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Transmission problem in thermoelasticity with symmetry
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In this paper we show the existence, uniqueness and regularity of the solutions to the
thermoelastic transmission problem. Moreover, when the solutions are symmetrical we
show that the energy decays exponentially as time goes to infinity, no matter how small is
the size of the thermoelastic part.
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1. Introduction

We consider a model describing oscillations of a body which is composed of two different
materials, one of them is a thermoelastic material while the other is indifferent to thermal
effects. We assume that the density as well as the elastic coefficients are different constants
in each component. Therefore, we have a transmission problem where the damping effect
given by the difference of temperature is effective only in a part of the material.

Concerning thermoelastic systems we have the work of Dafermos (1968), where it
is proved that the solution of the-dimensional anisotropic thermoelastic material is
asymptotically stable as time tends to infinity, and the decay of the displacement is not
to zero but to an undamped oscillation. On the other hand the difference of temperature as
well as the divergence of the displacement always tend to zero as time tends to infinity.
For one-dimensional models it was proved that the dissipation given by difference of
temperature is strong enough to produce uniform rate of decay of the solution; see (Kim,
1992; Marzocchgt al., 2002; Muioz Rivera, 1992). The situation is different in two and
three dimensions because the displacement vector field has two or three degrees of freedom
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while the difference of temperature, which produces the dissipative effect of the system,
has only one degree of freedom. For this reason the dissipation is weaker than in the one-
dimensional case and uniform rate of decay is not expected any more as was shown by
Henry (1987). From this point of view we have not in general a uniform rate of decay for
the solution in two- or three-dimensional space. The exception is for symmetrical solutions,
as was shown in (Jiarg al., 1998).

In this paper we consider the transmission problem between a thermoelastic and an
elastic material. That is, the dissipation given by the thermal effect is effective only in a
part of the material. The main question is whether the localized thermal effect is strong
enough to produce uniform rate of decay for symmetrical solutions. The aim of this paper
is to prove that no matter how small is the thermoelastic part, the dissipation, produced by
the thermal effects, yields uniform rate of decay for the solution.

Let us consider am-dimensional body which is configured i c R". The
thermoelastic part is given b1 and the elastic part b§g, that is,

Qo={xeR": |x| <rg},
M={xeR" :rg<|X| <ri},

with 0 < rg < r; andn > 2. We denote the boundary ¢f asdf?; = Ip U I'1 and the
boundary off2y asd 2y = Ip.

Thermoelastic par

Letu = (Ui,...,up)' andv = (vi,...,vn)" be the displacements in the
thermoelastic and elastic parts, respectivélylénotes transposition). We denoteébthe
difference of temperature between the actual state and a reference temperature. Then the
system that models the above setting is given by

p1Uit — 1 Au — (1 + A1) Vdivu+a VO =0 in 21x]0, oof, (1.1)
O —k AG 4+ Bdivug =0 in  21x]000], (1.2)
poVit — o AV — (o + Ap)Vdivy =0 in  £29x]0c0l, (1.3)

whereu1, A1, o, Ao are the Laré moduli satisfyingu1, o > 0 andniy + 2ug > 0O,
nio+ 210 > 0,«, B > 0,« > 0 are given constants depending on the material properties.
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The system is subjected to the following boundary conditions:

uix,t) =0(x,t) =0o0n Xy, 1.4)
u(x,t) = v(x, t) on Xy, (1.5)
au . aVv .
mig—+ [(u1+2rp)divu —ablv = uo 5, + o+ ro)(divv)r on Xp, (1.6)
a0
— =0on X, a.7)
ov

whereX; = I'1 x]0, oo[, Xo = [9x]0, oo[. The initial conditions are given by

u(x, 0) = up(x), Ut (X, 0) = u1(x), X € (N, (1.8)
6(x, 0) = 6g(x), X € (N, (1.9)
V(X, 0) = vo(X), Vi (X, 0) = vi(X), X € (. (2.10)

Our main result is that the solution of the symmetrical transmission problem decays
exponentially as time tends to infinity, no matter how small is the size of the thermoelastic
part. The main problem in showing the exponential stability is to deal with the boundary
terms in the interface of the material. We overcome such difficulty using an observability
result of the elastic wave equations together with the fact that the solution is radially
symmetric. Our method allows us to find a Lyapunov functiadhabjuivalent to the second-
order energy for which we have

d
aﬁ(t) < —yL®).

That is, we give a direct proof of the exponential stability, which means that our method
can be applied to nonlinear problems.

The remaining part of this paper is divided as follows. In Section 3 we show the
existence and regularity of radially symmetric solutions to the transmission problem. In
Section 4 we show the exponential decay of the solutions.

2. Functional setting and notation

We now introduce the notation used throughout this paperfée a domain irR". By
WM P(2) (m € Np, 1 < p < 00) we mean the usual Sobolev space defined dvavith
norm|| - |lwmp (see, for example, Adams, 1978)™2(2) = H™(2) with norm|| - ||um,
WO-P(2) = LP(£2) with norm| - ||_p. Wewrite C- (1, B) (resp.L2(1, B)) for the space of
B-valued functions which ark-times continuously differentiable (resp. square integrable)
in I, 1 C R aninterval,B a Banach spacd, anon-negative integer. We denote byrQ
the set of orthogonal x n real matrices and by S@) the set of matrices in @) which
have determinant 1. Then, -)gn is the inner product ilR". For a vector-valued function
f = (fy,- -, fm)T and a normed spacé with the norm||| - |||, writing f € X means
that each component dfis in X; we put|[| f ||| ;= |I| falll + - - + Il fmll]-

The same lette€ will denote various positive constants which in particular do not
depend ont and initial data.
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3. Existence and uniqueness

First, we define what we mean by a weak solution of the problem (1.1)-(1.10). In this
section, we set = [0, T], with T > 0. We introduce the following spaces:

H}l ={we HY(2): wix,t) =0 only x|},
V ={(h,k) e H}l(m) x H1(20) : h(x,t) = k(x,t) onIgx I}.
DEFINITION 3.1 We say that(u, 6, v) is aweak solution of (1.1)—(1.10) when
ue Whe(, L2(021)) N L=(1, HE, (1)),
6 € L®(, L2(20) N L%(1, HE (1)),
ve W (I L2(020)) N L1, HY(00)),

satisfying the identities
T
[/ [p1U- @y + pu1VU: Vé + (u1 + Ap)divudive — b div ¢ dxdt
0/
T
+/ [poV - wit + noVV : Vw + (uo + Ag)divv divw] dx dt
0J %2

_ fﬂ {1 [U1 6(0) — Uo b1 (0)]} dx + /Q {po[v1w(0) — Vowr ()]} dx:
1 0

-
/ (=0 +«VO - V¢ + Bdivut ¢) dxdt = / 0o (0) dx
0Jm

2
for all (¢, w) € C2(1, V), ¢ € CL(, H}l) and almost every € | such that
(M) =(T) =w(T) =wi(T)=0 and ¢(T)=0.
The existence of solutions to system (1.1)—(1.10) is given in the following theorem.

THEOREM 3.1 Let us take the initial data satisfying
(Up. U1, 60) € HE x L®x L? and (vo,v1) € H! x L2
Then there exists only one solutiom, 6, v) of the system (1.1)—(1.10) satisfying
uew™-o (l, L2) nL® (|, H}l) ,
2 2 1
oeL> (1, L2) nL2 (1, HE ).,

vewloe (l, L2) nL® (|, Hl) :
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In addition, if
(o, u, o) € (H2NHE ) x HE x (H2N HE)
and
(Vo,V1) € H? x HY,
verifying the compatibility conditions
Uo(X) =0; 6o(x) =0 on I7,

Up(X) = Vo(x) on I,

du . v .
E0 4 (1 + A divug — @ fo] v = o = + (1o + ro)(divvo)y  on T,

Mlau v

0 O,
—O=0 on Ip,
ov

then the solution satisfies
ue L (1, H) nwWhe (I, HY) nw2> (I, L?),
6 e L® (1, H) N Wbt (1,L2),
veL®(I,H2) n WL (I, HY) n w2 (1, L?).

Proof. The proof follows using the standard Galerkin approximation and the elliptic
regularity for transmission problem given in (Ladyzhenskaya, 1968; Athanasiadis &
Stratis, 1996).

Sep 1 (Faedo—Galerkin scheme). Givene N, denote byP, and Q, the projections on
the subspaces spdp;, wi)}, sparisi} (i = 1,...,v) of V and H}l respectively. Let us
write

W, v =Y aM(g,w), 60"=) by,
i=1

i=1
whereu” andv' satisfy

/ [Uf; - @i + n1VUY 1 Ve + (u1 + Apdivu’ div gy — a6’ div ¢; | dx
)

+/ [V{’t ~wj + noVVY : Vwi + (o + Ag)divvY dini] dx =0,
B (3.1)

/ (9”@-i +kVO¥ - Vi —i—,BdiVUf §|) dx =0,
h

(u”(0), v¥(0)) = (Uo, Vo), (uf(0), v{(0)) = (uz,v1), 6"(0) = b,
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for almost allt < T, wheregq, wo andp are the zero vectors in the respective spaces.
Recasting exactly the classical Faedo—Galerkin scheme, we get a system of ordinary
differential equations (ODES) in the variables(t) and b (t). According to standard
existence theory for ODEs there exists a continuous solution of this system, on some
interval (0, Tp). The a priori estimates that follow imply that in faGt = +oo.

Step 2 (energy estimates). Multiplying (3.4} by & (t), integrating by parts and summing
upoveri, we have

o

VoY - uf dx =0,
B Joy

d

—E&V(t

o t) +
where

l R v
£'(t) = 5[9 (1102 4 a1V 2+ s + 2 ldiva 7] e
1

1 .
5 [ [olvt P+ wol V2 4 o+ Aoldivy! 2] .
2

Multiplying (3.1) by bj (1), integrating by parts and summing up ovewe have

1d
——f |9”|2dx+;c/ |V9"|2dx—/3/ V6" . uy dx = 0.
2dt o o o

Summing the two identities above we get

d ~
S8 = -2 | |vevi2dx,
dt BJo,

where 1
-~ o
EVt) = EV(t) + ——f 16712 dx.
28 Joy
After an integration ove(0, t),t € (0, T), we have that
~ Ko t ~
EV() + —/ f V6" (1)[?dx dr < £°(0).
B JoJo
Thus, we conclude that
(u”,u’, 0") is bounded irL°°(I, HY) x L*(I, L?) x L*(l, L?),
(v¥,v}) is bounded i (1, HY) x L*(1, L?),
which implies that
u’— u weak in L®(I, HY),
6" — 6 weak: in L=(I, L?),
vV = v weaki in L1, HY),
u'— uy weak in L(1, L?),

v/— v weakt in L1, L?).



TRANSMISSION PROBLEM 29

In particular,
u” — u strongly inL2(I, L?),
whence it follows that
u’ —u a.e.in .

The rest of the proof of the existence of weak solution is a matter of routine. Next we show
uniqueness. Let us suppose that there exist two solutidns?, #1) and(u?, v4d, 62) and
let us denote by

U=ul—u? Vv=vi-\Vv?2 o0=0'-02%

t t t
U=/Ud7,', V=/th, 9:/ edr
0 0 0

it is not difficult to see thatu, v, 0) satisfies

Taking

p1Utt — 1 AU — (u1 +A)Vdivu+a VO =0 in 2:x]0, oo, (3.2)
6 —k AG + Bdivug =0 in  21x]0, ool (3.3)
poVit — o AV — (o + Ao)Vdivy =0 in  2x]0, ool. (3.4)

Since (ul, v1, 8Y), (U2, v2, 62) are weak solutions of the system we have thatv, 6)
satisfies

UeL®O,T;HE), wel®0TiHE), uxel®0T;L?,
vel®O0T:;HY, vielL®OT;HY, wviel®0OT;L?,

0 €L*0.T:Hf). 6 eL?0.T:Hf) = 0eL®0.T:Hp).

Using the elliptic regularity for the elliptic transmission problem (see Athanasiadis &
Stratis, 1996) we conclude that

uelL®O,T;HE NH?, vel®0,T;:H'NH?, 6eL™0 T:HNH.

Thus (u, v, 9) satisfies (3.2)—(3.4) in the strong sense. Multiplying equation (3.2)by
(3.3) by8 and (3.4) by we conclude, using similar arguments as above, that

Et)=0,

where

1 .
E® = [ [pluel?+ ualVul + oy + rpidivu?] ox
i

1 .
+5 /Q [Polvil? + ol VVIZ + (10 + o) div v 2] dx
(0]

o 2
+— [ Vo dx
28 Jo,

which implies thau® = u?, vt = v2, 91 = 62. From this uniqueness follows.
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To show the regularity result, we differentiate the approximate system (3.1), then we
multiply the resulting system bg/’(t) andbj (t), and as before we get

E3(t) < CE0),
where

o

1 .
%m=—f pmm@+mWWF+Uu+MWNWF+ﬂ
1

2/, |9t”|2] dx

+% /Qo [polvt”t|2 + 110l VY12 + (o + Ao)|divvt”|2] dx.
Therefore, we find that
uy, 67 are bounded iL>(0, T; L2(2)),
v}, is boundedirL>®(0, T; L?(92)),
vl is bounded irL>(0, T; L?(12)),
uf is bounded irL>(0, T; H1(12)),
6 is bounded irL>®(0, T; H(2)).

Finally, our conclusion will follow on using the regularity result for the elliptic
transmission problem (see Athanasiadis & Stratis, 1996). O

REMARK 3.1 We can extend the above theorem to higher regularity by introducing the
following definition. We will say that the initial dat@uo, u1, 6p) is k-regular (k > 2) if

uje H*JnHp,  j=0k-1 uel?

gp e H* InHL,  j=0k-1 @el?
where the values afj and6; are given by

Uj+2 — p1Auj — (1 + A Vdivuj + Vo =0 in  21x]0, oo,
Oj+1 —kAfj + Bdivuji1 =0 in (21x]0, ool,
Vjt2 — woAvj — (uo+ 20)Vdivvj =0 in  25x]0, oo[,
satisfying the following compatibility conditions:
ujx)=0; 0;(x)=0 on I1,

uj(x) =vjx) on Ip,

d uj : aVj .
p1— + [(n1 + Apdivuj —a 0] v = po— + (o + ro)(divvj)r on I,
v v
00
—1_—0 on Iy

ov
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for j =0,...,k— 1. Using the above notation we say that, if the initial date-iegular,
then we have that the solution satisfies
k k
ue (YW@ T HInHE),  ve [ Whe@, T: HE D,
j=0 j=0

k
0 e

i, . k=i 1
W!He O, T; H I n Hp)-
j=0
The proof follows the same arguments as Theorem 3.1.

Let us denote by On) the set of orthogonal x n real matrices and by S@) the set
of matrices in @n) which have determinant 1.

LEMMA 3.1 Assume thatig, u1, 6, Vo, V1, satisfy
Uo(G X) = G Ug(x), U1(GX) = Gui(X), 6p(GX) = Ghp(X), VXe€ I,
V(G X) = Gvp(x), V1(GX) = Gvi(X), Vxelfl (3.5)
GeO®@ if n=2 or GeSQn) if n>3

Then the solutiorfu, 6, v) of (1.1)—(1.10) has the form

Ui (X, t) =X ¢(r, t), Vxef, t=0,
(X, t) =y (r,t), Vxefn, t=>0  (3.6)
vi(X,t) =x nr,t), v t)=0,i=1...,n, Vxefp t=>0

wherer = |x|, for some functiong, v, 7.

Proof. Wefirst prove that under (3.5) the solution of system (1.1)—(W3y, v) is radial,

that is,
uGx, t) =Gu(x,t), 6(x,t)=0(Gx,t) foranyx € 21, t

’

>0
V(G X, 1) = Gv(x,1), foranyx € %, t>0, (3.7)
GeO@ if n=2 or GeSOn) if n=>3.

Let G = (Gijj)nxn € O(2) for n = 2 or e SQ(n) for n > 3 be arbitary but fixed, and
defineU (x,t) := GT u(Gx, 1), O(x,t) := 8(Gx,t), V(X,t) := GT v(G x, t). After a
straightforward calculation we get

Uit = GT un (G x, t), AU(x, 1) = GT(Au)(G x, t),
divUi(x,t) = (divu) (G x,t), VdivU = GT(Vdivu)(Gx, 1),
VO, 1) =GT(VO(GxX, 1), AOXt)=(A0)(GX,1),
Vit = GT vt (G X, 1), AV (x, 1) = GT(AV)(G x, t),
divVi(x, t) = (divv)(Gx,t), VdivV = GT(Vdivv)(Gx, 1),

(3.8)

ouU au LAY ov
— X, t) = —(GXx, 1), — X)) = —(GXx,1).
v ov v v
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In view of (3.5) and (3.8) we see thhk(x, t), O(x,t) andV (x,t) satisfy the equations
(1.1)—(2.10). From the unigueness of solutions to (1.1)—(1.10) we@et) = U (X, t),
0(x,t) = O(x, 1), v(x,t) = V(X, 1), which gives (3.7). Next we show that (3.7) implies
(3.6).

Case ' n = 2. Letx = (x1,X2)' € (4 be arbitrary but fixed and le6 :=
X1/r Xo/1 .
( X/t Xu/T ) € O(2). From (3.7) it follows that
o X/t —=Xo/r ui(reg,t) (1
ux,t = ( Xo/T  Xu/F )( ua(rex, t) ) 1= < 0 ) (3.9)
. -1 0 : .
Taking G := o 1 ) € 0(2), using (3.9), we obtain by (3.7) thap(re;,t) = 0,

which together with (3.9) gives(x, t) = X¢(r, t) with ¢(r,t) := ui(reg, t)/r.

Casell: n > 3. Forx € 1, let SO«(n) := {G € SON)| G x = x} denote the set of all
rotations about th&-direction. By (3.7) we have

ux,t) =u(Gx,t) =Gu(x,t) forany G e SO(n)- (3.10)
By (3.10) we conclude that thereasgx, t) € R such thatu(x, t) = a(x, t)x. Obviously

(u(x), X)gn

ax,t) = X2

for x € R", x # 0. It follows from (3.7) that for anyc € SQ(n)

aGx ) = MEXD. Gxjpn_ (GUX. D). G X

_ b, Xjge =a(x,t), xe g, t=>0,
|x|?
which implies thata(x, t) = ¢(|x|, t) := a(|x|es, t). Thereforeu(x,t) = x¢(|x|, t) for
X € f)l,t > 0.
It is easy to see that (3.7) implies thaix, t) =: ¥ (|x|,t) for x € 2y andv(x,t) =
xn(]x|, 1) for x € £, x # 0,t > 0. The proof is complete. O

As a consequence of Lemma 3.1 we have the following.

LEMMA 3.2 Letus suppose that: 1 — R" is a radially symmetric function satisfying
ulr, = 0. Then there exists a positive constasuch that

||vu(t)||L2(Ql) < C ||d|V u(t)”LZ(Ql), t 2 0. (311)
Moreover we have the following identity at the boundary:

, |oul® n-1
Vu@®[” = |—| +
fo

- lu2 on I. (3.12)
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Proof. By hypotheses we can suppose that
uix,t)y =xe(r,t) with r =|x|,
and we find that
divul = n2p2(r) + 2nr ¢(r) ¢'(r) +r24/%(r).
So we obtain
r2¢/2(r) = |divul? — n%p2(r) — 201 $() ¢/(r)
< |divul? — 2nr ¢(r) ¢/ (r)
< [divul® +2n? (1) + 3r%¢/(r)
which implies that
%rch’z(r) < |divul? + 2n¢(r). (3.13)
On the other hand, since# 0, we can write

¢’(r>+?¢(r)= d'rﬁ (3.14)

Multiplying the above equation by e{gf}rl n/r dr} we get

r r I
Eexp{/ n/r dr} o) :exp{/ n/r dr} M
dr r " r

which is equivalent to
r d
re@r) = f A
ry r

Then, by application of Fubini's theorem, there exists a positive constsunth that
ri
/ d2(r)dr < c/ |div u|? dx. (3.15)
ro Q]_

From the hypotheses an (3.13) and (3.15), we find that

r

IVU® 20 = @n / g0 + 2 o) ¢/ + 200 | ar

o

r
gwn/ fpn-t [(n+1)¢2(r)+2r2¢’2(r)] dr

fo

< clldivu®) iz gy

which proves (3.11).
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To show the second part of this lemma, let us note that
Wt = o(r, 1) + x4, 1)

ax a e o

u

|

9 2 2 2Xi2 ’ 2,72

Therefore we have
IVUX, )2 = n2(r, t) + 2r ¢(r, 1) ¢'(r, 1) +r2¢2(r, 1). (3.16)

It is not difficult to see that
Mt =@ 6.0 5+ gy
Ao , DV = ) Tl ") ) .
X =4 Ix] ~ r2
Whence it follows that 5
u X
— X, )=, t)— +x¢'(r,t
8\1( ) = ¢( )|x|+ ¢'(r,t)

which implies that

2
’g—:j(x, ] =2 t) +2r p(r.t) ¢'(r. 1) +r2¢/(r, 1). (3.17)

Then (3.16) and (3.17) yield
2

0
IVu(x, )2 = ‘ﬁ(x, B +0-Dipr. H,

whence our conclusion follows.

4. Exponential stability

Let us introduce the functionals

1) = &1(u, 0, v, 1) = %/

0

[munz + w2l VU + (1 + Ap)ldivul® + %W} dx
1 .
+§/ [Polvil? + 10l VVIZ + (10 + 2o)ldlivv 2] dx
2
Ea(t) = &, O, Vi, ).
In the next lemmas we show the dissipative properties of the system (1.1)—(1.10).

LEMMA 4.1 Let us suppose that the initial daf@o, 6p, vo) is 3-regular; then the
corresponding solution of the system (1.1)—(1.10) satisfies

d_ ..« )
&51“)_"‘3/9 V62 dx, (4.1)

1

d o 2
520 = —KE/;21|V9t| dx. 4.2)
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Proof. Multiplying equation (1.1) by, equation (1.2) by and equation (1.3) by;, and
integrating over the respective intervals, yields

1d -
24t / [p1|ut|2+M1|VU|2+(M1+A1)|dlvu|2] dx —|—Ol/ V6 - ug dx
2dt | /o, 5
au .
= / |:M1 — + (n1 + A1) (div u)y] -updl (4.3)
391 ov

1d (/ |9|2dx>+/</ |V9|2dx+ﬂ/ fdivuy dx =0 (4.4)
2dt \Jo, o o
1d , , -
o4t {f% [p0|Vt| + 1ol VVI© + (no + 20)|div V| ] dx}

= [ |:,uo 8—\/ + (uo + )»o)(diVV)I/] -vidl'. (4.5)
) v

Summing up identities (4.3), (4.4) and (4.5) we find (4.1). Differentiating the system with
respect to the timeand using the same procedure as for (4.1), we get (4.2). O

Let us define

E3(t) = (2u1 + A1) Ea(t) + %(mo +20)Es(t)

1 o
Ea(t) = —f [p1|Vut|2+ (2u1 + 21)|Aul? 4 —|ve|2] dx
2 )0, B

~ 1

Est) =5 f [P0l Vwil? + 2o + 30 Av[?] dx.
20

LEMMA 4.2 Under the same hypotheses as Lemma 4.1 we have that

K O

d
- < —

2u1+ 1) / 1 26/2 dx
i

C .
+—3f |V9|2dx+e/ |d|vut|2df+p1a/ G Uy -vdl,  (4.6)
€ .Ql Fl ]_b

wheree andC = C(«, u1, A1) are positive constants.

Proof. Note that, by virtue of (3.6)ydivu = Au. Multiplying equation (1.1) by-(2u1 +
A1) Aug, equation (1.2) by-(2u1+ 1) A0 and equation (1.3) by-(p1/p0) (21 + A1) Avy,
integrating over the respective intervals and summing the product results, we get

d o
— =—k—-(2 A 202
dt53(t) K,B( n1 + 1)/91| 6 dx

a0 .
—a(2u1 + )\1)/ —divus dI” + pla/ Or Uyt - vdrl. 4.7)
oV

I'o
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Using the Cauchy inequality we have

2

dI' + ¢ [ |divu?dr,
Iy

a0 . 1
—divurdl' < —
I ov I

a6

and, from trace and interpolation inequalities we obtain

1 1
36 c i 2
/—divutdrg—l[/ |V9|2dx] U |A9|2dx} +e/ divu|2dr
oV de | /o, o I

C .
<—3/ |Vo|? dx—i—e/ 14012 dx +€ | |divu?dr.
€ Q]_ Q]_ Fl

Inserting the above inequality into (4.7), our conclusion follows. O

Define the quantity
K@t) = / (@divus — S ug - Au) dx,
i

wheres > 0. Now we have the following.
LEMMA 4.3 With the same hypotheses as Lemma 4.1 the following inequality holds:

§(2u1 + A1)

| Au|? dx
4p o)

EIC(t) < ——/ |div u|? dx —

2 A k2
+<5c€+1+‘“7+1) |V0|2dx~|——/ 1462 dx
o1 8 p1 o} 28 Jo,

5
+/ Ut - VdF—(S/ 9% yedr, 4.8)
Iy

where$ andC, are positive constants.

Proof. Multiplying equation (1.2) by diw; we get

9divutdx=/

0 div ug dx+/ 0 div ug; dx
h

.Q]_ ‘Ql

:K/ A6 divuydx — B |div ug |2 dx
.Q]_ -Ql

—/ V@-Utth—i-/ O ug -vdll
Ql 8Ql

K2 ,3
|A9|2dx / |div ut | dx+/ OUy - v dl
2/3 To

_2M1 + A1

/ve-Audx+3 V|2 dx. (4.9)
P1 2 P1

D
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Multiplying equation (1.1) by- Au we find that
d
- utAudx:—/ utt-Audx—/ Ut - Aug dx
dt Jo, o o)

2 A
:_“17*1/ |Au|2dx+3/ V6 - Audx
(2 £1

p1 o
au
IVui2dx — | =L .uedr
o} Iy v
2 A 2
g—Lﬂf 1AuPdx+ ——2 [ |ve2dx
201 o 201(2u1 + 1) Jo,
2 8Ut
+ [ |Vu|“dx — | — -ugdl’. (4.10)
o Iy v

From Lemma 3.2, there exists a positive constasuch that

|Vug|? dx < c/ |div ug |2 dx.
i) P

Therefore, from (4.9) and (4.10), using the Cauchy inequality, our assertion follows.

Let us introduce the following functional:
P(t;w) = /,owt -(h-V)wdx,
w

wherew is a symmetric set dR".

LEMMA 4.4 Letw be a radially symmetric set &". Suppose thatf € H1(I, L2(w))
andh e [C%(®)]3. Then for any functiow € H2(I, L%(w)) N L2(l, H?(w)) satisfying

0 Wit —bAw = f, (411)
wherep andb are positive constants, we have that

d Bw
G Ptw =b ~(h-vywdl + £ fBZh. vi [wel2dr

8w wj_

hi
_b Zh, v VW] dr——/za ! p|Wt|2—b|VW|2) dx

dwij_

n ow
—b/VW X;Vhi a—xidx+/ f.(h-V)wadx. (4.12)
0] i= w
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Proof. Consider

%@(t;w):p/wtt-(h-V)WdX—i—p/Wt-(h-V)Wth

=bwa (h- V)de+ff (h- V)w dx

/ Zh.v. W | dF——/Z—|W| dx dx
a

@j=

n
=b|1+/f.(h.V)WdX+§/ Zhi Vi |Wt|2dF
0} Jwj_—1

P ohi
_E/Z I Iwy |2 dx dX. (4.13)

We find that

:/Aw~(h-V)wdx=/ 8—W-(h~V)WdF—/VWV(h~V)de
I5) do OV »

ow
=/ — - (h-VYwdl" + Is.
dw v
We recall that

(h-V)w = Zh'a_x.

n
V(h-V)W:Z(Vh. 8—W + h av_w>’

LN 1A%
vwV(h-V)w = VWZVh,— 22 |W|

Then

Xi

4 aw 1 a|vVw|2
|:VWZVhiB—Xi+§Zh. |

i=1 i=1
n aw 1 [, 3Vw|?
=—/Vw Vh.—dx——f h; | Idx
o — X 2 wiz X
n n
ow 1 oh;
=—/VW vhi —d —/ —L Vw2 dx
w = 9X; 2 J, = 0X

n
——/ hi vi [Vw|2dr,
dwi=1

whence our conclusion follows. O
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Let us now introduce the following integrals:

Ji(t) = / P1Utt - (4 - V) ug dx,
71

Jot) = / p1Ut - (h- V) ug dx,
71

where
_ - v ifxe I,
qe[C3(2UNyP and qx) =
0 ifxe U,
and
_ _ X if X € X,
he[C2(2U 2P and h(x) = (4.14)
0 ifx e\,

and (2 := £ U [Uxer, B:(X)], whereB; (x) is a ball with centrex and radius.

COROLLARY 4.1 With the same hypotheses as Lemma 4.1 the following inequalities
hold:

2

ou
L dr

v

d
ajl(t) < —ko/Fl

+ck0/ (|Vut|2+ |Au|2+|V9t|2> dx, (4.15)
)

d ro Ut 2 2
—Jt) < —— (Qu1+ A1) |—| + p1lug|®| dI
dt 2 Iy ov

201 4 A
+( M1 1) |Ut|2 dr
2ro To
+c/ [|Vut|2+|Au|2+|V9t|2]dx, (4.16)
2

wherekg, Cy,, C are positive constantgg = |x|, X € Ip.

Proof. We prove (4.16), the other is similar. Using Lemma 4.4, and takiig in (4.14),
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W=uU;, f =a Vb, v = 21, wefind that

d Ut P1 . 2
— = L h.v E : .
it Jo(t) = (2uy + )\1)/[‘ 50 (h Jup dI” + > /Fi=l hi vi Jug|“dl” +

2 A n
—L—H/Zhi Vi |Vut|2dF
2 I'iza

n

—= — U] — (2 A1) |Vu dx
zfgli; P = @+ ) VU]

dUt

n
—(u1+ A /Vu Vh-—dx—a/ Vé; - (h- V)u dx.
(2pg + A1) o t; % 0 - ( Ut

Applying the hypothesis oh and since

h=—-rov, ro=|x|, Vxelyp,

h = 0, VX [S F]_,
we get
d ro Ut 2 2
— D) <—— (Cp1+ r1) |—| + p1luwl® | dI
dt 2 Jr, v

-2
+(n ) (211 4+ A1)

|u¢ |2 dx
2I’o I

+c/ [|un|2+ V|2 + |V9t|2] dx,
N

where we have used Lemma 3.2. Finally, considering equation (1.1), and applying the trace
theorem yields

u?drr < C [ |Vugldx,
1o Ql
with C > 0, there exists a positive constanivhich proves (4.16). O

Let us now introduce the integrals

J3(t) = f poVit - (X - V) vy dx
2

n—-1
U(t) =TJ30t) + T/ PoVit - Vi dX.
2
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COROLLARY 4.2 Let§)p c R", with the same hypotheses as Lemma 4.1. Then the
following equality holds:

d ro 3Vt2 2
— Ut = —= 2 A —_— \Y dr
=220 2/p0[( po+30) | 5t -+ polvi

_(n—1)(2uo + 20

Ve |% dx
2ro Iy

n—1 av

+—(2M0+A0)/ Vi —dr
2 Iy v

1 2 2

=5 | [@no+r01vuil2+ polvul?] o (4.17)
2
whererg = |Xx|, X € Iy.
Proof. Differentiating equation (1.3) with respectttowe have
poVitt = (2p0 + Ao) Avi,

and we find that

d
,00—/ Vi - Vit dX=,00/ |Vtt|2dX+,00/ Vi - Ve dX
dt J o, % %

= po/ Vit |2 dX + (2uo + o) | Vi - Avg dx
20 2

Vi
= ,00/ Vit |2 dX + (20 + 20) | Vi - —dI’
2 Iy ov

—(2uo + 10) / |V |2 dx. (4.18)
£

Using Lemma 4.4, and taking= x, w = v, f = 0, w = (%, wefind that

d r avy |2
—J3(t)=—0/ uo+ o) | —| + polvee|? | dI’
dt 2 Jr, v
— A
~ (n=1)(2uo + *o) v 2 dx
2ro Iy

n-1
+157 [ [@no+ 1019w = polva?] ox
2

1
—5/ [(2M0+}\0)|Vvt|2+P0|Vtt|2] dx.
2
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Therefore, recalling the definition af, we obtain

d _ o
m ) =+ |:(2M0 + Xo)

2
Vi 2
— \ dr
2 I 81/' + pol tt|:|
_(n—1)(2po + A0)

Ve |% dx
2ro Iy

n—
2

1
| [ @0+ 10vwi? — polval?] ax
2

1
5 ] [@0+ 2019w + olva?] ox
20

n—1
2

n—1 oV
+ po/ Vit |2 dX + —— (20 + )»o)/ Vi —dr
2 2 Iy v

n—1
——<2uo+xo)f |Vvt|? dx
2 %

=5 (2o + A0) |=—| + polvet|® | A’
I 1%
n-1 oV n—1)Q2uo+ A
T (2uo + Ao)/ v Wgp_ (M=DCuotro) [ 24
2 Io v 2rg Io
1 2 2
5| [@ro+r01vwi2+ polval?] o
L)
Hence, our conclusion follows. O

Let us now introduce the integral

V) = Est) + W}C(t) + 81 T1(0) + 82 Tah),

whered; ands, are positive constants.

LEMMA 4.5 With the same hypotheses as in Lemma 4.1 the solution of the system
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(1.1)—(1.10) satisfies

—y(t)\——<2m+xl)/ 14612 dx

4p
s§CpcC ) Sa (21 + 11)? )
— (kg —81Cy, — 82c — ) IVui|2dx — ——=—"> [ | Au|?dx
( o 7 32%p )
[ _se) [y s |y,
2 2 | Jryl ov 4 ov

r 52(2 A
0"/| |df+w/ U | dx+C/ V62 +|V9t|)dx

(4.19)
Proof. From (4.6) and (4.8) and by the Cauchy inequality, we find that

a(2u1 + A1)

d
dt |:5 ®+ 2k

K(t)] < —@@mHl)/ | A6|2 dx
48 o}
_w/ |divu |2dx
6x o) t

_daua+r)?
8kp o

+C6/ <|v9|2+|vet|2) dx
0

+e/ |utt|2d1’+e/ |div u¢ |2 dI"
Ig I

| Au|? dx

_80!(2114 +A) [ dut

<ug dr, 4.20
il I AL (4.20)

wheree andC, are positive constants. By Lemma 3.2, there exists a positive cotgtant
such that

_af(Cu1+ i)

div ut |2 dx < —kI/ |Vug|? dx.
6k 2 2

Takingd2 ande such that

Sar(2 11)2 r
wand6<op

8 Cg ’
2 16¢p 2
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we get
d a(2uy + A1) ke 2
s+ T k1) + 5070 | < — o= @ua+20) [ 1462dx
dt 2K 4/8 Ql
8CpcC Sa(2uy + 11)? 2
— (k= 82c— =2 > Vur*dx — —=2—— | |Aul*dx
( 2 0 t 16(,0 2
Soro(2 A b dut |?
_[%2ro@uit i) dc / 2 ar - 22 [ g Pdr
2 2 I v 4 Io

5221 + A .
L R@nt M) [ ey |d|vut|2dF+C€/ (|V9|2+|V9t|2) dx,
2rg n I 2

(4.21)
where we have used

e 2dr < cp/ Ve 2 dx,

Iy i

with Cp > 0. Sinceu(x,t) = 0 onI1x]0, co[, we have

9 2
/ ot dF:/ \dliv ug |2 dx.
| ov I
We find that
d a(2uy + A
Ieaty + LELE 2 g4y 451700 + 52720
at 2%
Ko
<——<2u1+x1)f 14012 dx
48 o}
5C
_<k1—81Ck0—52c— PC) |Vug |2 dx
7
Sa(2 21)2
_Sa(Zp1 4+ A1) | Aul? dx

32%p o

_[82ro@ua+1y) 8¢ / u[®
2 2 Iy v
r ) aug |?
—OTpf |utt|2dr—1Tk° =t ar
Iy I v

52201 + A
PG ) |ut|2dx+C€/ (|v9|2+|v91|2) dx,
2I’0 I .Q]_

(4.22)

wheres < 381ko.
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Finally, let us introduce the functional
L(t) = NELM) + NE®F) + V() + &0 P (1),
whereN andegg are positive constants.

THEOREM4.1 Letus suppose thatl, 6, v) is a strong solution to the system (1.1)—(1.10).
Then there exist positive constamtsandy such that

E1(t) + E2(1) + E3(t) < o {€1(0) + E2(0) + E3(0)} &7
Proof. We will assume that the initial data is 3-regular. Our conclusion will follow by

standard density arguments. Using Lemmas 4.2 and 4.5, considering boundary conditions
(1.6), we find that

d Ko 2
GO+ 00 PO] < 2@+ 20 /Q 146/ dx

8 CpcC
—[kl—alcko—azc—w]/ IV ug|2 dx
21

2
S (2 A1)2
_ Sa(Zu1 + A1) | Auf? dx
32%p o
8210(2 A sc au |2 8 aug |2
_ | 92ro(2us + 1)___80/ Ut dp_l_ko out ar
2 2 Iy ov 4 I ov
fop €0
——/ |utt|2dF——/ [(ZMO+K0)|VVt|2+P0|VttIZ] dx
4 Jr 2 Jo,
5221 + A co(n — 1) (2uo + A
n 2(2p1 + A1) g2 dx — ol ) (2110 + 20) v |2 dx
2ro I 2ro T
+c€/ (|v9|2+|vet|2) dx. (4.23)
D

From (4.1), (4.2) and (4.23), there exists a positive constgsitich that

d

— < —

dtﬁ(t) < —Co N (D),
where

NO = [ (1wl + 190+ 1 2u? + 196+ 96 1)
1

[ (19w + )
2
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Recalling the definition ofZ and using the Cauchy inequality, we see that there exists a
positive constant; such that

L(t) < N (1).

It is not difficult to see that there exists> 0 such that

d
E'C(t) < —yL®M)

whence
L(t) < L(0)e ",

Note that forN large enough we have that
Ci{&a®) + &2t + E3()} < L(1) < Co{E1() + E2(1) + E3(D)} .

From the above two inequalities our conclusion follows. O
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