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Abstract– This study experimentally investigated cross-
sectional measuring points necessary for point correlation 
dimension analysis of fully developed slug flow. Applying 
an optimal delay time reconstruction method and a point 
correlation dimension method to cross-sectional void 
fraction time series greatly improves the reliability of 
analyses. Results show that nine-point averaging is 
sufficient for a broad range of airflow rates. When the air 
flow rate is low, one-point measurement, except in the 
area near a pipe wall, yields reliable results. 
 
1. Introduction 

Studies of low-dimensional chaos provide new 
analytical methods: nonlinear time series analyses [1]. 
The methods are powerful tools for understanding 
irregular time series generated by a low-dimensional 
nonlinear system. Nonlinear time series analyses are 
applied increasingly to complex time series from the real 
world, including those of human electroencephalographic 
(EEG) data, financial data, and two-phase flow data [2–3]. 
However, the estimation of invariants is difficult and 
sometimes becomes subjective; the reliability of 
estimated results has not been shown sufficiently. We 
examined nonlinear time series analyses of two-phase 
flow time series to improve the reliability of analytical 
methods and to support useful applications such as 
validation of numerical simulation results and early 
detection of irregular states. Two-phase flow offers some 
advantages over EEG or financial data: flow complexity 
is controllable and stationary long-term data are 
obtainable. 

For two reasons, estimation becomes difficult: 
analytical methods and measurement methods. The 
correlation dimension of two-phase flow is typically 
greater than four. However, all analysis results we know 
were estimated using methods that was originally 
proposed in the 1980s for a low-dimensional chaotic 
system. Differential pressure sensors are widely used to 
obtain flow data. However, pressure fluctuations 
throughout a flow system are transmitted to the sensor 
with a delay: they act as noise. Therefore, direct 
measurement of the local flow state is appropriate. 

We showed that applying an optimal delay time 
reconstruction method [4] and a point correlation 
dimension method [5] to cross-sectional averaging void 
fraction time series greatly improves the reliability of 

analysis in terms of passing a surrogate data test [6]. The 
next step is the estimation of error and the proposition of 
analysis and measurement methods to reduce the error. 

This paper describes an experimental investigation of 
the effect of coarse-resolution void fraction measurement. 
In early analyses, we used 184-point cross-sectional void 
fraction distributions measured using a 16 × 16 wire-mesh 
sensor [7]. A longer measurement with a higher sampling 
rate is possible if the number of wires can be reduced 
without spoiling the reliability or increasing the error. The 
flow disturbance caused by the wires also becomes small. 
First, the void fraction time series that were calculated 
using 3 × 3, 2 × 2 and 1 × 3 wires were analyzed and 
compared to those of 16 × 16 wires. Next, the time series 
that were made using only 1 × 1 wires were analyzed. 
Analytical results and their surrogate data test results are 
shown. 

 
2. Estimation of point correlation dimension 

Nonlinear time series analyses are based on the 
reconstruction of an orbit in phase space from the time 
series. The most common reconstruction technique is the 
use of delays. State vectors z(k) in an m-dimensional 
phase space are formed from time-delayed values of the 
scalar time series x(k): 

 
 , (1) 
 

where m and τ are respectively called an embedding 
dimension and a delay. 

In almost all analyses of two-phase flow, the delay τ is 
determined by the relation between x(k) and x(k+τ): their 
autocorrelation and mutual information. A salient problem 
is that optimization between x(k) and x(k+τ) does not 
imply the optimization of other elements such as x(k+2τ), 
…, x(k+(m-1)τ). The problem becomes more serious for 
larger embedding dimensions m. Many methods have 
been proposed to estimate the optimal delay time τ 
(reviewed in [8]). We used artificially generated 
quasiperiodic time series to evaluate some of them, and 
chose the average displacement method [4], which gives 
the most robust results. 

The average displacement method measures the 
average distance S(τ) of the reconstructed vector z(k) in 
Eq. (1) from the m dimensional space’s main diagonal.  
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 (2) 
 
The main drawback of this method is that no 

theoretical reason exists for the τ-determining rule. We 
examined some criteria and found that a better result is 
obtained at the first minimum of the slope of S(τ). 

The point correlation dimension is a locally defined 
fractal dimension at a specific point in an orbit. This 
method was proposed by Skinner et al. [5] for analyses of 
physiological time series such as those of EEGs. The 
procedure resembles that of Grassberger and Procaccia 
(GP) method, except that it calculates a local correlation 
sum Ci(r) at a reference point z(i). 

 
  (3) 
 
 
  , for 0→r  and ∞→N  (4) 
 

The scaling exponent of Ci(r) represents the local point 
correlation dimension PD2(i) at each reference point. 
Averaging PD2(i) over all reference points yields the 
(averaged) point correlation dimension PD2, which gives 
a global description of the geometrical structure of an 
orbit. Determination of a scaling region is required for 
each reference point to obtain PD2. We use an automatic 
procedure based on a local slope approach [5]. 

 
3. Experiments and analysis results 
3.1 Flow loop and measurement system 

A schematic of the experimental flow loop is shown in 
Fig. 1. Gas that is provided by an air compressor is 
controlled by a regulator; a pump controls water flow. A 
2.1-m-long acrylic pipe with 42 mm inner diameter is 
used as a vertical test section. A mixing chamber is 
located at the vertical pipe’s inlet, where air through a 
distributed nozzle plate (nozzle diameter is 5 mm) and 
water are mixed. The nozzle diameter is sufficiently large 
to allow air bubbles to unite and form a series of large 
bubbles. This flow state is called slug flow. In vertical 
flow, the bubbles are an axially symmetrical bullet shape 
that occupies almost the entire cross-sectional area of the 
pipe. After passing through the vertical pipe, air is 
released to the atmosphere, whereas water is circulated. 

The vertical pipe is equipped with a wire-mesh sensor. 
HM Prasser (FZR, Germany) developed the wire-mesh 
sensor to provide real-time tomographic view of cross-
sectional void fraction (volumetric air-water rate) 
distribution [7]. Two layers of thin parallel wires are 
extended across the cross section with a vertical distance 
of 1.6 mm (Fig. 2). A pulse is sent sequentially along the 
sender wires, on which an electric field is formed 
instantaneously at each node. When a bubble enters a 
node, the electric field is deformed and the electrical 
conductivity between the sender wire and the receiver 
wire are reduced proportional to the local void fraction. 

 
 
 1. Compressor 
 2. Water pump 
 3. Air-water mixer 
 4. Vertical pipe 
 5. Separator 
 6. Wire-mesh sensor 
 7. Pressure sensor 
 8. Analog filter 
 9. Computer 

 
 
 
 
 
 

Fig. 1 Schematic of two-phase flow system 
 
 
 
 
 
 
 

 
 
 

Fig. 2 Wire-mesh sensor 
 
 
 
 
 
 
 

 t=0.45 t=0.5 t=0.55 
(a) Instantaneous 184-point cross-section distribution 

(superficial velocity of gas Jg=1.2 m/s) 
 
 
 
 
 

(b) Axial distribution (8th receiver wire, Jg=1.2 m/s) 

0  0.5 1 1.5 2
1 

8 

16

0

0.5

1

(c) Axial distribution (8th receiver wire, Jg=3.6 m/s) 
 
 
 
 
 

(d) Axial distribution (8th receiver wire, Jg=6.0m/s) 

Fig. 3 Void fraction distribution of slug flow 
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The wire-mesh sensor is located at about 1.1 m from the 
vertical pipe inlet (length-to-diameter ratio L/D=25.7). 

A 16 × 16 wire-mesh sensor is used for the 42-mm-
diameter pipe. The measuring point pitch is 2.63 mm and 
the effective measuring points number is 184. Examples 
of measured wire-mesh sensor data are shown in Fig. 3. 

 
3.2 Conditions of experiments and analyses 

All two-phase flow experiments were carried out on the 
natural circulation condition (the water pump was off). 
Void fraction distributions were measured for eight flow 
conditions (volumetric flow rates Qg=10, 30, 50, 100, 200, 
300, 400, 500 l/min; corresponding to superficial velocity 
Jg=Qg/(cross-sectional area of a pipe)=0.12, 0.36, 0.60, 
1.20, 2.41, 3.61, 4.81, 6.02 m3/s). Void fractions were 
recorded for 30 s through an anti-alias analog low-pass 
filter at a sampling rate of 1000 Hz (cut-off frequency is 
200 Hz). A FIR digital low-pass filter was applied to the 
time series to remove sensor noise (cut-off frequency is 
98 Hz). 

In all analyses, the number of reference points Nr, 
which were chosen randomly, were set to 5% of the size 
of the time series (Nr=1500). 

The reliability of the estimated results was tested using 
a surrogate data method. We chose the null hypothesis of 
the test that the original time series is generated from a 
linear stochastic process possibly undergoing a nonlinear 
static transform. We then shuffled the original time series 
randomly and created 39 surrogate data sets, which had 
the identical spectrum and distribution as the original time 
series (significance level α=0.05), using the free nonlinear 
time series analysis package TISEAN [1]. 

 
3.3 Effect of spatially coarse measurement 

The necessary spatial resolution of void fraction 
measurement is investigated. The combinations of 
selected sender and receiver wires are as follows. 

9-point (3 × 3): [sender, receiver]=[(4, 8, 12), (4, 8, 12)] 
4-point (2 × 2): [sender, receiver]=[(4, 12), (4, 12)] 
3-point (1 × 3): [sender, receiver]=[(8), (4, 8, 12)] 
Cross-sectional void fraction time series were 

calculated by averaging the measurement of points. 
Examples of time series are shown in Fig. 4. The point 
correlation dimensions PD2 on various flow conditions 
are shown in Fig. 5. All PD2 pass the surrogate data tests. 
The PD2 of the 184-point averaged time series increases 
and tends to converge to a constant value when the 
superficial velocity Jg is increased: the PD2 curves of 9-
points and 184-points are similar. The PD2 curve of the 4-
point time series is much higher than that of the 184-point 
time series. The increases are explainable as follows. For 
the four-point measurement, all measurement points are 
located near a wall area. The local void fraction near the 
wall position is sensitive to deformation of bubbles. This 
newly apparent movement increases the PD2. 

The PD2 curve of three-point time series differs greatly 
in the high airflow rate domain: PD2 are much lower and 
do not converge because of the saturation of the void 

fraction (Fig. 4d). The spatial resolution is too coarse. For 
that reason, measurement is easily saturated and the 
information on a bubble motion is lost. 

These results show that the measurement of nine points 
in the cross-section (3 × 3 wires) is needed to estimate the 
point correlation dimension. Large error arises if the 
spatial resolution becomes lower. However, it is 
noteworthy that this conclusion is true only for fully 
developed slug flow, in which large bullet-shaped bubbles 
span most of the pipe cross-section. Finer spatial 

 
 
 
 

(a) 184-point average 
 
 
 
 

(b) 9-point average  
 
 
 
 

(c) 4-point average 
 
 
 
 

(d) 3-point average 
 
 
 
 

(e) 1-point (8, 8) 
 
 
 
 

(f) 1-point (8, 12) 
Fig. 4 Example of void fraction time series (Jg=4.8 m/s) 
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Fig. 5 PD2 of 184-, 9-, 4-, and 3-point averaging void 

fraction time series 
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resolution is necessary when bubbles are allowed to move 
to a transverse direction. 

 
3.4 One-point void fraction time series 

We investigated the possibility of estimating the point 
correlation dimension from a one-point void fraction. We 
selected the 8th sender wire and analyzed 14 one-point 
void fraction time series. Examples are shown in Fig. 4e 
and 4f. Results are listed in Table 1. Except for the two 
nearest to the pipe wall, all PD2 pass the surrogate data 
tests. Two-phase flow in a vertical pipe is axial symmetric. 
Therefore, identical results are obtained at other places in 
a cross-section. 

The PD2 distribution of slug flow (Jg=1.2 m/s) is 
shown in Fig. 6. The PD2 tends to become low as a 
measurement point goes to the central part. 

The PD2 of a one-point void fraction versus Jg are 
shown in Table 2. All estimation results pass the surrogate 
data test when the airflow rate is low (Jg ≤1.2 m/s), but 
tests tended to fail in the high airflow rate range (Jg ≥2.4 
m/s). We infer that those unreliable results are caused by 
the overly long saturated time of the void fraction. 

 
4. Conclusion 

We have experimentally investigated cross-sectional 
void fraction measuring points that are necessary for 
point-correlation dimension analysis of fully developed 
slug flow. Analyses of various flow conditions show that 
spatially very coarse resolution is sufficient only if it 
passes a surrogate data test. However, to estimate the 
nearly identical dimensional values to those of spatially 
fine resolution time series in broad airflow range, a 
symmetrical nine-point measurement is needed. One-
point measuring void fraction time series were also 
analyzed. Except for the time series measured near a pipe 
wall, statistically reliable results are obtained only in a 
low airflow rate range. The obtained results include large 
error, but the cross-sectional distribution of point 
correlation dimension is obtainable. 
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Table.1 PD2 and surrogate data test results of one-point 
void fraction time series (Jg=1.2 m/s) 

Receiver 
wire No. PD2 Test

Receiver 
wire No. PD2 test

2 5.37 Fail 9 4.25 pass
3 4.37 Pass 10 4.20  pass
4 4.35 Pass 11 4.44 pass
5 4.39 Pass 12 4.39  pass
6 4.35 Pass 13 4.42 pass
7 4.14 Pass 14 4.20  pass
8 4.19 Pass 15 5.40 fail

 sender wire No. 8 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Cross sectional PD2 distribution of one-point void 

fraction time series (Jg=1.2 m/s) 
 

Table 2 PD2 of one-point void fraction time series 

Receiver 
wire No. Jg PD2 Test  

Receiver 
wire No. Jg PD2 test

8 0.12 3.69 Pass 12 0.12 3.83 pass
8 0.36 3.76 Pass 12 0.36 4.04 pass
8 0.60 4.22 Pass 12 0.60 4.14 pass
8 1.20 4.20 Pass 12 1.20 4.50 pass
8 2.41 3.88 Fail 12 2.41 4.50 fail
8 3.61 3.49 Pass 12 3.61 4.05 fail
8 4.81 3.59 Fail 12 4.81 3.75 pass
8 6.02 3.73 Fail 12 6.02 4.11 fail

 sender wire No. 8 
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