
Runtime Dependence Computation and
Execution of Loops on Heterogeneous Systems

Jayvant Anantpur R. Govindarajan
Supercomputer Education and Research Centre

Indian Institute of Science
jayvant@hpc.serc.iisc.ernet.in govind@serc.iisc.ernet.in

Abstract
GPUs have been used for parallel execution of DOALL
loops. However, loops with indirect array references can po-
tentially cause cross iteration dependences which are hard to
detect using existing compilation techniques. Applications
with such loops cannot easily use the GPU and hence do not
benefit from the tremendous compute capabilities of GPUs.

In this paper, we present an algorithm to compute at run-
time the cross iteration dependences in such loops. The al-
gorithm uses both the CPU and the GPU to compute the de-
pendences. Specifically, it effectively uses the compute capa-
bilities of the GPU to quickly collect the memory accesses
performed by the iterations by executing the slice functions
generated for the indirect array accesses. Using the depen-
dence information, the loop iterations are levelized such that
each level contains independent iterations which can be exe-
cuted in parallel. Another interesting aspect of the proposed
solution is that it pipelines the dependence computation of
the future level with the actual computation of the current
level to effectively utilize the resources available in the GPU.
We use NVIDIA Tesla C2070 to evaluate our implementa-
tion using benchmarks from Polybench suite and some syn-
thetic benchmarks. Our experiments show that the proposed
technique can achieve an average speedup of 6.4x on loops
with a reasonable number of cross iteration dependences.

Categories and Subject Descriptors D.3.2 [Program-
ming Languages]: Processors-Code Generation—Compilers

General Terms Algorithms, Languages, Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CGO’13 23-27 February 2013, Shenzhen China.
978-1-4673-5525-4/13/$31.00 c©2013 IEEE. . . $15.00

1. Introduction
The compute capabilities of Graphics Processing Units
(GPUs) [10][14] have significantly increased with each
newer version. GPUs have been effectively used by pro-
grammers to speedup data parallel computations either by
manually identifying loops to parallelize or using compila-
tion techniques to identify and parallelize loops. There has
been extensive research in the field of parallelizing tech-
niques for loops [3][4][5][15][17][20]. Also optimization of
loops for GPGPUs has been explored in [1][2][9]. But these
techniques can not be used to parallelize loops with indirect
array accesses for execution on GPUs.

Indirect array accesses are very effective in reducing
memory consumption in sparse matrix applications. The in-
ability of existing compilers to parallelize loops with indirect
memory accesses, prevents the use of GPUs for accelerating
such loops. The most common use of indirect array access
is A[B[i]] where i is the loop index. Since the contents of
array B are not known at compile time, the compiler can
not make any assumptions about the accesses to array A and
hence conservatively computes the data dependences on ar-
ray A. This causes extra memory dependences to be added
among instructions. For the example shown below, the au-
tomatic parallelizing compilers will assume cross iteration
dependences in the loop and hence will not parallelize it.

for (i = 0; i < N; i++) {
Arr1[ind1[i]] = Expr1; //S1
Arr2[i] = Arr1[ind2[i]]; //S2

}

In this example, static analysis will assume that there is
a Read After Write dependence between S1 and S2, Write
After Write dependence between two instances of S1 and
Write After Read between S2 and S1.

In this paper we propose an algorithm to compute the de-
pendences using both the CPU and the GPU and schedule
at runtime the iterations of the loop in parallel honoring the
dependences. The central idea is to levelize the iterations ac-
cording to the memory dependences. Levelization basically
generates a topological sort of the iterations using memory
dependences and iteration indices to decide the execution or-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357562626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

der. We effectively use the compute capabilities of the GPU
to gather information of indirect array accesses. Using slice
functions for the indices of conflicting array accesses, writes
to arrays with conflicting accesses are logged, e.g., the value
of ind1[i] and the iteration index i. When another conflicting
access to the same location by another iteration is detected,
our algorithm moves the iteration with higher iteration index
to the next level. This way all the iterations of the loop are as-
signed levels. We refer to this process of assigning levels as
levelization and this phase of our algorithm as Dependence
Computation phase. Iterations at level k+1 can be executed
only after iterations at level k are executed. Further an iter-
ation at level k can be executed independent of the others
at the same level. We run the loop on the GPU by making
one kernel call per level such that each kernel invocation ex-
ecutes only the iterations at that level. This way we can run
multiple iterations of the loop in parallel without violating
any cross iteration dependences.

Our algorithm can be software pipelined to compute the
dependences at level k+1 while the execution of level k is
performed on the GPU. The algorithm has been designed to
reduce the space overheads of dependence computation.

The main contributions of the paper are:

• Use of the compute capabilities of GPUs to identify the
independent iterations in a loop and levelize them based
on the dependences, for parallel execution.
• Execution of the levelized iterations on a GPU, by run-

ning all the iterations at the same level in parallel.
• Pipelining the dependence computation and execution

phases to effectively use the compute capabilities of
GPUs.

To the best of our knowledge, our work is the first to use
a GPU to levelize the iterations of a loop with cross iteration
dependences due to indirect array accesses and execute them
in parallel on the GPU honoring the dependences.

2. Background
2.1 NVIDIA GPUs

In this section we describe the architecture of NVIDIA
GPUs in general. They consist of a set of streaming mul-
tiprocessors (SMs) and each of these SMs has several scalar
units. The Tesla C2070 has 14 SMs and each SM has 32
scalar cores making the total number of CUDA cores 448.
Each SM has 64 KB of configurable shared memory and
L1 cache. It can be configured as 48 KB of shared memory
and 16 KB of L1 cache or as 16 KB of shared memory and
48 KB of L1 cache. It also has a 768 KB unified L2 cache.
The L2 cache services all load, store and texture requests. In
addition, C2070 supports 6 GB of global memory without
ECC and 5.25 GB memory with ECC. The global memory
can be accessed by all the CUDA cores and it provides a
very high bandwidth, if the accesses are coalesced. However

latency of accessing the global memory is high and in the
order of a few hundreds of cycles.

2.2 CUDA Execution Model

Compute Unified Device Architecture (CUDA) [13] pro-
vides extensions to C and C++ languages, which can be used
to define functions called Kernels. A kernel is executed in
parallel using a set of parallel threads which are organized
in thread blocks and grids of thread blocks. Grids and thread
blocks are arranged as three dimensional structures. Each
thread executes an instance of the kernel and has a unique
thread ID. All the threads in a thread block can synchronize
using syncthreads intrinsic function, which acts as a barrier
which can be crossed only after all the threads in the block
have reached the barrier. Threads within a thread block can
share data using the shared memory provided on the SMs.
Kernel calls execute asynchronously in the sense that con-
trol is returned to the calling CPU thread before the kernel
execution on the GPU completes.

Modifications to the global memory done by one thread
are not immediately visible to other threads. CUDA provides
various memory fence functions which can be used to block
a thread till its global and shared memory updates are vis-
ible to other threads in its block and all the threads in the
device. Another way to achieve the necessary synchroniza-
tion and memory consistency to satisfy Read After Write
dependences is to execute the writes and reads in two differ-
ent kernels. CUDA also provides functions to perform read-
modify-write operations atomically.

3. Dependence Computation and Execution
In this section we describe our algorithm to levelize itera-
tions of a loop with cross iteration dependences due to in-
direct array accesses and to execute the iterations in parallel
on a GPU.

3.1 Overview

We use the following code as the running example.
for (i = 0; i < N; i++) {

int wIdx = ind1[i];
Arr1[wIdx] = Expr1; //S1
int rIdx = ind2[i];
Arr2[i] = Arr1[rIdx]; //S2

}

In this example there are indirect accesses to array Arr1.
Since these accesses can be potentially conflicting, i.e., two
iterations may access the same array element and at least one
of them is a write access, we consider such arrays as arrays
with conflicting accesses. We are interested in monitoring
accesses only to such arrays. Accesses to array Arr2 are data
parallel i.e., no two iterations will access the same element
of array Arr2. We assume that the arrays ind1 and ind2
are not modified in the loop and arrays Arr1 and Arr2 are
non overlapping. Our approach uses the proposed runtime
technique only in places where compiler analysis cannot
resolve the dependences.

If for two different values of i, say i1 and i2, where i1 <
i2, wIdx has the same value, then there is a Write After Write
(WAW) dependence between the corresponding instances of
statement S1. If the value of wIdx in iteration i1 is the same
as the value of rIdx in iteration i2, then there is a Read After
Write (RAW) dependence (S2 depends on S1), whereas, if
the value of rIdx in iteration i1 is the same as the value of
wIdx in iteration i2, then there is a Write After Read (WAR)
dependence (S1 depends on S2). In all these three cases, to
match the sequential execution semantics, iteration i1 should
be executed before iteration i2. So we can assign levels to
the iterations such that iterations at level k are not dependent
on each other and are dependent directly or indirectly on
iterations at level k-1, k-2, ... , 1, which means iterations at
level k can not be executed till all the iterations at the earlier
levels have been executed. Thus if iteration i1 is at level k,
then i2 should be at a level greater than k. Moreover, since
all the iterations at the same level are independent of each
other, they can be executed in any order.

To compute dependences, we are interested only in the
values of wIdx and rIdx. We neither need to evaluate Expr1
nor do we need to write to array Arr1 or read from Arr1. To
detect conflicting accesses we need to compare the values of
the index variables wIdx and rIdx in each iteration with their
values in every other iteration. Since the detection is per-
formed at runtime, both the runtime and memory overheads
of detecting conflicts should be as small as possible.

Algorithm 1 Levelization
1: procedure Levelize()
2: S = set of all iterations
3: level← 1
4: while NonEmpty(S) do
5: {S c, S f} = Partition(S)
6: AssignLevel(S c, level)
7: level← level + 1
8: S ← S f
9: end while

10: end procedure

Given a loop with potentially loop-carried dependences,
our solution can be used to parallelize it. The phases in-
volved are as follows:

• generate the data parallel CUDA version of the loop
ignoring dependences.
• levelize the iterations by computing dependences.
• execute the iterations level by level, parallelizing all the

iterations at each level.

The levelization algorithm partitions the set of iterations
S into sets of iterations S1, S2, ..., Sn such that all the Si’s
are disjoint and their union is S. Further each set Si cor-
responds to the iterations at level i which are independent
and can be executed in parallel. At each step the algorithm
divides the set of remaining iterations into two disjoint sets

viz., Sc and Sf such that each iteration is either in Sc or Sf .
All the iterations in Sc can be executed at the current level i
and are independent of each other; all the iterations in Sf are
at future levels i.e., level i+1 or above. The partioning step
is then carried out on the set Sf as described in Algorithm 1.
Thus our algorithm partitions the input set of iterations one
level at a time to reduce memory overheads. After the lev-
elization algorithm assigns levels to iterations, the iterations
can be executed level by level and all the iterations at each
level in parallel.

The method for generating the data parallel code is de-
scribed in Section 3.2.

Our algorithm currently targets innermost loops but can
also be used to parallelize outer loops where inner loops are
run sequentially.

3.2 Generation of Data Parallel Code

The data parallel CUDA version of the loop is generated
ignoring the dependences due to indirect memory accesses.
This makes the generated kernel unsafe to run on the GPU.
The data parallel code can be generated by converting the
iteration index to tIdx and making the computation a single
dimension grid, and choosing the execution configuration
appropriately. In our work we assume that the data parallel
code is also given by the user. For our running example,
the generated CUDA code is as shown in kernel function
loopKernel. The kernel is invoked with as many threads as
the number of iterations.

#define KERNEL_PARAMS \
int* Arr1, int* Arr2, int* ind1, int* ind2, int N

__global__ void loopKernel(KERNEL_PARAMS) {
int tIdx = blockIdx.x * blockDim.x + threadIdx.x;
if (tIdx >= N) return;
int wIdx = ind1[tIdx];
Arr1[wIdx] = Expr1;
int rIdx = ind2[tIdx];
Arr2[i] = Arr1[rIdx];

}

3.3 Levelization

Now we will describe the levelization process in detail. It
consists of a Dependence Computation Phase which is fur-
ther divided into a Writer Phase and a Reader Phase. Algo-
rithms 2, 3 and 4, describe these phases in detail.

3.3.1 Dependence Computation Phase

From the kernel definition, we can identify arrays with po-
tentially conflicting accesses. Using the accesses to such ar-
rays as the starting point we can extract the slice functions
for the indices of their accesses. In our example, the array
with conflicting accesses is Arr1 and the indices are wIdx
and rIdx. The Dependence Computation Phase needs to log
the iteration numbers and indices of Arr1 that are written to.
For this purpose an auxiliary array of size less than or equal
to the size of the original array is used. In this example, we
will assume that the auxiliary array is of the same size as the

original array. From the original kernel two kernels are gen-
erated, one to log into the auxiliary array the indices that are
written to and another to check the indices that are read. Both
these kernels use the slice functions for the indices that are
accessed. In addition to the auxiliary array, we use an array,
Levels, to store the level of each iteration. All the iterations
are initially assumed to be at level 1.

Algorithm 2 DepCompWriter
1: procedure checkWr (iter, arrIdx, curLvl)
2: flag ← false
3: curSmallestWr ← getCurSmallestWr(arrIdx)
4: if iter < curSmallestWr then
5: incrLevel(curSmallestWr) {/*WAW*/}
6: setCurSmallestWr(arrIdx, iter)
7: flag ← true
8: else if iter > curSmallestWr then
9: iterLvl← getIterLevel(curSmallestWr)

10: if iterLvl < curLvl then
11: setCurSmallestWr(arrIdx, iter)
12: else
13: incrLevel(iter) {/*WAW*/}
14: flag ← true
15: end if
16: end if
17: return flag
18: end procedure
19:
20: procedure DepCompWriter(curLvl, Arr)
21: iter ← tIdx
22: flag ← false
23: iterLvl← getIterLevel(iter)
24: if iterLvl = curLvl then
25: writtenIndices← getWrittenIndices(Arr, iter)
26: for all arrIdx ∈ writtenIndices do
27: flag ← flag ∨ checkWr(iter, arrIdx, curLvl)
28: end for
29: end if
30: return flag
31: end procedure

3.3.2 Writer Phase

Algorithm 2 iterates over all the locations of the array with
conflicting accesses, that are written to and checks for WAW
dependences using the procedure checkWr, which stores the
smallest iteration index that writes to each location. We use
CUDA’s atomicMin to retain the smallest iteration index.
Function setCurSmallestWr stores in the auxiliary array the
smallest iteration index that writes to the input location ar-
rIdx, whereas the function getCurSmallestWr returns that in-
dex. When two different iterations write to the same location,
then there is a WAW dependence and so the iteration with the
larger index is pushed to the next level if the iteration with
the smaller index is not at a lower level. This way the two
conflicting iterations will not execute at the same level. The
value returned by the procedure DepCompWriter indicates

whether any iteration got pushed to the next level. Function
incrLevel increments the level of the input iteration index by
1 and function getIterLevel returns the level of the input it-
eration index. Function getWrittenIndices(Arr, iter) returns
indices of array Arr, that are written to by the iteration iter.

Algorithm 3 DepCompReader
1: procedure checkRd (iter, arrIdx, curLvl)
2: flag ← false
3: curSmallestWr ← getCurSmallestWr(arrIdx)
4: if iter < curSmallestWr then
5: incrLevel(curSmallestWr) {/*WAR*/}
6: flag ← true
7: else if iter > curSmallestWr then
8: iterLvl← getIterLevel(curSmallestWr)
9: if iterLvl < curLvl then

10: setCurSmallestWr(arrIdx, UNINT)
11: else
12: incrLevel(iter) {/*RAW*/}
13: flag ← true
14: end if
15: end if
16: return flag
17: end procedure
18:
19: procedure DepCompReader(curLvl, Arr)
20: iter ← tIdx
21: flag ← false
22: iterLvl← getIterLevel(iter)
23: if (iterLvl = curLvl) ∨ (iterLvl = curLvl + 1) then
24: readIndices← getReadIndices(Arr, iter)
25: for all arrIdx ∈ readIndices do
26: flag ← flag ∨ checkRd(iter, arrIdx, curLvl)
27: end for
28: end if
29: return flag
30: end procedure

3.3.3 Reader Phase

Algorithm 3 detects WAR and RAW dependences. It iterates
over all the locations of the array with conflicting accesses
that are read and checks for WAR and RAW conflicts us-
ing the procedure checkRd. If the reader iteration index is
smaller than the writer iteration index, then there is a WAR
dependence and hence the writer iteration is pushed to the
next level, whereas, if the reader iteration index is greater
than the writer iteration index and the writer iteration is not
at a lower level, then there is a RAW dependence and so the
reader iteration is pushed to the next level. The return value
indicates whether any iteration got pushed to the next level.
Function getReadIndices(Arr, iter) returns indices of array
Arr, that are read by the iteration iter.

The top level algorithm to compute dependences is shown
in Algorithm 4. It finds iterations at each level, one level at
a time. The while loop will run as many times as there are
levels in the iterations of the input loop. Each iteration of the

Algorithm 4 Dependence Computation
1: procedure DepComp()
2: moreLvls← true
3: curLvl← 1
4: while moreLvls 6= false do
5: moreLvls← DepCompWriter(...)
6: moreLvls← moreLvls ∨DepCompReader(...)
7: curLvl← curLvl + 1
8: end while
9: end procedure

Passes ↑

Iterations −→
0 10 16 20 27 40 56 63

1 P0

1 2 1 2 P1

1 2 1 2 3 P2

1 2 1 2 3 4 3 P3

1 2 1 2 3 4 3 P4

Figure 1: Levelization Steps. The numbers on the top show the iteration
numbers, P0 shows the initial level values, P1 to P4 show the level values
at the end of each pass of Dependence Computation Phases, Bold numbers
indicate levels have been identified.

while loop is referred to as a pass. At the end of the while
loop, each iteration will have been assigned a level value
based on its accesses to the arrays with conflicting accesses.
Calls to procedures DepCompWriter and DepCompReader
are executed on the GPU with as many threads as the number
of iterations. The procedure DepComp executes on the CPU.

Figure 1 shows an example of how iterations get lev-
elized. The numbers inside the boxes show the level num-
bers. Pass P0 shows the levels at the beginning of the De-
pendence Computation Phase. P1 to P4 show the level values
after the end of passes 1 to 4 of the Dependence Computa-
tion Phase. As shown in the figure, at the end of pass P1,
iterations 0-10 and 16-20 are at level 1, iterations 11-15 and
iterations 21-63 are at level 2. Pass P1 computes memory ac-
cess dependences for all the 64 iterations. Pass P2 computes
dependences for iterations 11-15 and 21-63. At the end of
pass P2, iterations 27-63 are at level 3. Pass P3 finds that out
of 27-63, iterations 40-56 are at level 4 and they remain at
level 4 at the end of pass P4. Since there is no change in the
levels at the end of pass P4, the algorithm stops.

3.4 Execution Phase

Once the Dependence Computation Phase completes, the
iterations are then executed level by level. We call this phase
the Execution Phase. In this phase a modified version of the
original kernel is executed as many times as the number
of levels found by the Dependence Execution Phase. The
algorithm is shown in Algorithm 5

Algorithm 5 ExecPhase
1: procedure ExecPhase()
2: level← 1
3: while level ≤ totalNumLevels do
4: loopKernelExec(...)
5: level← level + 1
6: end while
7: end procedure

The kernel loopKernelExec is the modified kernel gen-
erated from the original kernel loopKernel. The only dif-
ference between them is the level comparison check. This
check ensures that the iterations are executed in a levelized
manner which in turn ensures that any dependence due to in-
direct accesses is always satisfied. Since an iteration at level
k+1 has a memory dependence on some iteration at level
k, all the iterations at level k should finish before any itera-
tion at level k+1 can start executing. One way of ensuring
this is to make a separate kernel call for each level. We used
this mechanism because of its simplicity. Other mechanisms
to achieve this synchronization involve more changes to the
code and grid structure.

__global__ void loopKernelExec(KERNEL_PARAMS,
int* Levels, int level) {

int tIdx = blockIdx.x * blockDim.x + threadIdx.x;
if (tIdx >= N) return;
if (Levels[tIdx] != level) return; //level check
int wIdx = ind1[tIdx];
Arr1[wIdx] = Expr1;
int rIdx = ind2[tIdx];
Arr2[i] = Arr1[rIdx];

}

3.5 Optimizations

In this section we will discuss various optimizations to re-
duce memory and runtime overheads of the algorithm dis-
cussed in the previous sections.

3.5.1 Static Chunking

In the previous discussion we had assumed that the size
of the auxiliary array is the same as the size of the array
with conflicting accesses. For benchmarks with large arrays,
this may increase the memory requirements beyond the size
of the global memory available on the GPU. To reduce
the memory overheads we modified the algorithm to work
with smaller auxiliary arrays. The algorithm described in the
previous section, indexed the auxiliary array with the index
of the array with conflicting accesses. For smaller sizes of
auxiliary arrays, we changed the indexing mechanism to use
a simple hash function. In our implementation we used the
modulo function as the hash function.

Using the hash function may cause two or more indices
to map to the same location in the auxiliary array and hence
can cause false conflicts among the array accesses. To reduce
the effect of such false conflicts, the iteration space is divided
into chunks, such that the iterations in chunk N are initialized

Passes ↑

Iterations −→
0 10 16 29 44 60 63

C1 C2 C3 C4

1 2 3 4 P0

1 2 2 3 4 P1

1 2 3 3 4 P2

1 2 3 4 4 P3

1 2 3 4 5 P4

1 2 3 4 5 P5

Figure 2: Static Chunking. The numbers on the top show the iteration
numbers, P0 shows the initial level values, P1–P5 show the level values at
the end of each pass of Dependence Computation Phase, C1–C4 are the
chunk numbers, Bold numbers indicate levels have been identified.

to level N. The number of chunks is decided by the ratio
of the sizes of the array with conflicting access and the
corresponding auxiliary array. The dependence computation
itself would be performed in N or more number of passes. In
other words, the kth chunk will be processed in pass k. The
advantage of static chunking is that it limits the number of
iterations processed in each pass. For example, in the first
pass of dependence computation, only iterations from the
first chunk are processed, in the second pass iterations from
the first chunk which are at level 2 and iterations from the
second chunk are processed and so on.

Figure 2 shows an example of static chunking. Initially
the iterations are divided in 4 chunks, each of size 16 such
that iterations in chunk 1 are at level 1, iterations in chunk
2 are at level 2 and so on. The first pass of Dependence
Computation Phase i.e. pass P1 evaluates only iterations
from chunk 1 and iterations 10-15 are pushed to level 2. So
in pass P1 iterations from chunk 2, 3 and 4 are not processed.
This is shown by gray color in the corresponding boxes. Pass
P2 processes iterations 10-31. This example shows that each
pass processes only a fraction of the iterations as compared
to the approach shown in figure 1. This also helps reduce the
number of memory accesses to auxiliary array, levels array
etc. Thus static chunking can reduce the cost of each pass
but can potentially increase the number of levels.

3.5.2 Dynamic Chunking

When there are lot of conflicting accesses among the itera-
tions, large number of iterations get pushed to the next level.
An iteration needs to be considered for Dependence Com-
putation till its level does not increase. This means if an it-
eration gets pushed k times, it will be part of Dependence
Computation Phase k+1 times. In case of a loop with a lot
of conflicting accesses, many of the iterations will be pushed
to the next level. Static chunking helps in case of loops with
few conflicting accesses which are far apart, but if the con-

Passes ↑

Iterations −→

0 3 7 14 17 23 32 40 48 56 63

C1 C2 C3 C4

1 2 3 4 P0

1 2 2 3 4 P1

1 2 3 4 5 6 7 8 9 P1-D

1 2 3 4 5 6 7 8 9 P2

1 2 3 4 4 5 6 7 8 9 P3

1 2 3 4 5 6 7 8 9 P4

1 2 3 4 5 6 7 8 9 10 P4-D

1 2 3 4 5 6 7 8 9 10 P5

Figure 3: Dynamic Chunking. The numbers on the top show the iteration
numbers, P0 shows the initial level values, P1–P5 show the level values at
the end of each pass of Dependence Computation Phase, P1-D and P4-D
show the dynamic chunking steps, Bold numbers indicate levels have been
identified. Levelization only up to first 5 levels shown.

flicting accesses are nearby, then we may see many levels
in a chunk also. To reduce the number of conflicts, we dy-
namically create more levels. To be able to decide when to
create more levels, we use a simple heuristic that counts the
number of conflicts seen and the average distance between
conflicting iterations. We use CUDA’s atomicAdd primitive
to compute these and to reduce the cost of these atomic oper-
ations, we sample some of the conflicts. When the number of
conflicts is above a certain threshold, the dynamic chunking
mechanism creates more levels in each chunk.

We explain the dynamic chunking mechanism with the
help of an example. Assume we start with a static partition-
ing of iterations into 4 chunks, such that iterations in chunk
k start with level k, and at the end of the first call to the De-
pendence Computation kernels, the number of conflicts is
above the threshold, pushing a lot of iterations in the first
chunk to level 2, as shown in Figure 3. The boxes with gray
color show the iterations that are not processed by the De-
pendence Computation kernels. The next call to the Depen-
dence Computation kernels will have to consider all these
iterations and also the iterations from the second chunk as
they are also at level 2. This may increase the number of
conflicts seen in the second pass of Dependence Computa-
tion and hence a corresponding increase in the number of
iterations going to level 3. To avoid this, the algorithm cre-
ates two levels in each of the chunks, such that iterations in
the second half of the chunk are at one level above the itera-

tions in the first half of the chunk. As shown in pass P1-D in
Figure 3 the iterations in chunk 1 that are at level 1, remain
at that level, but the iterations that are at level 2 and are in
the second half of the chunk are pushed to level 3. Similarly,
the second chunk will have iterations starting from levels 4
and 5. This will roughly double the number of levels at the
end of Dependence Computation Phase and hence roughly
halve the number iterations considered in each pass. As the
number of levels increases, the cost of kernel call invoca-
tions also increases and so the algorithm doubles the num-
ber of levels in each chunk only the first time the number of
conflicts exceeds the threshold. In the subsequent passes, on
encountering conflicts more than the threshold, the iterations
in the later chunks are pushed by 1 to get a linear increase
in the number of levels. For example, while computing de-
pendences at level 4, if the number of conflicts seen is above
the threshold, then the levels of the iterations in chunk 3 and
above are increased by one i.e. iterations in chunk 3 will go
from levels 6 and 7 to 7 and 8 and so on as shown in pass
P4-D. Also the levels of the iterations in the second half of
chunk 2 are increased from 5 to 6. This way the number of it-
erations considered for dependence computation in the next
pass is reduced. Since this step of reassigning levels to iter-
ations is completely data parallel, it is executed on the GPU.

If the average distance between conflicting iterations is
very small and the number of conflicting iterations is very
large, the number of levels will be large and so it may not
make sense to run the loop on the GPU. The worst case
is a sequential loop i.e. each iteration is dependent on its
previous iteration. Our algorithm recognizes such cases early
and suggests running the loop sequentially on the CPU.

3.5.3 Software Pipelining

In the original algorithm, the Execution Phase starts only af-
ter completion of the Dependence Computation Phase. Once
the Dependence Computation Phase assigns a level to an it-
eration, that iteration does not take part in the Dependence
Computation Phase again. We can make use of this property
to pipeline the Execution Phase with the Dependence Com-
putation Phase. In other words, when the iterations at level
k+1 are being considered for dependence computation, iter-
ations at level k can be executed safely. Algorithm 6 shows
the modified version of algorithm 2.

With the pipelining mechanism, by the time all the itera-
tions are levelized, the iterations up to the second last level
are executed. The iterations at the last level are then executed
separately. If there are n levels, the total number of kernel
calls in the original algorithm is 3n. Out of these, 2n calls are
to the two dependence computation kernels DepCompWriter
and DepCompReader, and n calls are to the Execution ker-
nel. Software pipelining reduces the number of kernel calls
by n-1, reducing the kernel call overheads.

Figure 4 shows an example of how pipelining of depen-
dence computation and execution phases is achieved. In pass
P2, when the dependence computation of level 2 iterations is

Algorithm 6 DepCompWriterSWP
1: procedure DepCompWriterSWP(curLvl, Arr)
2: iter ← tIdx
3: flag ← false
4: iterLvl← getIterLevel(iter)
5: if iterLvl = curLvl − 1 then
6: loopKernelExec()
7: else if iterLvl = curLvl then
8: writtenIndices← getWrittenIndices(Arr)
9: for all arrIdx ∈ writtenIndices do

10: flag ← flag ∨ checkWr(iter, arrIdx, curLvl)
11: end for
12: end if
13: return flag
14: end procedure

Passes ↑

Iterations −→
0 10 16 20 28 40 56 63

1 P0

1 2 1 2 P1

E1 2 E1 2 3 P2

E2 E2 3 4 3 P3

E3 4 E3 P4

Figure 4: Software Pipelining of Dependence Computation and Execu-
tion Phases. The numbers on the top show the iteration numbers, P0 shows
the initial level values, P1–P4 show the level values at the end of each pass
of Dependence Computation Phase, Bold numbers indicate levels have been
identified. E1–E3 indicate the execution phase.

being done, level 1 iterations are executed. Similarly, in pass
P3, dependence computation of iterations at level 3 is over-
lapped with the execution of iterations in level 2.

One of the side effects of pipelining is the potential in-
crease in memory and control divergences, as some threads
in a warp may execute the dependence kernel code whereas
others the execution kernel code. But for loops with nearby
iterations at the same level, the effect is very small.

3.5.4 Dependence Computation Reuse

In cases where the loop with cross iteration dependences is
an inner loop and the index arrays do not change from one
iteration of the outer loop to other, as in the case of fdtd-
2d, Levels array can be reused and the cost of Dependence
Computation Phase can be avoided. Compile time analysis
or user annotations can be used to identify which index
arrays do not change. In our algorithm if reuse optimization
is turned on, the Levels array is copied to the CPU at the end
of the Dependence Computation Phase and from the second
iteration of the outer loop, the Dependence Computation
Phase is skipped and the Levels array is copied back from the
CPU to the GPU. If the GPU has enough memory to store

Levels array then transferring it from the CPU to the GPU
can be avoided increasing the benefit of the optimization.

4. Experimental Evaluation
We evaluate our algorithm by measuring the performance
improvement over a sequential run on the CPU.

BM Iters Array Sizes Kernels
randAcc 64M 64M 1
randAcc3 64M 64M 1

doAll 64M 64M 1
2dconv 64M 64M, 64M 1
fdtd-2d 64M 64.008M, 64.008M, 64M 3
gemm 1M 1M, 1M, 1M 1
mvt 4K 16M, 4K, 4K, 4K, 4K 2

Table 1: Description of benchmarks.

Table 1 shows the list of benchmarks and various param-
eters of the benchmarks. The column Iters shows the num-
ber of iterations in the loop to be parallelized. The column
Array Sizes shows the sizes of the arrays which can poten-
tially have conflicting accesses. Kernels shows the number
of kernels (corresponding to loops to be parallelized) on
which our algorithm was run. Benchmarks 2dconv, fdtd-2d,
gemm and mvt are from the Polybench [12] benchmark suite.
Even though these benchmarks can be parallelized manually
or using automatic compilation techniques, we assumed the
arrays can have conflicting accesses. Hence their reads and
writes are monitored. A similar approach was used by some
of the recent work on speculative parallelization [8][16].
We ran our algorithm on these benchmarks to measure the
performance with respect to sequential runs on the CPU,
the benefits due to various optimizations, and overheads of
dependence computation. The remaining three benchmarks
viz., randAcc, randAcc3 and doAll are synthetic benchmarks
created using the benchmarks from the Polybench suite. ran-
dAcc and randAcc3 have array access conflicts.

Benchmark 2dconv has a kernel which computes B[i][j]
using A[i][j] and its eight neighbors. In this benchmark we
assume that there can be conflicting access to arrays A and B
and so the writes to B and reads of A are monitored.

BM Lvls GPU Time CPU Speedup
DC+Exec Mem Total Time

randAcc 19 1.256 0.646 1.902 2.852 1.50
randAcc3 19 1.010 0.649 1.659 1.832 1.10

doAll 1 0.058 0.650 0.708 0.433 0.61
2dconv 1 0.094 0.467 0.561 0.479 0.85
fdtd-2d 1 1.869 0.397 2.266 3.916 1.73
gemm 1 0.135 0.075 0.210 7.910 37.66
mvt 1 0.048 0.090 0.138 0.195 1.41

Table 2: Speedup with auxiliary array size = array size, dynamic chunking
on and pipelining on, DC = Dependence Computation, Mem = Memory
transfer.

Benchmark fdtd-2d has 3 kernels. The first kernel reads
from arrays ey and hz and writes to array ey. Our algorithm
monitors the writes to ey and reads of both ey and hz. The
second kernel reads from arrays ex and hz and writes to array

ex. Hence the writes to ex and reads of both ex and hz are
monitored. The third kernel reads from arrays ex, ey and hz
and writes to array hz. The writes to hz and reads of all the 3
arrays are monitored. The three kernels are called in a loop.
All the results except the one shown in Figure 4 are obtained
with the number of iterations set to 10.

In benchmark gemm, writes to array c and reads from
arrays a and b are monitored.

Benchmark mvt has two kernels and 5 arrays. Our algo-
rithm monitors all the 5 arrays. The first kernel reads from
arrays a, y1 and x1 and writes to array x1. The second kernel
reads from arrays a, y2 and x2 and writes to array x2.

We used a system with an 8 core Intel Xeon processor
running at 3.07GHz and Tesla C2070 GPU. We used nvcc
version 4.0 for compiling both the CUDA and C code. For
CUDA we used the default optimization level with L1 cache
turned off and for compiling the C code we used -O3 opti-
mization level. We ran each benchmark 5 times and took the
average runtime. All the runtimes are in seconds. The execu-
tion time reported in the results section is for all the kernels
in the benchmarks, but not the entire benchmark. However,
it includes the memory allocation and transfer time.

For each benchmark, we need slice functions for the indi-
rect array access indices. We hand generated the slice func-
tions using the techniques described in [21]. We assumed
that the slice functions do not have side effects. We also ex-
pect that the arrays with potentially conflicting accesses and
their sizes are known at compile time. We assume the loop
has already been translated to CUDA, ignoring the side ef-
fects of the indirect memory accesses and also an execution
configuration for the kernel call has been provided. The input
to our system is the names of the arrays with conflicting ac-
cesses, their sizes, the grid configuration, the slice functions,
the original kernel and its formal and actual arguments. Our
system generates CUDA code for the Dependence Compu-
tation and Execution kernels. It also generates a wrapper C
function for calling the Dependence Computation and Ex-
ecution kernels. The code for all the optimizations such as
pipelining of the two phases, reuse of dependence computa-
tion and dynamic chunking is also generated. We replaced
the original kernel call in the benchmarks by a call to the
generated wrapper function.

Table 2 shows the results with the optimized mode of
the algorithm. In this mode, the size of the auxiliary array
is equal to the size of the array with conflicting accesses,
dynamic chunking is turned on and pipelining of depen-
dence computation and iteration execution is also on. We
get speedups from 1.1x to 1.5x on the benchmarks with con-
flicting array accesses. As the table shows, the benchmarks
can have as many as 19 levels. For the benchmarks with data
parallel loops we see more speedup mainly because there are
no conflicting accesses and hence the algorithm finds that all
iterations can be run together. The benefits of our algorithm
depend on the number of levels in the iterations and the size

of the slice function relative to the actual computation. For
all the benchmarks we use, actual computation performed is
comparable to the size of the slice function. This is one of
the reasons for the moderate speedup achieved. Table 2 also
shows the memory transfer time. In benchmarks doAll and
2dconv, the memory transfer time is more than the sequential
execution time of the loop on the CPU. In other benchmarks
also, it is a considerable portion of the total GPU Time. This
is another factor for the moderate speedup achieved. Table 3
shows the overhead of dependence computation as a fraction
of the sequential runtime on the CPU.

BM Lvls GPU Time CPU DC/CPU
DC Exec+Mem Total Time

randAcc 19 0.963 1.024 1.987 2.852 0.34
randAcc3 19 0.793 0.950 1.743 1.832 0.43

doAll 1 0.031 0.677 0.708 0.433 0.07
2dconv 1 0.054 0.517 0.561 0.479 0.11
fdtd-2d 1 1.506 0.760 2.266 3.916 0.38
gemm 1 0.085 0.125 0.210 7.910 0.01
mvt 1 0.027 0.111 0.138 0.195 0.14

Table 3: Cost of Dependence Computation (DC) phase wrt CPU runtime.
Pipelining is turned off to measure the time spent in Dependence Computa-
tion Phase and Execution Phase.

BM Aux Lvls CPU GPU Time Speedup
Arr Time R-Off R-On R-Off R-On

fdtd-2d 1 1 19.51 9.760 7.371 1.99 2.65
fdtd-2d 0.5 2 19.51 11.350 7.761 1.72 2.51
fdtd-2d 0.25 4 19.51 15.285 8.651 1.27 2.25
fdtd-2d 0.125 8 19.51 18.410 10.465 1.06 1.86

Table 4: Speedup with Reuse of Dependence Computation on (R-On) and
off (R-Off), different auxiliary array sizes, dynamic chunking on, pipelining
on. AuxArr = size of auxiliary array / size of user array rounded to the
nearest power of 2.

Table 4 shows the improvement due to reuse of depen-
dence computation. Benchmark fdtd-2d runs the kernels in
a loop. The number of iterations is set to 50 for these mea-
surements. When the reuse of dependence computation is
turned on, the results of the Dependence Computation Phase
are stored on the CPU at the end of the first execution of the
loop and then copied back from the CPU to the GPU for the
later executions of the loops. The speedup will be more if we
store the Dependence Computation results on the GPU.

BM Lvls CPU GPU Time Speedup
Time P-Off P-On P-Off P-On

randAcc 19 2.852 1.990 1.901 1.43 1.50
randAcc3 19 1.832 1.747 1.655 1.05 1.11

Table 5: Speedup with pipelining on (P-On) and off (P-Off), dynamic
chunking on.

Table 5 shows the performance improvement with pipelin-
ing of Dependence Computation and Execution Phases. The
gains are due to reduction in the number of kernel calls.

Table 6 shows the effect of reducing the auxiliary array
sizes. As the size goes down from 1x of the conflicting array
size to 1/8x, false conflicts increase with an increase in the

BM AuxArr Lvls Time Speedup
GPU CPU

1 19 1.902 2.852 1.50
randAcc 0.5 24 2.094 2.852 1.36

0.25 40 2.310 2.852 1.23
0.125 64 2.577 2.852 1.11

1 19 1.659 1.832 1.10
randAcc3 0.5 24 1.853 1.832 0.99

0.25 40 2.047 1.832 0.89
0.125 65 2.340 1.832 0.78

1 1 0.708 0.433 0.61
doAll 0.5 2 0.718 0.433 0.60

0.25 4 0.739 0.433 0.58
0.125 8 0.770 0.433 0.56

1 1 0.561 0.479 0.85
2dconv 0.5 2 0.562 0.479 0.85

0.25 4 0.596 0.479 0.80
0.125 8 0.612 0.479 0.78

1 1 2.266 3.916 1.73
fdtd-2d 0.5 2 2.579 3.916 1.52

0.25 4 3.182 3.916 1.23
0.125 8 4.001 3.916 0.98

1 1 0.210 7.910 37.66
gemm 0.5 2 0.212 7.910 37.31

0.25 4 0.215 7.910 36.79
0.125 8 0.218 7.910 36.28

1 1 0.138 0.195 1.41
mvt 0.5 2 0.140 0.195 1.39

0.25 4 0.202 0.195 0.96
0.125 8 0.308 0.195 0.63

Table 6: Speedup with different auxiliary array sizes, dynamic chunking
on and pipelining on. AuxArr = size of auxiliary array / size of user array
rounded to the nearest power of 2.

number of levels and the dependence computation time. In
our experiments we observed slowdowns of up to 2.25x due
to reduction in the auxiliary array sizes.

5. Related Work
Recently there have been a few attempts to use GPUs to
run DOACROSS loops. Paragon [16] identifies possibly-
data parallel loops and runs them speculatively on the GPUs
and also runs them sequentially on the CPU. In case of mis-
speculation, the data generated by the GPUs is ignored and
the data generated by the CPU is used. Feng et al. [6] de-
scribe a mechanism to use the GPU to execute iterations
speculatively in parallel. The misspeculation check is also
performed on the GPU. In case of misspeculation, the incor-
rectly executed iterations are identified and executed on the
CPU if there are other misspeculated iterations depending
on them; otherwise they are executed again on the GPU. Our
work differs from both these approaches as we do not exe-
cute any iterations speculatively on the GPU. Our work can
be enhanced by running the loop sequentially on the CPU
while the dependence computation is going on, so that in
case the number of levels in the loop is too high to benefit
from running on the GPU, the GPU run can be stopped and
the data from the CPU run can be used. Kim et al. [8] de-
scribe a system to speculatively parallelize loops using pro-

filed data and executing the iterations on a cluster. It tries to
optimize the communication and validation overheads.

Zhuang et al. [21] describe a system to compute data de-
pendences using multiple cores while a thread is executing
the iterations sequentially. The focus of this work is to re-
duce the overheads of dependence computation. They par-
tition the iterations into as many chunks as the number of
available cores such that each core computes dependences
among the iterations in its chunk. But the problem with this
approach is that the iterations in chunk i+1 are assumed
to be dependent on the iterations in chunk i. Our approach
does not have this drawback as it can compute dependences
among all the iterations and so can find more parallelism.

The work done by Zhang et al. [19] handles dynamic ir-
regularities in both control flows and memory accesses. They
use the concepts of data reordering and job swapping to re-
move the dynamic irregularities. These techniques can be
used to improve the performance of any GPU kernel. Lee
et al. [9] have developed a compiler framework to do auto-
matic source-to-source translation of OpenMP applications
to CUDA applications. They discuss various transformations
to reduce the cost of GPU global memory accesses. But their
work primarily considers data parallel loops.

Hardware Transactional Memory for GPUs has been pro-
posed by Fung et al. [7]. The design uses word-level, value-
based conflict detection. Also it uses speculative validation
using a bloom filter based approach to improve transaction
commit parallelism.

A scalable approach to dynamic data dependence profil-
ing has been discussed by Kim et al. [11]. It focuses on re-
ducing the memory overheads by stride detection and com-
pression, and reducing the runtime overhead by paralleliz-
ing the data-dependence profiling process on multiple cores.
Another approach to reduce the memory requirements and
improve the performance, has been discussed by Yu et al.
[18]. It partitions the profiling task into multiple independent
slices using compiler and runtime techniques. These slices
can be profiled in parallel. Data generated for each slice is
then combined automatically by the compiler to obtain the
complete data dependence graph.

6. Conclusion and Future Work
In this paper, we presented an algorithm to execute loops
with cross iteration dependences due to indirect memory ac-
cesses, on GPUs. We discussed how the compute capabilities
of a GPU can be used to compute memory dependences at
runtime. We also discussed how we can levelize the itera-
tions of a loop and speed up the execution of loops by exe-
cuting iterations at a level in parallel. We also described how
the dependence computation and actual computation can be
pipelined. This mechanism can be used to speed up loops
with a reasonable number of cross iteration dependences.

Current work assumes that the arrays with indirect ac-
cesses are non-overlapping. In future we would like to ex-

tend this technique to handle overlapping arrays. We would
also like to work on reducing the kernel call overheads. In
addition to these, we would like to handle the cases where
the GPU memory is not sufficient to hold the kernel data in
addition to the dependence computation data.

7. Acknowledgements
We thank the anonymous reviewers for their suggestions and
comments. We also thank Sreepathi Pai and other members
of the Lab for HPC for discussions and feedback on improv-
ing the paper. The first author acknowledges the funding re-
ceived from Google India Private Limited.

References
[1] M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A.

Rountev, P. Sadayappan. A Compiler Framework for Optimization of
Affine Loop Nests for GPGPUs. In ICS, 2008.

[2] M. Baskaran, J. Ramanujam, P. Sadayappan. Automatic C-to-CUDA
code generation for affine programs. In CC, 2010.

[3] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P.
Petersen, B. Pottenger, L. Rauchwerger, P. Tu, S. Weatherford. Polaris:
The Next Generation in Parallelizing Compilers. In LCPC, 1994.

[4] D. K. Chen, P. C. Yew, J. Torellas. An efficient algorithm for the run
time parallelization of doacross loops. In Supercomputing, 1994.

[5] J. Saltz, R. Mirchandaney, K. Crowley. Run-time parallelization and
scheduling of loops. IEEE Trans. Computers, 1991.

[6] M. Feng, R. Gupta, L. N. Bhuyan. Speculative Parallelization on
GPGPUs. In PPoPP, 2012.

[7] W W. L. Fung, I. Singh, A. Brownsword, T M. Aamodt Hardware
Transactional Memory for GPU Architectures. In MICRO, 2011.

[8] H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, D. I. August. Automatic
Speculative DOALL for Clusters. In CGO, 2012.

[9] S. Lee, S. J. Min. R. Eigenmann. OpenMP to GPGPU: a compiler
framework for automatic translation and optimization. In PPoPP, 2009.

[10] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. IEEE Micro, 2008.

[11] M. Kim, H. Kim, C Luk. SD3: A Scalable Approach to Dynamic
Data-Dependence Profiling. In MICRO, 2010.

[12] L. N. Pouchet. The Polyhendral Benchmark suite.
http://www.cse.ohio-state.edu/˜pouchet/software/polybench.

[13] NVIDIA Corp, NVIDIA CUDA: Compute Unified Device Architec-
ture: Programming Guide, Version 4.2, 2012.

[14] NVIDIA Corp, Fermi Compute Architecture White Paper.

[15] L. Rauchwerger, N. Amato, D. Padua. A scalable method to runtime
loop parallelism. In IJPP, July 1995.

[16] M. Samadi, A. Horamati, J. Lee, S. Mahlke. Paragon: Collaborative
Speculative Loop Execution on GPU and CPU. GPGPU-5 2012.

[17] Stanford Compiler Group. SUIF: A parallelizing and optimizing
research compiler. Technical Report CSL-TR-94-620, Stanford Univer-
sity, Computer Systems Laboratory, 1994.

[18] H. Yu, Z. Li, Multi-slicing: A Compiler-Supported Parallel Approach
to Data Dependence Profiling, In ISSTA, 2012.

[19] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, X. Shen On-the-Fly
Elimination of Dynamic Irregularities for GPU Computing, In ASPLOS,
2011.

[20] C. Zhu, P. C. Yew. A scheme to enfore data dependence on large
multiprocessor systems. IEEE Trans. Software Engineering, June 1987.

[21] X. Zhuang, A. E. Eichenberger, Y. Luo, Kevin O’Brien, Kathryn
O’Brien. Exploiting Parallelism with Dependence-Aware Scheduling, In
PACT, 2009.

