
PERGAMON Mathematical and Computer Modelling 29 (1999) 117–129

Analysis of a Kinetic Cellular Model
for Tumor-Immune System Interaction

M. Iori, G. Nespi and G. Spiga
Department of Mathematics

University of Parma
43100 Parma, Italy

(Received and accepted March 1998)

Abstract—Starting at a kinetic level from the equations for the evolution of dominance in popu-
lations of interacting organisms, and taking proliferative and destructive encounters into account, a
simple model describing the competition between tumor cells and immune system is studied in some
detail. Under reasonable assumptions, a closed set of macroscopic balance equations for macroscopic
observables is derived by a moment procedure, and analyzed in the frame of the theory of dynamical
systems. It is shown that a transcritical bifurcation of equilibria generates a region in the phase space
in which, according to the model, the immune system defeats the tumor and leads to its depletion.
Numerical results are presented and briefly commented on. c© 1999 Elsevier Science Ltd. All rights
reserved.

Keywords—Cellular dynamics, Nonlinear integro-differential equations, Moment method, Dy-
namical systems, Bifurcation phenomena.

1. INTRODUCTION

It is widely recognized that the problem of evolution of dominance is crucial in population dy-
namics. The interested reader is referred to [1] and to the bibliography therein. In the same
paper, a stochastic model governing such an evolution is provided, which describes binary indi-
vidual interactions at a microscopic level, and follows from the Chapman-Kolmogoroff equation
in the frame of the theory of Markov processes. The approach is essentially the same as for the
derivation of the nonlinear Boltzmann equation of gas kinetic theory, and such a connection has
been studied in detail in [2]. The dependent variable to be investigated is the dominance distri-
bution function, whose first few state moments provide the macroscopic observables. As typical
of kinetic theory, exact evolution equations at macroscopic level may be derived for the above
physical quantities by taking moments of the microscopic nonlinear integrodifferential equation,
but the resulting set of differential equations turns out not to be closed [3]. The kinetic approach
of [1] has been applied in recent years to immunology problems, and in particular to the compe-
tition between tumors and immune system [4–6]. The motivation is that the stage of the early
growth of a tumor belongs to the so-called free cells regime, in which the tumor cells are not
yet condensed in a macroscopically observable spatial structure, and the interactions between
tumor and immune system occur at a cellular level. This makes the kinetic approach particularly
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appropriate, not only for the better insight allowed by a deeper description, but also because the
more common macroscopic description based on classical diffusion-convection equations in the
framework of continuum mechanics [7], would fail in this case. On the other hand, this stage is
particularly important since the competition between tumor cells and immune system can still
lead to the depletion of the tumor. At the same time, spatial effects are of minor importance, to
leading order, in the balance equations, which implies considerable simplifications in the analyt-
ical investigation. In the present paper, a four species model proposed already in the literature
will be considered [4,6]. This requires a generalization of the original equations for dominance [1]
to include the nonconservative effects of cell proliferation and destruction. Again, this is easily
done in the same way as the extended kinetic equations can be obtained as generalizations of
the standard Boltzmann equation in the frame of the scattering kernel formulation [8]. Now, for
a numerical solution of the resulting integrodifferential system with quadratic nonlinearities, a
suitable discretization technique is needed anyhow. In this way, the description of the evolution of
the various cellular populations involves a finite number of key macroscopic parameters, deduced
appropriately from the actual collision frequencies and probability distributions characterizing
the microscopic interaction, which are instead functions of a continuous kinetic variable, and
would be quite hard to determine in full detail by comparison with experiments. The various
possible discretization procedures and strategies, in order to benefit also of the cellular character
of the approach where they originate from, and the various biological rules to be taken into ac-
count, along with their consequences, have been thoroughly investigated in [9]. In this work, the
discretization is achieved by integration over partial ranges with respect to the kinetic variable,
and grouping together all individuals cells with a value of state in the same range to form a
single separated population. Under very reasonable assumptions on the microscopic interaction
parameters, a closed set of autonomous ODEs is derived, representing a sort of macroscopic
continuity equations in the sense of kinetic theory. The qualitative analysis of the evolution
problem can then be performed in the well-established framework of the theory of dynamical
systems [10]. A first important step in such an analysis is determination of fixed points, as
stationary living conditions of the considered organism, and of their stability. Further essen-
tial steps are investigation of their basins of attraction, representing regions of the phase space
where immune system wins the competition and leads to recovery, and determination of possible
bifurcations for varying parameters. Extensive numerical simulations have been performed, in
order to test and improve the analytical predictions, by using random selected values of the di-
mensionless parameters, aiming mainly at analyzing in depth the essential features of the model,
rather than at focusing on the numerical ranges of major immunological interest. The external
action of a treatment for improving and strengthening the immune system can also be simulated
by the addition of a proper source term, even though that makes the set of ODEs nonauto-
nomous.

The paper is organized as follows. The governing evolution equations at kinetic level and the
well posedness of the relevant Cauchy problem are discussed in Section 2. Section 3 deals with
the derivation of the tumor-immune system model and its discretization. Section 4 is devoted
to dynamical system analysis of the resulting set of ODEs, and shows, in particular, occur-
rence of a transcritical bifurcation of equilibria with significant practical impact on the dynamics.
In Section 5, numerical results are presented and commented on. In spite of its extreme simplicity,
the proposed model seems to show sensible and meaningful predictive capability. If the strength of
the immunological defense is above a given threshold (in the sense explained below), a sufficiently
weak initial tumor is depleted. The larger the defense above the threshold, the stronger the tumor
that can be defeated, but with a clear saturation effect which bounds the safety region that can
be reached asymptotically. However, even outside the safety region, an external treatment to
support the immune system can produce the same depletion effect, if it is timely and intensive
enough. Of course, it would be interesting to compare the present results with experimental
data.
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2. EVOLUTION EQUATION

In a mixture of N different populations, each individual of a general species i is assumed to be
characterized by an attribute, which may be called state in this new frame, and described by a
real variable u ∈ [−1, 1]. We are interested in the distribution functions fi(u, t), where fi(u, t) du
is the expected number of individuals of the species i that at time t have a value of state in the
interval (u, u+ du), and in their time evolution due to binary interactions with other individuals
of the same or different species. Spatial gradients will not be considered for the reasons explained
in the Introduction. Interaction rates in the balance equation for a given population can be split
in a gain and a loss term due to encounters [1,6,8], which, in the absence of correlations [3],
are in turn described in terms of collision frequencies and transition probabilities with reference
to the above distribution functions alone. For obvious physical reasons, the fi must be smooth
nonnegative functions of their arguments, and the number densities are given by

ni(t) =
∫ 1

−1

fi(t, u) du, i = 1, 2 . . . , N. (2.1)

Encounters are allowed to be of conservative or nonconservative type. In the former case, the
number of participating individuals of each species is conserved and only states are subject to
change; in the latter, individuals may disappear or be generated in the interaction by some kind
of destructive or proliferative mechanism, similar to absorption and ionization for electrons in
kinetic theory. Balance equations are easily derived in a probabilistic setting upon introducing the
phenomenological interaction parameters listed below, which have to satisfy obvious smoothness
requirements from a mathematical point of view, but have to be determined on the basis of
experiments. The approach is essentially the same as in the quoted references, only with a
slightly modified meaning of parameters, to make them closer to the corresponding ones arising
in kinetic theory [8].

By ηij(u, v) = ηji(v, u) ≥ 0, we will denote the microscopic collision frequency for a conservative
encounter between an i-individual with state u and j-individual with state v. In the same
encounter, ψij(u, v;w) ≥ 0 will represent the probability density that, after interaction, the
i-individual ends up with state in the interval (w,w + dw), with the obvious normalization∫ 1

−1

ψij(u, v;w) dw = 1, ∀u, v ∈ [−1, 1], ∀ i, j = 1, 2, . . . , N. (2.2)

Similarly, dij(u, v) will be used for the microscopic collision frequency of an (i, u) individual with
a (j, v) individual for an encounter which is not conservative for the species i and µij(u, v) ≤
dij(u, v) will stand for the fraction of it relevant to proliferative interactions only. For the latter
events, the number of i-individuals which end up in the state interval (w,w+ dw) will be labeled
by εij(u, v;w) dw and the integral

mij(u, v) =
∫ 1

−1

εij(u, v;w) dw (2.3)

gives the total number of i-individuals generated on the average in a proliferative encounter
(i, u)-(j, v). Such a number is, in general, greater than unity.

At this point, evolution at this kinetic level is governed by the balance equations

∂fi
∂t

(u, t) =
N∑
j=1

∫ 1

−1

∫ 1

−1

[ηij(v, w)ψij(v, w;u) + µij(v, w)εij(v, w;u)] fi(v, t)fj(w, t) dv dw

−fi(u, t)
N∑
j=1

∫ 1

−1

[ηij(u, v) + dij(u, v)] fj(v, t) dv + γi(u), i = 1, 2, . . . , N,

(2.4)
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where γi represents the rate of supply of a possible external source of individuals of the
i-population at state u. This is a set of integrodifferential nonlinear equations which closely
resembles mutatis mutandis, the Boltzmann equation for gas mixtures [3] in the scattering kernel
formulation [8]. Continuity equations are obtained by integration with respect to u, but the result
is not closed, in general, with respect to the number densities (the only macroscopic observables
of interest here), since it reads as

dni
dt

(t) =
N∑
j=1

∫ 1

−1

∫ 1

−1

[µij(u, v)mij(u, v)− dij(u, v)] fi(u, t)fj(v, t) du dv + Γi,

i = 1, . . . , N,

(2.5)

where Γi =
∫ 1

−1
γi(u) du. Of course, conservative encounters are not influential, and the positive

or negative contribution for the ith species of the general i-j interaction depends on the sign
of µijmij − dij . When all such parameters are constant, the collision term in (2.5) becomes a
quadratic form in the densities ni.

It might happen that one or more species in the mixture have a much larger density than the
others, and their distribution function is consequently almost not affected by the process. As
in [8], they may be considered as background species, whose host individuals have a distribution
function which is essentially known a priori . That reduces the number of actual unknowns
in (2.4), and at the same time introduces linear integral terms in the collision integrals on the
right-hand side (those for which the index j is background), as it occurs in transport theory [11].

As regards the well posedness of the mathematical problem (2.4), endowed with suitable initial
conditions fi(u, 0), the natural setting seems to be the space of summable functions, since all
unknowns are nonnegative and their norm provides the number density. As physically clear, all
nonnegative functions η, µ, d, ψ, ε, γ will be assumed bounded on their domains. Among the
several possible approaches (see also [6]), we propose here, following [12], one that is based on
approximate solutions in the sense of [13]. Let E be the Banach space [L1[−1, 1]]N with norm

‖f‖E =
N∑
i=1

‖fi‖L1
=

N∑
i=1

∫ 1

−1

|fi(u)| du, (2.6)

and let E+ be the cone of nonnegative functions in it. By solution of the mathematical problem,
we mean an application f : [0, T ]→ E+, differentiable there, satisfying the Cauchy problem (2.4)
with the relevant initial conditions in E+. The Cauchy problem may be written in abstract form
as

df

dt
= Af, f(0) = f0, (2.7)

where A : E → E is the affine integral operator defined by the right-hand sides of (2.4). Intro-
ducing the constant K = sup[2ηij(u, v) + dij(u, v) +µij(u, v)mij(u, v)], the sup being taken with
respect to i, j = 1, 2, . . . , N and u, v ∈ [−1, 1], easy manipulations show that the following lemma
holds: for f0 ∈ E+, R > 0, ∀ f, g ∈ E+ such that ‖f − f0‖E < R and ‖g − f0‖E < R, there
exists L = L(‖f0‖E) such that

‖Af −Ag‖E ≤ L‖f − g‖E . (2.8)

In particular, L = 2K(R + ‖f0‖E). Another lemma that can be easily verified by analogous
manipulations is the following: for f0 ∈ E+, R ≥ 0, ∀ f ∈ E+ such that ‖f − f0‖E ≤ R, there
results

‖Af‖E ≤M, M = K
(
R+

∥∥f0
∥∥
E

)2
+

N∑
i=1

Γi. (2.9)
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Finally, the following third lemma holds. Let f0 ∈ E+, R ≥ 0; then, ∀ f ∈ E+ with ‖f − f0‖E ≤
R, we have

lim
h→0+

inf
d (f + hAf,E+)

h
= 0, (2.10)

where d(ϕ,E+) denotes distance of ϕ ∈ E to the set E+. For the proof, it is sufficient to show
that ∀ ε > 0, ∀h > 0, ∃ g ∈ E+, ∃h1 < h (h1 > 0) such that ‖f + h1Af − g‖E < εh1. For that
purpose, take

h1 = min
{
h,
[
K
(
R+

∥∥f0
∥∥
E

)]−1
}

and

gi(u) = γi(u) + fi(u)

1− h1

N∑
j=1

∫ 1

−1

[
η
ij

(u, v) + d
ij

(u, v)
]
fj(v) dv


+ h1

N∑
j=1

∫ 1

−1

∫ 1

−1

{
η
ij

(v, w)
[
ψ
ij

(v, w;u) + ε1

]
+µij (v, w)

[
ε
ij

(v, w;u) + ε1

]}
fi(v)fj(w) dv dw,

(2.11)

with ε1 free parameter to be determined. Then, it is easy to check that g ∈ E+ and that the
choice ε1 = ε[K(R + ‖f0‖E)2]−1 does the job. Now, due to the three previous lemmas, local
existence and uniqueness of solution in the sense defined above follows from a theorem of [13]. In
addition, by the same theorem, for any R which is applicable, the maximal existence interval [0, T ]
is defined by T ≤ T ∗, where T ∗ is subject to the constraint

0 < T ∗ < R

[
K
(
R+

∥∥f0
∥∥
E

)2
+

N∑
i=1

Γi

]−1

, (2.12)

but otherwise arbitrary, and, in that interval, we have ‖f−f0‖E ≤ R. In any case, the right-hand
side of (2.12) has a positive finite maximum for varying R, and the theorem remains local. As
regards extension to global solvability, it is linked as usual to the dependence of the estimate (2.12)
on the norm of the initial datum, in order to start new initial value problems again and again
and to reach any assigned value of time. It is apparent that such a procedure works, for instance,
in all conservative cases, i.e., when all dij (and then µij ) and γi vanish. We would have in fact
‖f‖E =

∑N
i=1 ni for f ∈ E+ and ni = constant, ∀ i due to (2.5), so that ‖f‖E is constant

during the whole evolution and any time is reached by repeated applications of (2.12). On the
other hand, it is also very easy to give an example in which the opposite occurs, and even the
solution blows up in finite time. It is sufficient to take any model, for which, in the ith equation,
µiimii − dii is a positive constant and all other coefficients vanish, to get dni

dt = cn2
i and then

divergence for t→ 1/cn0
i .

3. MODELLING THE TUMOR-IMMUNE
SYSTEM COMPETITION

We specialize here the set (2.4) in order to describe the interaction between tumor cells and host
organism according to a biological model first introduced in [14] and then further developed. The
physical system is assumed to consist of four interacting populations, and the index i, increasing
from 1 to N = 4, refers, respectively, to tumors cells, cells of the host environment, cells of the
immune system, and interleukines. A discussion on the validity of these assumptions and on
the role played by the interleukines in modifying the tumor-immune system interaction, and in
contributing to the destruction of tumor cells, can be found in the literature. The value of state
u of each cell is a measure of its capability of prevailing in a binary interaction, and we may call
active all cells with state close to 1 or at least positive, and passive those cells with state close
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to −1 or at least negative. Following phenomenological and experimental observations [4–6], the
following specializations will be adopted for collision frequencies and transition probabilities. The
former will be also taken for simplicity to be constant on the state domain where they are different
from zero, which corresponds to the Maxwell molecule assumption of gas kinetic theory [3,8].

A collision between a tumor cell and a cell of the immune system leads to destruction of the
tumor and to conservative transition to a passive state for the other cell, if the immune system
before collision is active. Otherwise, the same collision yields proliferation of tumor cells and
conservation of the other cells, whose state decreases and remains negative.

An encounter between a cell of the immune system and an interleukine is conservative for both
species, and increases the state of the immune system, in such a way that a passive cell always
undergoes a transition to a positive state.

An interaction between a tumor cell and a cell of the host environment always ends up with
tumor proliferation.

Host environment and interleukines may be regarded as background species in the sense ex-
plained in the previous section, and their distribution versus state is of no practical relevance.
The host population is considered to be stationary, whereas a positive external source for inter-
leukines may be present to simulate a therapeutical treatment to enhance, via the interleukines
themselves, the immunological defense.

All other interaction channels are of minor importance for the evolution and may be disregarded
in the balance equation.

The previous assumptions on the collision frequencies are expressed quantitatively by the for-
mulae

d12(v, w) = µ12(u,w) = µ12,

d13(v, w) = µ13, µ13(v, w) = µ13U(−w),

η31(v, w) = µ13, η34(v, w) = η34,

(3.1)

where U is the unit step function, with all other dij , µij , and ηij equal to zero. The relevant
probability distributions ε12, ε13, ψ31, and ψ34 are subject to the constraints

ψ31(v, w;u) = 0, ∀u > 0, ψ34(v, w;u) = 0, ∀u < 0. (3.2)

Finally, all γi vanish except γ4. Balance equations for this simplified, but still kinetic, model read
as

∂f1

∂t
(u, t) = µ12

∫ 1

−1

∫ 1

−1

ε12(u, v;w)f1(v, t)f2(w, t) dv dw − µ12n2(t)f1(u, t)

+ µ̄13

∫ 1

−1

∫ 0

−1

ε13(v, w;u)f1(v, t)f3(w, t) dv dw − µ̄13n3(t)f1(u, t),

∂f2

∂t
(u, t) = 0,

∂f3

∂t
(u, t) = µ13

(∫ 1

−1

∫ 1

−1

ψ31(v, w;u)f3(v, t)f1(w, t) dv dw − n1(t)f3(u, t)
)

+ η34

(∫ −1

−1

∫ 1

−1

ψ34(v, w;u)f3(v, t)f4(w, t) dv dw − n4(t)f3(u, t)
)
,

∂f4

∂t
(u, t) = γ4(u).

(3.3)

It is clear that there are only two actual participating species, since f2 and f4 are known
functions, determined independently of the process, and in particular f2 is constant. It seems
reasonable to assume that the average number of cells created in proliferative encounters is inde-
pendent of the states of the colliding cells, which combined to the normalization condition (2.2),
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enables us an easy integration to get the present version of the continuity equations (2.5), namely

∂n1

∂t
= µ12 (m12 − 1) k2n1(t) + µ13m13n1(t)

∫ 0

−1

f3(w, t) dw − µ31n1(t)n3(t),

∂n3

∂t
= 0,

∂n4

∂t
= Γ4,

(3.4)

which do not constitute a closed set, due to the presence of a half-range integration, and where
again, the last equation decouples to provide independently n4 versus time. But a closed set
of macroscopic balance type is easily obtained here by grouping together active cells of the
immune system to form a separate population, and the same for the passive immune cells, while
keeping together tumor cells in a single population. Indeed, this is suggested by the interaction
mechanisms of the considered model, which makes state a crucial attribute mainly for the immune
system only, since completely different behaviors are expected from active and passive cells. Other
discretization procedures in which other populations are also divided into active and passive parts
are discussed in [9]. Setting

n±3 (t) = ±
∫ ±1

0

f3(u, t, ) du (3.5)

and bearing (3.2) in mind, integration over half ranges in (3.3) yields the closed set of ordinary
differential equations with quadratic nonlinearities

dn1

dt
= µ12 (m12 − 1)n2n1(t) + µ13 (m13 − 1)n1(t)n−3 (t)− µ13n1(t)n+

3 (t),

dn+
3

dt
= −µ13n1(t)n+

3 (t) + η34n4(t)n−3 (t),

dn−3
dt

= µ13n1(t)n+
3 (t)− η34n4(t)n−3 (t),

(3.6)

where n2 is the known constant environment density, and n4 the known interleukine density. A
further simplification is allowed by the already established conservation of the immune system as
a whole (all possible interactions are conservative for it), since, if n3 denotes its constant known
density, we may eliminate n−3 as n3 − n+

3 and get the set of only two equations

dn1

dt
= [µ12 (m12 − 1)n2 + µ13 (m13 − 1)n3]n1(t)− µ13m13n1(t)n+

3 (t),

dn+
3

dt
= η34n3n4(t)− η34n4(t)n+

3 (t)− µ13n1(t)n+
3 (t).

(3.7)

These simple model equations seem to deserve attention, first for their great simplicity, then
for providing directly the essential macroscopic quantities, and for requiring the knowledge of
biological parameters which are within the reach of experiments. It still incorporates the basic
features of the original kinetic model. It becomes autonomous when interleukines are a stationary
population, namely for Γ4 = 0, and in that case, the relevant dynamical system can be studied
in some detail, as shown in the next section.

4. STABILITY AND BIFURCATION ANALYSIS

The set (3.7) with n4 = constant can be made dimensionless in several ways, but it seems
convenient measuring densities in units of n2 (with x1 = n1/n2 and x2 = n+

3 /n2) and time
in units of the characteristic multiplication time of tumor in the absence of immune system
[µ12(m12−1)n2]−1 (dimensionless time will be denoted again by t). As dimensionless parameters,
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it proves convenient to single out the overall size of the immune system X, and the rate at which
tumor cells and cells of the active immune system collide A, given by

X =
n3

n2
, A = µ13 [µ12 (m12 − 1)]−1

. (4.1)

The remaining coefficients are expressed by the further adimensionalized parameters

B = µ13 (m13 − 1) [µ12 (m12 − 1)]−1
, C = η34n4 [µ12 (m12 − 1)n2]−1

, (4.2)

which measure, respectively, tumor proliferation due to passive immune system and activation of
cells of the immune system due to interleukines. The dimensionless form of (3.7) then reads as

ẋ1 = (1 +BX)x1 − (A+B)x1x2,

ẋ2 = C (X − x2)−Ax1x2,
(4.3)

with phase space given by the strip [0,+∞) × [0, X]. All four parameters X, A, B, and C are
positive. Fixed points are

(0, X) and
(
C

A

AX − 1
BX + 1

,
BX + 1
A+B

)
, (4.4)

where the first is a border point, but represents the optimal working condition of the organism
(no tumor, immune system fully active), whereas the second makes sense only when it belongs
to the phase space, i.e., for A ≥ 1/X. The two equilibria coincide when A = 1/X. Eigenvalues
of the Jacobian matrix relevant to (4.3) at (0, X) are −C and 1−AX, which means that such a
stationary solution is asymptotically stable (attractive node) forA > 1/X, and unstable (saddle)
for A < 1/X. The other stationary solution, which is physical only for A > 1/X, coexists thus
with a stable attracting point, and eigenvalues are determined by the characteristic polynomial

λ2 +
CX(A+B)
BX + 1

λ− C(AX − 1), (4.5)

which exhibits two real zeroes with opposite sign, so that the second equilibrium is unstable
(saddle), when it exists. It would instead be an attractive node out of the phase space. Focusing
our attention on the crucial parameter A, we see that A = 1/X is a bifurcation value [10].
The circumstance that a movable equilibrium coalesce and split with a fixed equilibrium when
A increases past 1/X, and exchanges stability with it, suggest that the bifurcation should be
transcritical, namely topologically equivalent to that occurring for ẋ = µx− x2 at x = 0, µ = 0.
Denoting by f(x1, x2;A) the vector field defined by (4.3), by J(x1, x2;A) the associated Jacobian
matrix, it is easily verified that f(0, X;A) = 0, ∀A and that J(0, X; 1/X) has a simple eigenvalue
λ = 0 (the other is −C) with right eigenvector r ≡ (C,−1) and left eigenvector l ≡ (1, 0). In
addition, using the repeated index convention, we have

li
∂2fi

∂A∂xj

(
0, X;

1
X

)
rj = −CX 6= 0,

li
∂2fi

∂xj∂xk

(
0, X;

1
X

)
rjrk = 2C

(
B +

1
X

)
6= 0.

(4.6)

The above facts prove, according to a standard theorem on dynamical system [10], that the
bifurcation is actually transcritical.

The first equation alone in (4.3) is sufficient to reveal a sorry tale. From x2 ≤ X, we get

ẋ1 ≥ [B (X − x2) + 1−AX]x1, (4.7)
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where the right-hand side is positive at any interior point of the phase space and on the lower
border x2 = 0 for A ≤ 1/X, and also on the upper border x2 = X for A < 1/X. The phase space
itself is positively invariant, with the vector field pointing inwards on the horizontal borders, and
tangential on the vertical segment x1 = 0, which represents, however, the ideal but not interesting
situation that tumor cells never appear. Therefore, the qualitative analysis of phase trajectories
obtained from the knowledge of the vector field rules out any possibility for the immune system
to defeat the tumor, no matter how weak it appears initially, when A ≤ 1/X: tumor cells density
increases in time without any bound. The crucial safety threshold that the immunological defense
must overcome is thus expressed by A > 1/X, that corresponds to

µ13n3 > µ12 (m12 − 1)n2 (4.8)

relating essentially the macroscopic collision frequency (inverse time) for tumor-immune system to
the macroscopic collision frequency for tumor-host environment interactions, the latter corrected
by the net cell production in proliferation encounters. It may be regarded as a condition on n3

once the other parameters are known.
Let us examine then the option A > 1/X. The phase space remains, of course, positively

invariant, and now the same happens to the rectangular domains 0 ≤ x1 ≤ a, b ≤ x2 ≤ X,
provided a ≤ C(AX − 1)/A(BX + 1) and b ≥ (BX + 1)/(A+B). The field is dissipative in the
subset of the phase space defined by

Ax1 + (A+B)x2 > BX + 1− C. (4.9)

The trend of the vector field indicates that the stable manifold of the saddle point should separate
the phase space in two different regions: the basin of attraction of the stable node on one side,
and a region where all trajectories diverge to infinity when t → +∞ on the other. Any initial
point in the former region should be bound to converge asymptotically to the optimal equilibrium
(0, X), i.e., the immune system is capable of defeating the tumor if it is initially weak enough.
In particular, the branch of the unstable manifold of the saddle on this safe side would join the
saddle itself to the node, and constitute then a heteroclynic orbit. One would like to enlarge the
previous basin of attraction as much as possible, and it is expected that such an effect can be
obtained by pushing the saddle point deeper and deeper inside the phase space, i.e., as physically
clear, by increasing A more and more. In this game, also the other parameters B and C would
play an important role. It is obvious that increasing C (which amounts to strengthening the
effects of interleukines) moves the saddle point to the right, as desired. The above predictions
will be tested numerically in the next section.

5. NUMERICAL RESULTS AND COMMENTS

Extensive numerical experiments have been performed by using Matlab 4.2 software on a
personal computer. A small sample of the results obtained is given below. With parameters B,
C, and X kept fixed at the reference values 2, 1, and 1/3, we let the crucial parameter A vary
with respect to its bifurcation value A = 3. Phase trajectories are given in full extent within
the phase space [0,+∞)× [0, 1/3] and it is understood that they start from the initial condition
(x01, x02) at which the tumor is first detected. A typical phase portrait for A < 3 is shown
in Figure 1. It leaves no hope, tumor density always increases, and all trajectories eventually
escape to infinity. The situation changes in Figure 2, relevant to A = 5. The stable fixed point
(0, 1/3) is an attractor with a well-defined basin of attraction bounded by the borders of phase
space, and by the stable manifold of the unstable fixed point (2/25, 5/21). Such a manifold
intersects the upper border at a point (α, 1/3) with α = 0.114, and lower border at a point
(β, 0) with β = 0.027, and its points tend asymptotically to the saddle point (2/25, 5/21), as
t → +∞. For all initial points on the right-hand side of the previous manifold, the dynamics is
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Figure 1. Phase portrait for A = 2.

Figure 2. Phase portrait for A = 5.

hopeless and leads to tumor explosion, even though there might be an initial decreasing trend
due to the action of the immune system which, however, is going to be defeated. Figure 3 is
relevant to the same values of parameters, and shows explicitly the saddle point, the direction
of its eigenvectors, and its stable and unstable manifolds, tangent to such directions [10]. The
“safety” region, in which a tumor is destroyed by the immunological defense, is on the left
of the stable manifold, and in such basin of attraction, the unstable manifold is the expected
heteroclynic orbit joining the saddle to the attracting stable node (0, 1/3). Changing the value
of A above the threshold A = 3 amounts to shifting the saddle point inside the phase space along
the curve defined by (4.4), with limiting value (CX/(BX + 1), 0) as A → +∞, and to moving
correspondingly the intersection abscissas α and β. This is illustrated in Figure 4, where the
trend in the phase space of the fixed point and of its eigenvectors when A increases is shown, and
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Table 1.

A α β

5 0.114 0.0274

10 0.261 0.076

50 0.458 0.061

10E2 0.493 0.179

10E3 0.529 0.198

10E4 0.532 0.199

10E5 0.532 0.2

10E6 0.532 0.2

10E7 0.532 0.2

Table 2.

x01 D∗

0.2 0.482

0.3 1.236

0.4 2.093

0.5 3.012

0.6 3.973

0.7 4.965

0.8 5.978

1.0 8.06

2.0 18.9

Figure 3. Stable and unstable manifold of the saddle point.

Figure 4. Trend of the fixed points in the phase space.

in Table 1, where α and β are listed versus A. Both abscissas exhibit a monotonically increasing
trend, but with an evident saturation, and with a finite limit for diverging A (this was easily
predictable for β, whose asymptotic value is CX/(BX + 1)). The practical effect is that the
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Figure 5. Solutions for increasing value of D.

basin of attraction increases but remains bounded for increasing A, and there are then points
with tumor strong enough to inhibit any recovery, no matter how large A is kept. Just in this
respect, we have investigated numerically the possibility of establishing a recovery by an external
treatment aimed at strengthening the interleukine population (this corresponds to a positive,
rather than vanishing, interleukine source Γ4 in the dimensional balance equation). Taking for
simplicity such a supply rate to be constant, the situation changes only in that n4(t) = n04 +Γ4t,
and then, upon defining

D = η34Γ4 [µ12 (m12 − 1)n2]−2
, (5.1)

we end up with the slightly modified set of ODEs

ẋ1 = (1 +BX)x1 − (A+B)x1x2,

ẋ2 = (C0 +Dt) (X − x2)−Ax1x2,
(5.2)

which is not autonomous any more, and does not give rise to a dynamical system. Since the
first equation is unchanged, the situation remains hopeless for A ≤ 1/X. It is worth examining
whether a positive D may lead to tumor depletion when A > 1/X and the initial point is outside
the previous basin of attraction. An example of the solution is provided by Figure 5, relevant to
A = 5 and to the other fixed values of B, C, and X. Time evolution is plotted for increasing
values of D starting from an initial point (1/5,1/3) where 1/5 > α = 0.114. For small values of D,
the trajectory escapes to infinity, like for D = 0, with a similar trend. But when D overcomes
a certain threshold D∗, the trajectory gets reversed after a while, and tends asymptotically to
the point (0,X), which remains a stationary solution in spite of time dependence in (5.2). The
numerical value of D∗ turns out to be 0.482. Notice the loop made by “safe” trajectories in this
nonautonomous case. The possibility of getting this inversion, with eventual monotonic decrease
and depletion of tumor, has been observed for all numerically tested initial points (x01, X). Of
course, the threshold D∗ is a function of parameters. For the numerical values of A, B, C, and X
used in Figure 5, Table 2 shows D∗ versus x01, for x01 > α with α = 0.114. There seems to be no
saturation effect, but D∗ will, of course, sooner or later reach numerical values so high to exceed
any practical applicability, also because it is unlikely that the treatment starts without any time
delay.
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