and relevancy (reliable delivery) to maintain scalability in
wide-area scenarios in multiplayer games. Game developers must define stati-
cally, for each entity (e.g. class of objects), levels of urgency and relevance. The
middleware generates code that assigns network resources dynamically during
the game based on the provided requirements. Although offering control at some
level over replica divergence, this work does not explore locality-awareness. Thus,
the divergence of all objects of a given type (e.g. representing players) is bound
by global parameters irrespective of their relative spatial position w.r.t. each
player. This one-size-fits-all approach is inflexible and may waste bandwidth
w.r.t. a more fine-grained and adaptive approach embodied in our proposal.

Locality Awareness in Large-Scale Multiplayer Middleware. The no-
tions of locality-awareness can be traced back to interest-management [8], used
to filter routing massive volumes of data in large-scale distributed simulations.
Locality-awareness is employed in [10] to perform load balancing on massive mul-
tiplayer games. The authors propose a transparent mechanism to partition vast
virtual worlds into a cluster of dedicated servers to ensure scalability. Based on
their locations, players are redirected to servers in charge of the corresponding
partition. As this approach is vulnerable to hot-spots in the game (e.g. crowding,

player flocking), it employs heuristics when to reduce server load (by splitting
highly populated partitions) and leverage idle resources (coalescing empty par-
titions in the same server).

The work described in [14] proposes the use of peer-to-peer (P2P) network
topologies, such as Pastry [15], to handle massive multiplayer games, in a scal-
able and cost-effective way, due to the increased flexibility provided by self-
organization, while obviating the need for dedicated servers. This also enables
game creation and enrollment to be performed in a ad-hoc manner, instead of
handled exclusively by central servers. These properties can be leveraged with
locality-awareness in order to dynamically organize nodes in groups, reflecting
common areas of interest within the virtual world. Therefore, updates to objects
are only propagated to other nodes within the same group, which encloses an
isle of consistency within the virtual world.

Communication between nodes is handled by multicast using Scribe [16]. Ob-
ject state is kept consistent by employing a coordinator-based approach, anal-
ogous to the tokens employed in Mobihoc. The effects of varying population
density, growth, message aggregation, and network dynamics are also studied.
Programmers must explicitly pre-define the static partitioning of the virtual
world, defining areas of interest. Consistency is therefore strictly enforced within
each one and ignored outside altogether.

Matrix [9] proposes the use of locality-awareness by perceiving a multiplayer
game as a decomposable system [7] where there is stronger interaction within
each given subsystem (e.g. a room, a game level) than among different subsystems
(e.g. across rooms). Based on this premise, a radius or zone of visibility can be
identified for each event in the game, outside of which, the corresponding updates
need not be propagated (e.g. a shot in another room). Thus, the system enforces
pockets of locally-consistent state. Matrix requires programmers to explicitly tag
individual packets carrying updates with their corresponding spatial coordinates
where they took place in the game. With this information, the middleware checks
the game visibility radius (a global parameter) and decides whether and where
to forward the packet. While providing a very interesting approach based on
localized consistency, Matrix also adheres to an overly limitative approach of all-
or-nothing consistency, with no method of stating maximum replica divergence.
Furthermore, it makes use of a global consistency radius instead of multiple and
dynamic zones of consistency with different divergence bounds, as we propose.

The work in [17] also explores locality-awareness but w.r.t. actual physical
location of players that must wear tags. It describes a number of experiments try-
ing to determine how game accuracy and feed-back detail (e.g. graphics, sound)
may be balanced against the communication latency observed.

Other Large-Scale Multiplayer Middleware. Regarding online games in
wide-area networks, the work in [18] proposes to re-use server infrastructure
to deploy several MMOG4 side-by-side. It describes a service platform that
can host a number of games on-demand, leveraging existing grid technology.

4
Massive Multiplayer Online Games.

The work described in [19] proposes a methodology to reduce human-resources
costs in MMOG development. It makes use of message-oriented middleware, ar-
guing that games typically operate in an event-driven manner. Protocol and
message-handling code for clients and servers is automatically generated from
message descriptors written in XML. Game and virtual-world logic is managed
via adapters, which can be plugged-in asynchronously, on-the-fly within an entire
running MMOG application. These works, while being relevant cases of employ-
ment of middleware to support online multiplayer games, are not targeted to the
kinds of constrained devices and ad-hoc networks we are addressing.

7 Conclusions

In this paper we present a novel consistency model to manage replicated data
(VFC) and a middleware platform (Mobihoc) adopting VFC to support mul-
tiplayer distributed games in ad-hoc networks. While some of previous works
embody the notions of consistency radius, locality of interest, or isles of local-
ized consistency, they adopt a rather all-or-nothing approach. Thus, objects in-
side an area of interest must be kept strongly consistent, while the values (or
updates to it) of objects outside are simply discarded. VFC combines and ex-
tends more sophisticated consistency models (such as TACT), with the notions
of locality-awareness in a unified model. VFC and Mobihoc provide intuitive,
simple and flexible abstractions such that application programmers are able to
easily express their consistency requirements according to application semantics.
Moreover, VFC and Mobihoc are widely applicable, not being restricted to the
development of distributed games for ad-hoc networks.

Regarding future work, we envisage to perform thorough empirical studies
to compare the performance of VFC and Mobihoc with other game consistency
protocols and frameworks. Also, we aim to employ our solution to different types
of real games in order to i) analyze the benefit of our solution in terms of ef-
ficiency/playability, and ii) to explore the flexibility of VFC in parameterizing
consistency requirements for different game scenarios. Although the partitioning
of the game space into zones depends on the application semantics, we envisage
to develop the mechanisms to help game programmers better deciding how to
partition the game space into zones. Additionally, we intend to study how this
approach scales across either number of objects or number of nodes, and possibly
to redesign Mobihoc to environments other than ad-hoc networks.

Acknowledgments. The authors wish to acknowledge the students José Lopes
and Tiago Bernardo for their implementation work in the Pacman game.

References

1. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1) (2005)
42–81

2. Alonso, R., Barbara, D., Garcia-Molina, H.: Data caching issues in an information
retrieval system. ACM Transactions on Database Systems (TODS) 15(3) (1990)
359–384

3. Krishnakumar, N., Jain, R.: Escrow techniques for mobile sales and inventory
applications. Wireless Networks 3(3) (1997) 235–246

4. Yu, H., Vahdat, A.: Design and evaluation of a conflit-based continuous consistency
model for replicated services. ACM Transactions on Computer Systems (TOCS)
20(3) (2002) 239–282

5. Krishnakumar, N., Bernstein, A.: Bounded ignorance: a technique for increas-
ing concurrency in a replicated system. ACM Transactions on Database Systems
(TODS) 19(4) (1994) 586–625

6. Yu, H., Vahdat, A.: The costs and limits of availability for replicated services.
ACM Transactions on Computer Systems (TOCS) 24(1) (2006) 70–113

7. Simon, H.A.: The architecture of complexity. Proceedings of the American Philo-
sophical Society 106 (1962) 467–482

8. Morse, K., et al.: Interest Management in Large-scale Distributed Simulations.
Information and Computer Science, University of California, Irvine (1996)

9. Balan, R., Ebling, M., Castro, P., Misra, A.: Matrix: Adaptive middleware for
distributed multiplayer games. ACM/IFIP Middleware Conference (2005)

10. Chen, J., Wu, B., Delap, M., Knutsson, B., Lu, H., Amza, C.: Locality aware dy-
namic load management for massively multiplayer games. Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice of parallel programming
(2005) 289–300

11. Griwodz, C.: State replication for multiplayer games. Proceedings of the 1st
workshop on Network and system support for games (2002) 29–35

12. Preguiça, N., Martins, J.L., Cunha, M., Domingos, H.: Reservations for conflict
avoidance in a mobile database system. In: Proc. of the 1st Usenix Int’l Conference
on Mobile Systems, Applications and Services (Mobisys). (2003)

13. Janecek, A., Hlavacs, H.: Programming interactive real-time games over WLAN
for pocket PCs with J2ME and .NET CF. Proceedings of 4th ACM SIGCOMM
workshop on Network and system support for games (2005) 1–8

14. Knutsson, B., Lu, H., Xu, W., Hopkins, B.: Peer-to-peer support for massively
multiplayer games. IEEE Infocom (2004)

15. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In: Middleware 2001, IFIP/ACM
International Conference on Distributed Systems Platforms Heidelberg, Germany,
November 12-16, 2001, Proceedings. (2001) 329–350

16. Castro, M., Druschel, P., Kermarrec, A., Rowstron, A.: Scribe: a large-scale and
decentralised application-level multicast infrastructure. IEEE Journal on Selected
Areas Commun.(JSAC)(Special Issue on Network for Support Multicast Commun.)
20(8) (2002) 100–110

17. Mansley, K., Scott, D., Tse, A., Madhavapeddy, A.: Feedback, latency, accuracy:
exploring tradeoffs in location-aware gaming. Proceedings of ACM SIGCOMM
2004 workshops on NetGames’ 04: Network and system support for games (2004)
93–97

18. Saha, D., Sahu, S., Shaikh, A.: A service platform for on-line games. Proceedings
of the 2nd workshop on Network and system support for games (2003) 180–184

19. Hsiao, T., Yuan, S.: Practical middleware for massively multiplayer online games.
IEEE Internet Computing 9(5) (2005) 47–54

