
On State Fusers Over Long-Haul Sensor Networks
Katharine Brigham

and B. V. K. Vijaya Kumar
Carnegie Mellon University

Pittsburgh, PA 15213
Email: {kbrigham,kumar}@ece.cmu.edu

Nageswara S. V. Rao
Oak Ridge National Laboratory

Oak Ridge, TN 37831
Email: raons@ornl.gov

Qiang Liu
and Xin Wang

Stony Brook University
Stony Brook, NY 11794

Email: {qiangliu,xwang}@ece.sunysb.edu

Abstract—We consider a network of sensors wherein the state
estimates are sent from sensors to a fusion center to generate
a global state estimate. The underlying fusion algorithm affects
the performance measure QCC(τ) (with subscripts CC indicating
the effects of the communications and computing quality) of
the global state estimate computed within the allocated time τ .
We present a probabilistic performance bound on QCC(τ) as a
function of the distributions of state estimates, communications
parameters as well as the fusion algorithm. We present simula-
tions of simplified scenarios to illustrate the qualitative effects of
different fusers, and system-level simulations to complement the
analytical results.

I. INTRODUCTION

We consider a long-haul network of sensors which collect
information on targets and generate state estimates, such as
position and velocity. The sensors periodically communicate
state estimates to a remote fusion center, which combines them
to generate global state estimates that correspond to targets.
However, due to the long-haul nature of the network, messages
from the sensors may suffer from random delays and losses,
which could negatively impact the accuracy of the fused result.
Even with perfect communications, a major issue encountered
with fusing sensor tracks is dealing with correlations of state
estimate errors across the sensors. In particular, the cross-
covariance, which is a measure of such correlations, may be
nonzero due to a variety of factors such as common pro-
cess noise, and correlated measurement noise across sensors.
The cross-covariance is a key component in several fusion
strategies such as the best linear unbiased estimation (BLUE)
and optimal weighted least squares (WLS) fusion rules [1],
but explicit estimation of the cross-covariance can be quite
involved [2]. There are generally two approaches to the fusion
of state estimates; one approach attempts to fuse estimates with
unavailable cross-covariance, and the other approach requires
knowledge of the cross-covariance [3]. In [1], Li and Zhang
provide an extensive list of mathematical expressions for the
estimation of the cross-covariance for linear and nonlinear
observations. In the case of unavailable cross-covariance, one
may try to estimate the cross-covariance or fuse the data
without it. Several methods for doing so are described in
[4] (e.g., estimation by time averaging, fusion using pseudo-
measurements, etc.). Another method for fusing data when the
cross-covariance is unavailable is the Covariance Intersection
(CI) algorithm, which will be described in more detail in
Section III-B.

Learning approaches may bypass the need to compute the
cross-covariance by implicitly incorporating the correlations

into the fuser function that is estimated from measurements. It
is noted that the cross-covariance could actually be computed
off-line if the underlying dynamic system were linear and
time-invariant [5]; however, in many target tracking applica-
tions, the underlying system is often nonlinear. In this work,
we explore learning-based fusers for nonlinear systems; in
particular, we investigate the use of artificial neural networks
(ANNs) for multisensor fusion. ANNs possess the capability
of modeling arbitrary mappings [6], as long as a sufficient
number of training samples are available from the same
distribution. This will also provide us with the ability to use
nonlinear functions for fusing the data, which may potentially
yield better results than with linear fusion.

ANNs have been previously been proposed for target track-
ing applications, e.g., for improving data association [7],
filtering [8]–[10], and measurement fusion [11], to name a few.
Chowdhury [12] and Fong et. al. [13] propose using ANNs for
sensor fusion, where the neural networks are used to determine
the weights for linearly combining sensor state estimates. We
further explore ANNs for nonlinear sensor fusion.

The remaining sections are organized as follows. In Section
II, we provide an analytical formulation of the fusion problem.
In Section III, we will briefly describe the basic formulations
of some traditional fusers and how a neural network can be
employed for nonlinear fusion. In Section IV, we present
an example of a nonlinear target-tracking system with state-
dependent noise, and quantitatively compare the performance
of learning-based fusers against the more conventional meth-
ods of track fusion. We then follow with concluding remarks.

II. PROBLEM FORMULATION

Let X̂1, X̂2, . . . , X̂M be the state estimates generated by the
sensors and sent to the fusion center. Of them, X̂W

i1
, . . . X̂W

ik
arrive within a time-window [T, T +W] at the fusion center,
and used as input to a fusion algorithm, which generates a
single global estimate to correspond to the underlying target.
For allocated time τ to the fusion algorithm, which runs either
after all expected state estimates are received or when the
time window expires, let QC

(
X̂W

i1
, . . . X̂W

ik
; τ
)

denote the
performance measure, of the output, normalized to interval
[0, 1], where 0 represents no error and 1 represents the highest
error. The expected quality of k received state estimates is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357562805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

-150
-100
-50

 0
 50

 100
 150
 200
 250

-100 -50 0 50 100 150

X
2

X1

State Estimates

Original State
Sensor Estimate

Averag Fuser

(a) original and estimated states

-150
-100
-50

 0
 50

 100
 150
 200
 250

-100 -50 0 50 100

X
1,

X
2

actual state

State Errors

No Error
X1
X2

(b) state error distributions

 0

 10

 20

 30

 40

 50

 60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 e
rro

r

loss probability

State Errors Under Network Losses

No Loss Average Fused State
TCP - Average

Ave sensor

(c) state errors

Fig. 1. Average fuser under unbiased independent errors and network losses.

given by

Q̄C(k, τ) =

∫
QC

(
X̂W

i1 , . . . X̂
W
ik

; τ
)
dPX̂W

i1
,...X̂W

ik

. (1)

By combining the computing and communications parts,
the quality of global estimate generated by the network
in response to the state estimates X̂1, X̂2, . . . , X̂M is
QCC

(
X̂1, . . . X̂M ; τ

)
. We are interested in the probability

of ensuring quality δ of the final estimate, given by

P
{
QCC

(
X̂1, . . . X̂M ; τ

)
< δ
}
. (2)

We decompose this quantity by conditioning on the state
estimates as follows

P
{
QCC

(
X̂1, . . . X̂M; τ

)
< δ
}

(3)

=

∫
P
{
QCC

(
X̂1, . . . X̂M ; τ

)
< δ|X̂1, . . . X̂M

}
dPX̂1,...X̂M

.

The following lower bound is derived in [14]:

P
{
QCC

(
X̂1, . . . X̂M ; τ

)
< δ|X̂1, . . . X̂M

}
≥
(

1− Q̄C(k; τ)

δ

)
P
{
tX̂W

i1

, . . . tX̂W
ik

∈ [T, T +W]
}
,

(4)

where tX̂W
ij

, j = 1, 2, . . . , k, denotes the time at which

the state estimate X̂W
ij

arrives at the fusion center. This
expression demonstrates the contributions of randomness
due to: (a) state estimates reflected in Q̄C (k; τ) and, (b)
communications network parameters reflected in the term
P
{
tX̂W

i1

, . . . tX̂W
ik

∈ [T, T +W]
}

. This decomposition shows
the separation between the computation and communications
parts, which can be analyzed somewhat independently. In this
paper, we focus on the first term, which depends on the
distribution of the state estimates and the fusion algorithm.
The second term does not depend on the state estimates but
depends on the properties of the network, such as latency and
loss rate.

We consider simplified simulations of a single 3D target
to illustrate the effects of communications and computations
on the fused state estimate. Here, the states are generated
uniformly within [−A,A]3 area as shown in Fig. 1(a) for

two of the three coordinates. The communication losses are
simulated by using TCP message delivery rates computed
based on connection loss probabilities. In this example, round-
trip time (RTT) is 1 second corresponding to about 10,000
mile connection, and the computation time-window τ is 10
seconds.

(a) Average Fuser - Unbiased independent errors: The sensor
errors have zero mean and are statistically independent
in the range [−B,B] and are shown in Fig. 1(b). For
this case, the fuser averages the state estimates that
arrive within the time-window, and provides a substantial
improvement in the state error as shown in Fig. 1(c); the
Euclidean distance error of the fused estimate is around 8
compared to the average sensor error around 20. Thus, the
fusion of sensor estimates is a good choice in this case
if there are no network losses. As the communications
loss probability is increased, TCP losses lead to the
degradation of state estimate as shown in Fig. 1(c). When
the loss rate exceeds 0.7 no messages are received within
the window at the fusion center in the 20 instances we
simulated.

(b) Nonlinear Fuser - Biased errors: To illustrate the effects
of the fuser, we consider that the sensor errors have a
bias as shown in Fig. 2(a) where negative state values
have a negative bias and positive state values have a
positive bias. In this case, the average fuser is no longer as
effective, but a nonlinear fuser that applies a correction
based on the sign of coordinate and then computes an
average, leads to a much improved state estimate as
shown in Fig. 2 (b). This fuser is more complex and better
performing than above; nevertheless, its performance
also degrades with the connection loss probability in a
qualitatively similar manner.

(c) Linear Fuser - Unbiased errors with different variances:
Then we consider a case where sensor errors have zero
bias but have different variances as shown in Fig. 2(c).
In this case a linear fuser with coefficients inversely
proportional to the sensor error covariances performs
better than the average fuser as illustrated in Fig. 2(d).
And, the effects of communications losses are quite

-150
-100
-50

 0
 50

 100
 150
 200
 250

-100 -50 0 50 100

X
1
,
X

2

actual state

State Estimates

No Error
X1
X2

(a) profiles of biased sensor errors

 0
 20
 40
 60
 80

 100
 120

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X

1,
 X

2
loss probability

State Errors

No Loss Non-Linear Fused State
Linear fuser

Non-Linear fuser

(b) state errors - nonlinear fuser

-200
-100

 0
 100
 200
 300
 400

-100 -50 0 50 100

X
1,

 X
2

actual state

State Estimates

No Error
X1
X2

(c) profiles of sensor errors - different
variances

 0

 10

 20

 30

 40

 50

 60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 e
rr

or

 loss probability

State Errors Under Network Losses

No Loss Fused State
TCP

TCP - Average

(d) state errors - linear fuser

Fig. 2. Linear and nonlinear fusers under network losses.

similar to previous cases.

As illustrated in these cases, the fusion method determines
the quality of estimate and execution time. However, these
fusers are not applicable in practical scenarios since errors are
correlated and the detailed knowledge needed to implement
the above fuser is very rarely available. We consider general
classes of such fusers in the next section.

III. STATE ESTIMATE FUSION ALGORITHMS

In this work, we will assume that the cross-covariance is
unavailable. We consider two linear fusers for comparison with
nonlinear and linear learning-based fusers: one that assumes
the sensor errors are uncorrelated, and one that does not.
Note that the formulas provided here are for fusing two state
estimates, which are given as an example; however, these
fusion algorithms are not limited to only fusing two state
estimates.

A. Linear Fuser with Cross Covariance

This linear fuser is optimal in the linear minimum mean-
square error (LMMSE) sense. The fused state estimate X̂F

and its error covariance PF are defined for two sensors [2] as:

X̂F = X̂1+(P1−P12)(P1+P2−P12−P21)−1(X̂2−X̂1) (5)

PF = P1−(P1−P12)(P1+P2−P12−P21)−1(P1−P21) (6)

where X̂i and Pi are the state estimates and error covariance
from sensor i, respectively, and Pij = PT

ji is the error cross-
covariance between sensors i and j. If the sensor errors are
uncorrelated, this fuser reduces to a simple convex combina-
tion of the state estimates:

PF = (P−1
1 + P−1

2)−1 (7)

X̂F = PF (P−1
1 X̂1 + P−1

2 X̂2) (8)

However, if the sensor errors are correlated but the cross-
covariance is unavailable, one may assume that the cross-
covariance is zero in order to apply this linear fuser, but the
result will be suboptimal.

B. Covariance Intersection (CI) Algorithm

Another sensor fusion method is the covariance intersection
(CI) algorithm. The intuition behind this approach comes from
a geometric interpretation of the problem. If one were to plot
the covariance ellipses for PF (defined as the locus of points
{y : yTP−1

F y = c} where c is some constant), the ellipses
of PF are found to always lie within the intersection of the
ellipses for P1 and P2 for all possible choices of P12 [15].
The intersection is characterized by the convex combination
of sensor covariances:

PF = (ω1P
−1
1 + ω2P

−1
2)−1 (9)

and the corresponding sensor fusion for the CI algorithm is

X̂F = PF

(
ω1P

−1
1 X̂1 + ω2P

−1
2 X̂2

)
, ω1 + ω2 = 1 (10)

where ω1, ω2 > 0 are weights to be determined (e.g., by
minimizing the determinant of PF).

Recently, Wang and Li [3] proposed a fast CI algorithm
where the weights are found based on an information-theoretic
criterion so that ω1 and ω2 can be solved for analytically as
follows:

ω1 =
D(p1, p2)

D(p1, p2) +D(p2, p1)
(11)

where D(pA, pB) is the Kullback-Leibler (KL) divergence
from pA(·) to pB(·), and ω2 = 1− ω1. When the underlying
estimates are Gaussian, the KL divergence can be computed
as:

D(pi, pj) =
1

2

[
ln
|Pj |
|Pi|

+ dTXP
−1
j dX + Tr(PiP

−1
j)− k

]
(12)

where dX = X̂i − X̂j , k is the dimensionality of X̂i, and
| · | denotes the determinant. Note that if P1 = P2, then ω1 =
ω2 = 0.5, and the resulting fused estimate will be equivalent to
that from Eq. (8) but with an inflated error covariance matrix
(increased by a factor of 2). This version of the CI algorithm
will be used for a quantitative comparison against the nonlinear
fusers in Section IV.

C. Learning-Based Fusers

There are a number of fusers that can be trained to combine
state estimates as many types of regression analysis methods
exist that can be used to learn or compute the parameters of
the fusing function we wish to estimate. In this work, we look
at the use of ANNs for fusing the state estimates as they are
known to be able to approximate any continuous function,
given sufficient parameters.

1) Artificial Neural Network (ANN) Fuser: We consider a
simple three-layer feedforward neural network, whose overall
architecture is shown in below in Fig. 3. This network consists
of an input layer, a hidden layer, and an output layer, intercon-
nected by weights (to be determined) which are represented
by the arrows between the layers. The inputs X̂1, ..., X̂M , for
example, can be the state estimates from the sensors, and the
outputs X̂(1)

F , ..., X̂
(N)
F are the global (fused) state estimates

for N states. There is also a bias unit (not shown in Fig. 3)
that is connected to each node in addition to the input nodes.

The nodes in the hidden layer are referred to as hidden
nodes. The output of the jth hidden node, aj , is given by

aj = g1(wT
j X̂ + bj) (13)

where wj = [w1j , ..., wMj]
T and bj are the weight vector and

bias for the jth hidden node, respectively. X̂ = [X̂1, ..., X̂M]T

is a vector of input features (e.g., the state estimates from
each sensor), and g1(·) is a nondecreasing function called
the activation function, which is typically a bounded function
such as the sigmoid. A simple diagram illustrating this node
function is shown in Fig. 4.

If we concatenate all of the hidden node outputs aj into
a vector a = [a1, ..., aL]T , then a single fused output of our
network is given by

X̂
(i)
F = g2(wT

i a + bi) (14)

where wi = [w
(i)
1 , ..., w

(i)
L]T is the weight vector for the

hidden node outputs, bi is the bias for output i, and g2(·)
is an activation function.

When the target outputs are known, a well-known approach
to determining the neural network parameters is called back-
propagation. Backpropagation is based on gradient descent; the
weights are initialized with random values and are iteratively
updated to reduce the error (according to some user-defined

X̂1

X̂M

X̂F
(1)

a1

a2

aLInputs

Hidden
Layer

Outputs

 X̂F
(N)

Fig. 3. Example architecture of a simple three-layer neural network.

∑X̂i

X̂1

X̂M

 wMj

ajf (⋅)
wij

w1 j

bj

Fig. 4. Node function diagram. The inputs are multiplied by weights for
that hidden node, summed, and then passed through a function to produce a
hidden node output, aj .

error function, e.g., the mean-squared error). Once the network
parameters are learned (from training data), new data can
simply be fed into the neural network to obtain fused outputs.

IV. SYSTEM SIMULATION

The potential of neural networks for estimating the fusing
function is quantitatively evaluated by comparing the perfor-
mance results to conventional methods through simulation. In
these simulations, we consider the simplified case where we
have synchronous sensors and only one target with perfect
data association so that we may focus only on the fuser
performance. We model two sensors tracking a ballistic tar-
get in the exo-atmospheric coast phase whose trajectory is
determined by a nonlinear state-space model. These sensors
generate state estimates of the target’s position and velocity,
which are subsequently sent to the fusion center where they
are combined to produce a final state estimate of the target.
State-dependent errors are introduced with the use of a simple
radar model in simulating the sensor measurements.

The state-space model of a ballistic coast target has the form

ẋ =

[
v
a

]
(15)

where x = [pT vT]T is the state vector consisting of the
target’s position p = [x y z]T and velocity v = [ẋ ẏ ż]T in
the Earth-centered inertial (ECI) coordinate system (i.e., the
coordinate system does not rotate; it is fixed relative to the
“fixed stars”, and its origin is at the center of the Earth) [16].

In the coast phase, gravity is considered to be the dominat-
ing force acting on a ballistic target, so the total acceleration
is a = aG, where aG is the gravitational acceleration. The
following is an expression for aG that assumes a spherical
Earth model [16]:

aG = − µ

‖p‖3
p (16)

where p is the target position vector from the Earth’s center
to the target, ‖p‖ =

√
x2 + y2 + z2 is its length, and µ =

3.986012 × 105 km3/s2 is the Earth’s gravitational constant.
The continuous-time model of the system is given by

d

dt

x
y
z
ẋ
ẏ
ż

 =

ẋ
ẏ
ż

−µx/r3
−µy/r3
−µz/r3

 (17)

where r =
√
x2 + y2 + z2. An algorithm for computing the

state propagation can be found in [17].
In tracking applications, the target dynamics are usually

modeled in Cartesian coordinates, while the measurements are
typically available in sensor coordinates (most often spherical
coordinates) [18]. We simulate the measurements following the
simulation in [19] for a ballistic coast target. The measurement
model is given by z = h(x) + v, and the measurements of
the range (r), elevation (E), and azimuth (A) of the target are
computed as follows:

z =

 rE
A

 =

√
x2 + y2 + z2

tan−1
(
z/
√
x2 + y2

)
tan−1 (x/y)

+ v, (18)

where v is white Gaussian noise with covariance R =
diag

([
σ2
r σ2

E σ2
E/ cos2(E)

])
. As with the simulations in

[19], the azimuth error is set to be a function of the elevation
and the elevation error.

A simplified radar model is used to generate state values
for σr and σE so that the errors are state-dependent and
correlated across sensors. We will only consider the error
that is dependent on the signal-to-noise ratio (SNR) for
both the range and angle measurement accuracy since they
usually dominate their overall respective radar error [20]. From
[20], we have the following relationship between the standard
deviation of the SNR-dependent random range and angle
measurement errors and the SNR:

σr, σE ∝
1√
SNR

(19)

The SNR (from the well-known radar range equation) is
inversely proportional to r4, where r is the range from the
sensor to the target. To simplify, we assume a number of the
radar parameters from the radar range equation are constant
(e.g., the radar pulse duration, antenna gain, etc.) so that

σr, σE ∝ r2 (20)

The range and elevation error of a ballistic target/satellite
tracking phased array radar, the Cobra Dane, are published
in Table 1 of [21] as 15ft and 0.05◦, respectively. These
parameters are used to find reasonable values for scaling the
σr and σE used in these simulations to generate the state-
dependent measurement noise.

A. Generating State Estimates

Since the measurement noise is additive in spherical coordi-
nates, a bias is introduced into the state estimates in Cartesian
coordinates. Zhao et. al. [22] developed a recursive BLUE
filter for a linear system that is theoretically optimal (in the
mean-squared error sense) among all linear unbiased filters in
Cartesian coordinates. This filter was used to generate the state
estimates in these simulations to account for the converted
measurements.

B. Simulation Setup

The training and testing data were generated from random
initial positions and velocities, with standard deviations 100m
and 5m/s, respectively (for each coordinate), about the mean
p = [100, 2000, 4500]T (km) and v = [1, 3, −6]T (km/s).
Starting from each initial state (position and velocity), a 180
second trajectory was generated for each data sample using
the state-space model described earlier. Each sensor processes
its own measurements using the BLUE filter, with fixed, but
different values for what the sensor believes its error is in range
and elevation (i.e., each sensor generated its state estimates
using a fixed measurement error covariance matrix). For sensor
one, we set σr1 = 15ft, σE1 = 0.1◦, and for sensor two,
σr2 = 20ft, σE2 = 0.05◦.

Twenty training trajectories were generated along with one
test trajectory, and the features input into the neural network
were the state estimates from each sensor at the current time
step. For the three-layer feedforward neural network described
earlier, we need to specify its architecture by selecting activa-
tion functions and the number of hidden nodes. The sigmoid
function is perhaps the most widely used activation function
as it possesses a number of desirable properties (e.g., it is
differentiable, smooth, nonlinear, and saturating), and it also
admits a linear model if the network weights are small [6].
We will use the sigmoid g1(x) = 1

1+e−x at the hidden layer
and a linear function at the output layer so that a single output
of our network is given as

X̂
(i)
F =

L∑
j=1

w
(i)
j

(
g1(wT

j X̂ + bj)
)

+ bi (21)

The number of hidden nodes needed depends on the complex-
ity of the function we are trying to estimate. Using too few
hidden nodes may yield a poor approximation to the actual
function. Using too many hidden nodes result in overfitting
the data so that while the neural network may precisely give
the desired outputs for the training data, it may not generalize
well to unseen data. Unfortunately, there is no precise method
that provides the optimal number of hidden nodes needed
to properly model the data. Therefore, we also investigate
the impact of the number of hidden nodes has on the ANN
fusion. Lastly, we will also look at using only linear activation
functions (i.e., g1(x) = x in Eq. (21)) in the ANN to compare
nonlinear and linear fusion using learning-based fusers.

V. RESULTS

Following [22], the filter was initialized with an effectively
infinite initial state error covariance and a highly inaccurate
initial state estimate. We present results for the position MSE
starting at 120s (averaged over 100 simulations). Table I shows
the average MSE for the ANN fuser for different numbers of
hidden nodes. It can be seen that as the number of hidden
nodes increases, the MSE decreases, but continuing to increase
that number does not necessarily have a positive impact on
the performance. However, it can be seen the performance
of the fuser does not degrade much, which suggests that the

TABLE I
POSITION MSE FOR THE NONLINEAR ANN FUSER WITH DIFFERENT

NUMBERS OF HIDDEN NODES.

Hidden Nodes Position MSE
2 2047.42

5 3.44

10 0.80

20 0.66

30 0.70

50 0.76

120 130 140 150 160 170 180
0

1

2

3

4

5

6

7

8

Time (s)

p
o

s
it
io

n
 M

S
E

 e
rr

o
r

Linear Fuser

NN Fuser

Linear NN Fuser

CI Fuser

Fig. 5. Position MSE over time for linear and nonlinear fusers.

training data may be a good representation of our data as not
much overfitting seems to occur. Fig. 5 shows the position
MSE over time for the different fusers (linear, Covariance
Intersection, and the ANN fuser with 20 hidden nodes). The
resulting performance of the ANN fuser in these simulations
shows promise for using nonlinear, learning-based fusers for
improving the overall system performance.

VI. CONCLUSIONS

In this work, we explored the use of nonlinear fusers with
multisensor fusion. We presented a probabilistic performance
bound on the quality of a system as a function of several
system components: the distribution of the state estimates,
communication parameters, as well as the fusion algorithm.
For optimal sensor fusion, detailed knowledge of the state
estimates is typically required but may be unavailable (such
as the cross-correlation of the errors across sensors), in which
case one may use learning approaches to implicitly incorporate
unknown information into the fuser function. The performance
results from system-level simulations of a ballistic coast tar-
get with state-dependent errors demonstrate the potential for
nonlinear fusers to improve the overall system performance.

ACKNOWLEDGMENTS

This work is funded by the Mathematics of Complex,
Distributed, Interconnected Systems Program, Office of Ad-
vanced Computing Research, U.S. Department of Energy,
and SensorNet Project of Office of Naval Research, and is
performed at Oak Ridge National Laboratory managed by UT-
Battelle, LLC for U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

REFERENCES

[1] X. R. Li and P. Zhang, “Optimal linear estimation fusion - part iii: Cross-
correlation of local estimation errors,” in Proc. 2001 Int. Conference
Information Fusion, 2001.

[2] Y. Bar-Shalom and X. R. Li, Multitarget-Multisensor Tracking: Princi-
ples and Techniques. Storrs, CT: YBS Publishing, 1995.

[3] Y. Wang and X. Li, “Distributed estimation fusion with unavailable
cross-correlation,” Aerospace and Electronic Systems, IEEE Transac-
tions on, vol. 48, no. 1, pp. 259 –278, jan. 2012.

[4] K. Kim, “Development of track to track fusion algorithms,” in American
Control Conference, 1994, vol. 1, june-1 july 1994, pp. 1037 – 1041
vol.1.

[5] C.-Y. Chong, S. Mori, W. Barker, and K.-C. Chang, “Architectures and
algorithms for track association and fusion,” Aerospace and Electronic
Systems Magazine, IEEE, vol. 15, no. 1, pp. 5 –13, jan 2000.

[6] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley-
Interscience, 2000.

[7] S. S. Blackman and R. Popoli, Design and Analysis of Modern Tracking
Systems. Boston: Artech House, 1999.

[8] M. K. Sundareshan and F. Amoozegar, “Neural network fusion capa-
bilities for efficient implementation of tracking algorithms,” Opt. Eng.,
vol. 36, no. 3, pp. 692–707, 1997.

[9] J. Zhongliang, X. Hong, and Z. Xueqin, “Information fusion and
tracking of maneuvering targets with artificial neural network,” in Neural
Networks, 1994. IEEE World Congress on Computational Intelligence.,
1994 IEEE International Conference on, vol. 5, jun-2 jul 1994, pp. 3403
–3408 vol.5.

[10] S. Gezici, H. Kobayashi, and H. Poor, “A new approach to mobile
position tracking,” Proc. 5th IEEE Int. Conf. Universal Personal Com-
munications, pp. 204–207, Mar 2003.

[11] N. Yadaiah, L. Singh, R. Bapi, V. Rao, B. Deekshatulu, and A. Negi,
“Multisensor data fusion using neural networks,” in Neural Networks,
2006. IJCNN ’06. International Joint Conference on, 0-0 2006, pp. 875
–881.

[12] F. Chowdhury, “A neural approach to data fusion,” in American Control
Conference, 1995. Proceedings of the, vol. 3, jun 1995, pp. 1693 –1697
vol.3.

[13] L.-W. Fong and C.-Y. Fan, “Multisensor fusion algorithms for maneu-
vering target tracking,” in E-Learning in Industrial Electronics, 2006
1ST IEEE International Conference on, dec. 2006, pp. 80 –84.

[14] N. S. V. Rao, K. Brigham, V. K. Bhagavathula, Q. Liu, and X. Wang,
“Effects of computing and communications on state fusion over long-
haul networks,” in 15th International Conference on Information Fusion,
2012.

[15] S. J. Julier and J. K. Uhlmann, General Decentralized Data Fusion with
Covariance Intersection, ser. Handbook of Multisensor Data Fusion.
Boca Raton, FL: CRC Press, 2001.

[16] X. Li and V. Jilkov, “Survey of maneuvering target tracking. part ii:
Motion models of ballistic and space targets,” Aerospace and Electronic
Systems, IEEE Transactions on, vol. 46, no. 1, pp. 96 –119, jan. 2010.

[17] M. Yeddanapudi, Y. Bar-Shalom, K. R. Pattipati, and S. Deb, “Ballistic
missile track initiation from satellite observations,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 31, no. 3, pp. 1054–1071,
1995.

[18] Z. Zhao, X. Li, V. Jilkov, and Y. Zhu, “Optimal linear unbiased filtering
with polar measurements for target tracking,” in Information Fusion,
2002. Proceedings of the Fifth International Conference on, vol. 2, 2002,
pp. 1527 – 1534.

[19] T. Kerr, “Streamlining measurement iteration for ekf target tracking,”
Aerospace and Electronic Systems, IEEE Transactions on, vol. 27, no. 2,
pp. 408 –421, mar 1991.

[20] G. R. Curry, Radar System Performance Modeling. Artech House
Publishers, 2004.

[21] E. Filer and J. Hartt, “Cobra dane wideband pulse compression system,”
in Proceedings of IEEE EASCON, 1976, pp. 26–29.

[22] Z. Zhao, T. Rong Li, and V. Jilkov, “Best linear unbiased filtering with
nonlinear measurements for target tracking,” Aerospace and Electronic
Systems, IEEE Transactions on, vol. 40, no. 4, pp. 1324 – 1336, oct.
2004.

