
A Resource-Aware Nearest-Neighbor Search
Algorithm for K-Dimensional Trees

Johny Paul
and Walter Stechele

Institute for Integrated Systems
Technical University of Munich

Germany
{johny.paul,walter.stechele}@tum.de

Manfred Kroehnert
and Tamim Asfour

Institute for Anthropomatics
Karlsruhe Institute of Technology

Germany
{manfred.kroehnert,asfour}@kit.edu

Benjamin Oechslein, Christoph Erhardt,
Jens Schedel, Daniel Lohmann

and Wolfgang Schröder-Preikschat
Department of Computer Science

FAU Erlangen-Nuremberg, Germany
{oechslein,erhardt,schedel,
lohmann,wosch}@cs.fau.de

Abstract—Kd-tree search is widely used today in computer
vision – for example in object recognition to process a large set
of features and identify the objects in a scene. However, the search
times vary widely based on the size of the data set to be processed,
the number of objects present in the frame, the size and shape
of the kd-tree, etc. Constraining the search interval is extremely
critical for real-time applications in order to avoid frame drops
and to achieve a good response time. The inherent parallelism
in the algorithm can be exploited by using massively parallel
architectures like many-core processors. However, the variation
in execution time is more pronounced on such hardware (HW)
due to the presence of shared resources and dynamically varying
load situations created by applications running concurrently. In
this work, we propose a new resource-aware nearest-neighbor
search algorithm for kd-trees on many-core processors. The novel
algorithm can adapt itself to the dynamically varying load on a
many-core processor and can achieve a good response time and
avoid frame drops. The results show significant improvements
in performance and detection rate compared to the conventional
approach while the simplicity of the conventional algorithm is
retained in the new model.

I. INTRODUCTION

In computer science, a k-dimensional tree or kd-tree is a
space-partitioning data structure for organizing points in a
k-dimensional space. In other words, kd-trees are a special
case of binary space-partitioning trees, where every node is
a k-dimensional point. Kd-trees are useful data structures
for several applications such as range searches and nearest-
neighbor searches (NN-searches). The NN-search algorithm
aims to find the point in the tree that is nearest to a given
input point. An efficient search can be implemented by taking
advantage of the kd-tree properties leading to a quick search-
space reduction. Further speedups can be achieved by using an
approximation algorithm. For example, an approximate NN-
search can be achieved by simply setting an upper bound on
the number of points to examine in the tree, or by interrupting
the search process based on a real-time clock (which may
be more appropriate in HW implementations). Approximate
nearest-neighbor search is useful in real-time applications such

This work was supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Centre “Invasive Computing”
(SFB/TR 89) and the Priority Program “Dependable Embedded Systems”
(SPP 1500).

as robotics due to the significant speedup achieved by not
searching for the best point exhaustively.
The NN-search problem arises in numerous fields of appli-
cation including computer vision, pattern recognition, sta-
tistical classification, computational geometry, data compres-
sion, DNA sequencing, cluster analysis, etc. In the context
of 3D vision, NN-search is frequently used in 3D point-
cloud registration. A comparison between these techniques is
available in [8]. However, the registration of large data sets
is computationally expensive. As an example, the humanoid
robot ARMAR-III [1] is capable of recognizing and tracking
textured objects. The recognition algorithm uses a combination
of Harris Interest Points and SIFT feature descriptors as
described in [2]. Features extracted from the scene are matched
against a pre-computed object database using a heuristic NN-
search. This enables the processing of large numbers of
features on every object to be recognized and tracked. A high
recognition frame rate is achieved by using the best-bin-first
search algorithm [3].
In recent years, growing interest has been attracted by many-
core processors on account of their immense computational
power assembled in a compact design. The compute-intensive
nature and the high degree of inherent parallelism in the
NN-search algorithm makes it suitable for implementation
on many-core processors. However, the available resources
on a many-core (processing elements (PE), memories, inter-
connects, etc.) have to be shared among various applications
running concurrently, which leads to unpredictable execution
time or frame drops during NN-search. To address these
challenges, this paper proposes a novel resource-aware NN-
search algorithm for kd-trees. This work describes how to
distribute the huge workload on the massively parallel PEs
for best performance, and how to generate results on time
(avoiding frame drops) even under varying load conditions.

II. STATE OF THE ART

NN-search on kd-trees is a compute-intensive task with a
high degree of inherent parallelism, and can be accelerated
using multi-core CPUs or GPUs. A recent study suggested
performing NN-search on the GPU using the basic brute-force
technique [10]. The brute-force search is a simple search



technique that compares one element with every other element
in the database. GPUs have impressive brute-force search
performance. However, GPU architecture makes efficient
data-structure design quite difficult. In particular, GPUs are
vector-style processors with limited branching ability. Hence,
conditional computation typically under-utilizes these devices
seriously [7]. Brute-force search on the GPU is still much
faster than it is on the CPU, but not much faster than a
kd-tree-based NN-search on a CPU [6]. Because of the
ubiquity of the NN-search problem, a huge variety of data
structures and algorithms have been developed to accelerate
this process. Cayton et al. [6] introduced a simple data
structure for NN-search on the GPU, with search and build
algorithms that are efficient on parallel systems. However,
the authors state that a significant effort was required to
develop the GPU software in comparison to the well-known
and simple NN-search on a CPU.
For almost four decades, better and better integration
technology has been allowing to double the number of
transistors on a single processor chip every 2 years.
Therefore, manufacturers were able to implement 8 to 12
high-end superscalar processors or up to 100 simple cores
on a single die. Today it is possible to put on the same
chip a large number of general-purpose cores, certainly
tens of highly complex cores as on Intel’s Single-Chip
Cloud Computer [12] or Tilera’s 64-core processor [4].
Such architectures can overcome the limitations imposed by
multi-core platforms with a limited number of cores, and
the high degree of parallelism within the HW can lead to
a significant acceleration of the conventional and simple
NN-search algorithm for kd-trees [7].
A major challenge associated with future many-core systems
is the question of how to program such systems to make
best use of their computing power. Heat, power dissipation,
reliability, etc. are other issues of future transistor technology
which have appeared on the horizon and need to be tackled
together with new means for program development of
concurrent applications. In order to address these issues [11]
propose a new resource-aware operating system (ROS) for
many-core HW, with direct support for parallel applications
and a scalable kernel. This work describes a resource-
management scheme based on resource provisioning which
enables system-wide, efficient accounting and utilization of
resources. In that work, resources such as cores and memory
are explicitly granted to the applications and revoked.
The kernel exposes information about a process’s current
resource allocation and the system’s utilization, and allows
the application programs to make requests based on this
information.
The demand for more stringent (OS-supported) resource
awareness was also proposed in [15], put forward by a new
programming methodology called Invasive Computing. The
main idea and novelty of Invasive Computing is that it extends
resource-aware programming support to various layers in the
many-core system like resource-aware OS, communication
interfaces like Network-on-Chip (NoC) and processing

elements (PEs). This research also focuses on policies for
resource allocation and when and how to revoke resources
from a process. Programs running on this HW get the ability
to explore and dynamically spread their computations to
neighboring processors and execute portions of code with a
high degree of parallelism in parallel based on the availability
of resources. Once the program terminates or if the degree of
parallelism should be lower again, the program may enter a
retreat phase. At this point, the resources can be deallocated
and execution resumed, for example, sequentially on a single
processor.

III. MOTIVATION

For applications like real-time object recognition and track-
ing, the NN-search algorithm has to complete the search
process within a predefined time. For fast-moving objects
the search interval has to be reduced so that the object can
be tracked accurately. This can be achieved by using more
PEs of the many-core processor. The actual duration of the
search depends on the size of the data set to be processed
and the size of data set depends on the number of objects
present in the scene, the nature of the background, lighting
conditions, etc. Fig. 1 shows the variation in execution time
when the NN-search is performed on a kd-tree of SIFT features
(used by the ARMAR robot to recognize objects). In this

200

300

400

500

600

1 11 21 31 41 51 61 71 81 91

M
ill

is
e

co
n

d
s

Frame No.

Fig. 1. Execution time for NN-search (static allocation)

case the application is statically scheduled on 16 concurrent
PEs to ensure that the available computing power does not
vary over time. A sequence of hundred different scenes was
processed by the algorithm and the size of the data set for
kd-tree search varies in every scene. It can be seen that the
execution time varies between 200 and 600 milliseconds, based
on the size of the input data set. However, this evaluation
is not complete as the static resource allocation is not a
recommended approach, and results in poor resource usage.
This is evident from Fig. 1 where the resources were allocated
such that the application can process one frame every 300
milliseconds (represented by the dotted line). However, the
NN-search duration falls below or above the deadline based
on the number of features to be processed. Points where
the execution time falls below the deadline represent under-
utilization of allocated resources, while those above the line
indicate a lack of sufficient resources.
The execution time can be equalized by adding more cores
to the application when higher computing power is required
and vice versa. Furthermore, the impact of other applications
running concurrently on the many-core system (audio process-
ing, robot control etc.) has to be considered. These applications



create dynamically changing load on the processor based on
what the robot is doing at that point in time. For instance,
the speech-recognition application is scheduled when the user
speaks to the robot or the motor control is activated when
the robot has to move or grasp an object that it recognized.
The conventional OS scheduler schedules the threads of each
application considering the overall system load. As a result,
the resources available to each application may vary from time
to time. Such a situation is depicted in Fig. 2, where the y-
axis represents the number of PEs allocated to the NN-search
application for each frame, for a total of 100 frames. The

0

8

16

24

32

1 11 21 31 41 51 61 71 81 91

C
o

re
s 

U
se

d

Frame No.

Fig. 2. Dynamic resource usage during NN-search

resulting execution time is depicted in Fig. 3 and the results
indicate very high jitter in the execution time. This evaluation
reveals the highly unpredictable search duration for NN-search
on today’s many-core processors. Prolonged search durations
would lead to frame drops and tracking errors. The number of
frames dropped during this evaluation was as high as 44%.
The robot may even lose track of the object if too many
consecutive frames are dropped.
In order to overcome these challenges, we developed a new
NN-search algorithm for many-core processors where the
application program can request for resources and adapt the
current workload based on the available resources. The up-
coming sections demonstrate how the resources are claimed
and how the search interval is constrained to guarantee better
response time, compared to conventional many-core systems.
The results indicate a significant improvement in overall
results of the recognition process when the NN-search is
performed on the new resource-aware platform.

0

400

800

1200

1600

2000

1 11 21 31 41 51 61 71 81 91

M
ill

is
e

co
n

d
s

Frame No.

Fig. 3. Execution time for NN-search (dynamic allocation)

IV. NEAREST-NEIGHBOR SEARCH ON KD-TREES

The object-recognition process used on the ARMAR robot
consists of two steps. In the first step, the robot is trained
to recognize the object. A training data set consisting of
SIFT features is created for every object to be recognized.
To speed up the nearest-neighbor computation, a kd-tree is

used to partition the search space; one kd-tree is built for
each object. The second step in the recognition process has
real-time requirements as it helps the robot to interact with its
surroundings (by recognizing and localizing various objects)
in a continuous fashion. In this step, a set of SIFT features,
extracted from the real-time images, is compared (using NN-
search) with the pre-loaded data set (kd-tree). The computation
of the nearest neighbor for the purpose of feature matching
is the most time-consuming part of the complete recognition
and localization algorithm. This algorithm performs a heuristic
search and only visits a fixed number of leaves resulting in an
actual nearest neighbor, or a data point close to it. For the NN-
search algorithm, the number of kd-tree leaves visited during
the search process determines the overall quality of the search
process. Visiting more leaf nodes during the search leads to a
higher execution time. The search duration per SIFT feature
can be calculated from Fig. 4. The values were captured by
running the NN-search application on a single PE using a
library of input images covering various situations encountered
by the robot. From this graph it is clear that the search interval

0

5

10

15

20

25

1 21 41 61 81 101 121

M
ill

is
e

co
n

d
s

Leafs Visited

Fig. 4. Variation of execution time vs. leaf nodes visited for NN-search

varies linearly with the number of leaf nodes visited during
the search. Moreover, the relation between quality (i.e. the
number of features recognized) and leaf nodes is shown in
Fig. 5. The quality of detection falls rapidly when the number
of leaf nodes is reduced below 20 and increases linearly
in the range between 20 and 120. At a further higher leaf
count, the quality does not improve significantly as all the
possible features are already recognized. In the conventional
algorithm used on CPUs, the number of leaf nodes visited is
set statically such that the search process delivers results with
sufficient quality for the specific application scenario. Using
the results from this evaluation, the overall search duration
can be predicted based on the object to be recognized, the

Region
(B)

Region
(A)

0

30

60

90

120

150

1 21 41 61 81 101 121

N
o

. o
f 

fe
at

u
re

s 
re

co
gn

iz
e

d

Leafs Visited

Default value

Fig. 5. Search quality vs. leaf nodes visited for NN-search



number of features to be processed and the number of PEs
available for NN-search. The first two parameters are decided
by the application scenario while the PE count is decided by
the runtime system based on the current load situation. As
shown in Fig. 2, the resources allocated to the application
may vary from time to time, leading to highly unpredictable
search durations and frame drops. Two different techniques
can be applied to the conventional algorithm to constrain the
execution time, as described below.

A. Threshold-Based Search

In order to avoid frame drops and to improve the tracking
accuracy, the conventional NN-search can be modified to
process the SIFT features based on their quality. The number
of leaf nodes visited is fixed (to the default value) and once
the deadline is hit, the algorithm can drop the remaining
low-quality features and move on to the next frame. This
technique is relatively simple, easy to implement and works on
any single-/many-core platform. The algorithm would perform
well in scenarios where the scene contains only the object to
be recognized and all the detected features belong to the same
object. The results deteriorate when there are more objects
in the frame and also in scenes with cluttered background;
this is because some of the high-quality SIFT features may
belong to other objects or to the background. Therefore, the
features dropped by the algorithm may belong to the target
object, leaving it undetected.

B. Iterative Search

An alternative approach to overcome the problems in the
threshold-based search is to modify the conventional NN-
search to proceed in an iterative manner. This means that
the search process starts with the first feature and performs
a search until the first leaf node is reached. The results are
saved and the algorithm moves on to the next feature and
repeats the same process again. Thus, every feature in the
data set is processed once (to the first leaf node) and then the
algorithm returns to first feature again to continue the search
from the first leaf node to the second. This process continues
until a default number of leaf nodes is visited or until the
next frame is available, whichever occurs first. In this manner,
when the deadline is hit, the algorithm will have performed
an equal search for all the features in the data set and none of
the features will be dropped. However, the overall quality of
the NN-search is reduced as described in Fig. 5 as the search
process may stop half-way without reaching the default leaf
count. Detailed evaluations were performed to compare the
results from the threshold-based and iterative NN-search and
the results are provided in Section VII.

V. EVALUATION PLATFORM

As described in Section II, our work focuses on exploring
the benefits of resource-aware NN-search on kd-trees. There-
fore, we implemented our algorithms on top of OctoPOS [13],
a resource-aware operating system. OctoPOS shares the same
view with ROS [11] as far as application-directed resource

management of many-core processors is concerned. Also, both
approaches resort to an event-based kernel architecture and
largely benefit from asynchronous and non-blocking system
calls. The main difference, however, is in the execution model
of OctoPOS that was specifically designed to support invasive-
parallel applications.

A. System Programming Interface

At the OctoPOS interface, resource-aware programming
maps to three fundamental system calls: invade(),
infect() and retreat(). These calls and their typical
usage in the course of an application programm are depicted
in Fig. 6. First, the application’s resource demand has to be

start

invade workload
distribution infect retreat

exit

Fig. 6. Structure of an invasive program

expressed to the system. We call this the invade phase. As a
result from the invade call, the application is handed a set of
resources in the form of a claim. A claim is the central data
structure in the system for representing the resources (pro-
cessors, memory, etc.) associated with an application. When
invade returns, the application has to distribute its workload
according to the resources it acquired. For example, it can tune
its algorithm towards the number of processors present in the
claim. The actual computation is then started using the infect
call. After execution finishes, another computation phase can
be started on the same set of resources or resources can be
released using retreat or additional resources can be acquired
using invade. The basic concept of resource-aware computing
states that an application dynamically expands and shrinks
its set of resources at runtime according to its own demand
and that it can react to undersupply situations where there
are not enough resources available. Depending on the current
system state, the resulting claim may or may not fulfill the
demands specified before. Once an application gets a claim, it
has full control over the associated resources. This guarantee
on the acquired resources enables the application to balance
its workload according to the dynamic runtime state of the
system. Assumptions made during workload distribution, right
before the infect phase hold until the application itself changes
resource allocation following the infect phase.

B. Application execution model

The main building blocks of applications in OctoPOS are
so-called i-lets: Fragments of a program potentially executed
in parallel with mostly run-to-completion semantics. These are
represented by function and data pointers and thus are very
lightweight entities. An i-let is like a Cilk procedure [5], but
allows for the blocking of its executing thread by creating
a “featherweight” continuation when actually releasing a PE.
An application can create an arbitrary number of i-lets to



Fig. 7. Execution model of applications in OctoPOS

potentially be executed in parallel using the infect system call.
As depicted in Fig. 7, OctoPOS forwards them to local buffers
for each of the respective processors where they are eventually
executed. Overall, this leads to an efficient implementation of
i-let creation and dispatching. Moreover, with a tiled hardware
architecture as described in Section V-C, the buffering scheme
is a possible candidate for hardware acceleration: To execute
i-lets on distant tiles without obstructing the processors in the
tile, the buffers can be maintained in hardware and accessed
directly through the NoC. This leads to a very scalable system
architecture suitable for many-core systems.

C. Hardware Architecture

Our target many-core processor is shown in Fig. 8. The
processor comprises 9 tiles interconnected by a NoC. Each
tile consists of 4 cores interconnected by a local bus and some
tile-local memory (TLM), with a total of 32 cores (LEON3, a
SPARC V8 design by Gaisler [9]) spread across 8 tiles. The
9th tile is a memory and I/O tile encompassing a DDR-III
memory controller and Ethernet, UART, etc. for data exchange
and debugging. Each core has a dedicated L1 cache and all
the cores within a tile share a common L2 cache. L1 caches
are write-through and L2 is a write-back cache; this setup
ensures cache coherency within tile boundary. However, no
cache coherency is maintained beyond tile boundary, and data
consistency has to be handled by the programmer through
proper programming techniques, similar to the Intel SCC.

VI. RESOURCE-AWARE NEAREST-NEIGHBOR SEARCH
ALGORITHM

Sections III and IV described the conventional algorithm,
its limitations, and also presented two modified algorithms
for object tracking on conventional many-core platforms. This
section describes our new approach towards NN-search using
the idea of resource-aware computing. The main idea and
novelty of the new algorithm is that the workload is calculated
and distributed taking into account the available resources
(PEs) on the many-core processor.

A. Adaptive Workload Distribution

As described in Section V, the first step is to allocate
sufficient resources to perform a parallel NN-search. The
amount of PEs requested by the algorithm is based on the
number of SIFT features to be processed, the size of the kd-
tree and the available search interval. The number of SIFT
features varies from frame to frame based on the nature and

Fig. 8. Resource aware many-core processor

number of objects present in the frame, the nature of the
background, etc. The size of the kd-tree is decided by the
texture pattern on the object to be recognized and tracked.
The search interval or the frame rate is decided by the context
where the NN-search is employed. For example, if the robot
wants to track a fast-moving object, the frame rate has to be
increased or the execution time has to be reduced. Equation (1)
represents this relation and can be used to compute the number
of PEs (Npe) required to perform the NN-search on any frame
within the specified interval Tsearch. Nfp is the number of
SIFT features to be processed and Tfp is the search duration
per SIFT feature, a function of the number of leaf nodes
visited, as described in Fig. 4. The initial resource estimate
is based on the default leaf count (Nleaf best), as described in
Section IV.

Npe ≥
Nfp × Tfp(Nleaf best)

Tsearch
(1)

Note that the function Tfp(Nleaf best) is different for every
object to be recognized and tracked by the robot, as this is
dependent on the number of features forming the kd-tree, the
shape of the tree, etc.

B. Efficiency Graphs

Equation (1) assumes that the search interval decreases
linearly with increasing PEs. Such an assumption does not
hold, considering the limited parallelism within the application
program. For example, the NN-search algorithm is highly par-
allel during the search process. However, the overall execution
time also includes the time to load the kd-tree to on-chip
memory, combine the results from individual i-lets, filter the
best matches, etc. Furthermore, every additional i-let created
by the NN-search algorithm also creates an additional load



on the external memory and shared communication interfaces,
limiting the scalability. Our analysis of NN-search on the
proposed HW shows an efficiency graph as shown in Fig. 9.
From the graph it can be seen clearly that when the number
of i-lets is increased from 1 to 2, the execution time does not
improve by 2x, instead by 2×0.98 (98%), i.e. 1.96x. Using this
graph, the efficiency factor for various levels of parallelism can
be computed. The values shown here are applicable only for
the NN-search implementation used in this paper and may vary
based on how the original algorithm is implemented. In order

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Ef
fi

ci
e

n
cy

 in
 %

Core count

Fig. 9. Efficiency map for NN-Search on target HW

to increase the accuracy of the resource-estimation model, an
application-specific efficiency factor or scalability information
can be added to (1). The enhanced model is represented by
(2), where η(Npe) represents the algorithm’s efficiency as a
function of degree-of-parallelism or available resources (Npe).

Npe ≥
Nfp × Tfp(Nleaf best)

Tsearch × η(Npe)
(2)

Using the new model, the application raises a request to
allocate PEs (Npe), which is then processed by the operating
system. Considering the current system load, the OS makes
a final decision on the number of PEs to be allocated to the
NN-search algorithm. The PE count may vary from zero (if
the system is too heavily loaded and no further resources can
be allocated at that point in time) to the total number of PEs
requested (provided that there exists a sufficient number of idle
PEs in the system and the current power mode offers sufficient
power budget to enable the selected PEs). This means that
under numerous circumstances the application may end up
with fewer PEs and has to adapt itself to the limited resources
offered by the runtime system.

C. Resource-Aware Workload Distribution

In constrained scenarios as explained above, the application
has to re-balance the workload in order to complete the
NN-search within the search interval specified by Tsearch.
This is achieved by recalculating the number of leaf nodes
(Nleaf adap) to be visited during the NN-search such that the
condition in (3) is satisfied.

Tfp(Nleaf adap) ≤
Npe × Tsearch × η(Npe)

Nfp
(3)

The algorithm can use the new leaf count for the entire search
process on the current image. However, it can be seen from
Fig. 5 that the quality drops significantly if the number of
leaf nodes calculated in (3) is too low (between 0 and 20, for

the particular object used in our evaluation). This region is
marked as region(A) in the figure. This issue can be resolved
by preventing the leaf count from falling below the minimum
leaf count (Nleaf min) or the estimated leaf count should
fall within the region(B) as shown in Fig. 5. Under most
circumstances the application can process all the features by
adapting the leaf count. However, if there are a large number
of features to be processed using too few PEs, the leaf count
calculated may fall below the minimum limit. In this case,
the NN-search will drop a few low-quality SIFT features to
complete the search within the predefined search interval.

It should be noted that the resource-allocation process
operates once for every frame. Upon completion, the
application releases the resources and waits for the next frame
to arrive. Therefore, the core algorithm for NN-search retains
its simple structure in contrast to the complex iterative search
algorithm described in Section IV-B. The flow diagram in
Fig. 10 describes the entire process of resource allocation
and workload calculation for resource-aware NN-search. It
also shows how this maps to the programming interface of
the underlying OS. In contrast to the threshold-based search
described in Section IV-A, the resource-aware NN-search

Infect Phase

Retreat Phase

Invade Phase

�����_����

<
�����_���

AllocateIresourcesI(���):

��� ≥
��� ∗ ��� �����_����

������ℎ∗ �(���)

ComputeI�����_����

based on available PEs

Recalculate ��� :

��� ≤
��� ∗ ������ℎ ∗ � ���

���(�����_���)

n <I���

Continue?IRelease PEsStop

n = 0

n = n +I1

���
availableI?

yes

yes

yes

no

no

no

Start

yesno

NN-SearchIforI��ℎ

SIFTIfeatureI

Fig. 10. Flow diagram for resource-aware NN-search



can process all features in most cases and hence overcome
the challenges raised by scenes with multiple objects or
cluttered backgrounds. As the available resources are known
in advance, the application can make an early decision on the
number of leaf nodes to be visited during NN-search and can
avoid the additional complexity encountered by the iterative
approach described in Section IV-B.

VII. EVALUATION & RESULTS

This section describes the results obtained from the
resource-aware NN-search along with a comparison with
the conventional search techniques like threshold-based and
iterative search. A set of 100 different scenes was used
for evaluation, where each frame contains the object to
be recognized and localized along with few other objects
and changing backgrounds. The position of the objects and
their distance from the robot were varied from frame to
frame to cover different possible scenarios. Evaluations were
conducted on the FPGA-based HW prototype described in
Section V. As a single FPGA cannot hold the large many-core
design (with 32 LEON3 cores, external memory controllers,
multiple debug and I/O interfaces, on-chip memories, NoCs,
etc.) a multi-FPGA prototyping platform from Synopsys
called CHIPit System [14] was used. This system consists
of six Xilinx FPGAs (Virtex-5 XC5VLX330) with a total
capacity of 12 million ASIC gates. The design operates at
a frequency of 50 MHz. Although the operating frequency
of the HW prototype is relatively low compared to an ASIC
implementation, it does not affect the evaluation process as
all three versions of the algorithm were tested on the same
FPGA platform and the results are compared in terms of the
quality of the detection process with a fixed search interval.
All three flavors of the NN-search algorithm were tested
using the same set of input images for a search interval of
300 milliseconds per frame (3.3 frames per second). Fig. 11
shows a comparison between the resource-aware and the
threshold-based NN-search, with the number of features
recognized (quality of detection) on the y-axis and the
frame number on the x-axis. In order to maintain equality
in the evaluation process, the number of PEs allocated to
the applications was equalized. The PE distribution varies
from frame to frame as shown in Fig. 2. The remaining
resources were either idle or allocated to other audio/video or
motion-control applications running on the robot. It is clear

0

50

100

150

200

1 11 21 31 41 51 61 71 81 91

M
at

ch
e

d
 f

e
at

u
re

s

Frame No.

Resource-aware

Threshold-based

Fig. 11. Comparison between resource-aware and threshold-based NN-search

Fig. 12. Image(a): single object Fig. 13. Image(b): multi-objects

from Fig. 11 that the resource-aware NN-search algorithm
outperforms the conventional algorithm using the same
amount of resources. This is because the resource-aware
model is capable of adapting the search algorithm based
on the available resources compared to the conventional
algorithm with fixed thresholds. However, the resource-aware
algorithm results in the same number of matched features as
the conventional algorithm in some frames. This is because
there were a sufficient number of idle PEs and the runtime
system allocated sufficient resources to meet the computing
requirements of the conventional algorithm and hence the
conventional algorithm did not drop any SIFT feature. On
the contrary, when a frame contains large number of SIFT
features and the processing system is heavily loaded by other
applications, the conventional algorithm dropped too many
SIFT features, thereby resulting in a low overall detection
rate (matched features). This behavior is depicted in Fig. 12
and Fig. 13. Fig. 12 contains the object to be recognized
along with a tiny cup and plain background. Hence the
features dropped were the low-quality features on the target
and most of the high-quality features were still retained,
resulting in a comparable detection rate with threshold-based
and resource-aware search algorithms. However, in Fig. 13,
additional objects and complex background resulted in
dropping high-quality features on the target leading to poor
overall detection rate using threshold-based search. More
details regarding these two test images can be found under
Table I. This result points to the ability of the resource-aware
application to adapt itself to changing load conditions and
generate better results in tightly constrained situations.

When compared to the threshold-based search, the iterative
search algorithm offers improved results in some frames
and equal or deteriorated results in other frames. A detailed
analysis shows that under circumstances where a large
number of features have to be processed using few PEs,
the threshold-based model outperforms the iterative model.
This is because the iterative model tries to perform a search
without dropping any features in a scenario described above
and the total number of leaf nodes visited during the search
process may drop to very low values (see region(A) in Fig. 5).
Hence the overall quality can be too low as the NN-search
may result in poorly matched candidates. The iterative model
performs well compared to the threshold-based model in
other situations as this model can avoid dropping features



TABLE I
COMPARISON BETWEEN RESOURCE-AWARE AND THRESHOLD-BASED
NN-SEARCH (FP: FEATURE-POINT, PR:PROCESSED, DR:DROPPED,
TR:THRESHOLD-BASED SEARCH, RA:RESOURCE-AWARE SEARCH)

Image(a) Image(b)

PE count (alloc / required) TR 12 / 23 14 / 31
RA 12 / 23 14 / 31

FPs on object (PR / DR) TR 177 / 320 88 / 217
RA 320 / 320 217 / 217

FPs on others (PR / DR) TR 21 / 42 143 / 284
RA 42 / 42 284 / 284

Total FPs recognized TR 108 60
RA 111 115

using the adaptive techniques described in Section IV-B.
A comparison between the resource-aware and the iterative
NN-search is provided in Fig. 14, where the resource-aware
algorithm outperforms the iterative search in numerous
scenarios. The reason for this is the increased complexity
within the iterative search resulting from the enhancements
described in Section IV-B. The added logic to process the
features in an iterative fashion results in higher complexity,
leading to higher overall execution time. Moreover, the
iterative model has to load every SIFT feature multiple times
into the on-chip memory or data cache during the NN-search
while the resource-aware model loads each feature once
during the entire search process. This means the iterative
search algorithm creates a higher load on the external memory
and AHB bus, NoC, etc., which reduces the scalability and
efficiency during execution. As a result, the iterative model
cannot process as many features as the resource-aware model
within a fixed interval, reducing the total matched features or
quality of the algorithm.

0

50

100

150

200

1 11 21 31 41 51 61 71 81 91

M
at

ch
e

d
 f

e
at

u
re

s

Frame No.

Resource-aware

Iterative

Fig. 14. Comparison between iterative and resource-aware NN-search

VIII. CONCLUSION

This paper presented a resource-aware NN-search algorithm
for kd-trees and demonstrated how to estimate the resources
required for a specific search operation based on the scene
(number of objects present, type of background, etc.) and
the texture of the object to be recognized and localized.
The application is aware of available resources on the
many-core processor and can re-balance the workload if

sufficient resources are not available. The ability of the
application to bargain for resources and adapt to available
resources helps to avoid frame drops and to complete the
search process within the specified search interval. Our
experiments show that incorporating resource awareness into
the conventional NN-search algorithm can improve the quality
of the recognition process significantly. A detailed evaluation
was conducted on an FPGA-based HW prototype to ensure
the validity of the results. Though the evaluations were
conducted using the OS and HW explained under Section
V, the benefits are expected to be visible on any resource-
aware platform including ROS [11]. The newly proposed
algorithm is simple and retains all the characteristics of the
conventional algorithm. The resource allocation and release
happens once per frame and the additional overhead in
execution time is negligible when compared to the time taken
by NN-search to process thousands of features in every frame.

REFERENCES

[1] T. Asfour, K. Regenstein, P. Azad, et al. ARMAR-III: An integrated
humanoid platform for sensory-motor control. In 6th IEEE-RAS Inter-
national Conference on Humanoid Robots. IEEE, 2006.

[2] P. Azad, T. Asfour, and R. Dillmann. Combining harris interest points
and the sift descriptor for fast scale-invariant object recognition. In
Intelligent Robots and Systems, 2009. IROS 2009. IEEE, 2009.

[3] J. Beis and D. Lowe. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 1997.

[4] S. Bell, B. Edwards, J. Amann, et al. Tile64-processor: A 64-core soc
with mesh interconnect. In Solid-State Circuits Conference, 2008. Digest
of Technical Papers, pages 88–598. IEEE, 2008.

[5] R. D. Blumofe, C. F. Joerg, et al. Cilk: An efficient multithreaded
runtime system. In Proceedings of the Fifth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’95), 1995.

[6] L. Cayton. A nearest neighbor data structure for graphics hardware.
Proceedings of ADMS, 2010.

[7] L. Cayton. Accelerating nearest neighbor search on manycore systems.
In Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International, pages 402–413. IEEE, 2012.

[8] J. Elseberg, S. Magnenat, R. Siegwart, et al. Comparison of nearest-
neighbor-search strategies and implementations for efficient shape regis-
tration. Journal of Software Engineering for Robotics, 3(1):2–12, 2012.

[9] J. Gaisler and E. Catovic. Multi-core processor based on leon3-ft ip
core (leon3-ft-mp). In DASIA 2006-Data Systems in Aerospace, volume
630, page 76, 2006.

[10] V. Garcia, E. Debreuve, and M. Barlaud. Fast k nearest neighbor search
using gpu. In Computer Vision and Pattern Recognition Workshops,
2008. CVPRW’08. IEEE Computer Society Conference on. IEEE, 2008.

[11] K. Klues, B. Rhoden, Y. Zhu, A. Waterman, and E. Brewer. Processes
and resource management in a scalable many-core os. HotPar10,
Berkeley, CA, 2010.

[12] T. Mattson, M. Riepen, et al. The 48-core scc processor: the pro-
grammer’s view. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–11. IEEE Computer Society, 2010.

[13] B. Oechslein, J. Schedel, J. Kleinöder, L. Bauer, J. Henkel, D. Lohmann,
and W. Schröder-Preikschat. Octopos: A parallel operating system for
invasive computing. In Proceedings of the International Workshop on
Systems for Future Multi-Core Architectures (SFMA). EuroSys, 2011.

[14] Synopsys. In CHIPit Platinum Edition - ASIC, ASSP, SoC Verification
Platform, 2009.

[15] J. Teich, J. Henkel, A. H. andDoris Schmitt-Landsiedel, W. Schröder-
Preikschat, and GregorSnelting. Invasive Computing: An Overview. In
M. Hübner and J. Becker, editors, Multiprocessor System-on-Chip –
Hardware Design and ToolIntegration, pages 241–268. Springer, Berlin,
Heidelberg, 2011.


