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Abstract— This paper discusses the generation of information-
rich, arbitrarily-large synthetic data sets which can be used
to (a) efficiently learn tests that correlate a set of low-cost
measurements to a set of device performances and (b) grade
such tests with parts per million (PPM) accuracy. This is achieved
by sampling a non-parametric estimate of the joint probability
density function of measurements and performances. Our case
study is an ultra-high frequency receiver front-end and the
focus of the paper is to learn the mapping between a low-
cost test measurement pattern and a single pass/fail test decision
which reflects compliance to all performances. The small fraction
of devices for which such a test decision is prone to error
are identified and retested through standard specification-based
test. The mapping can be set to explore thoroughly the trade-
off between test escapes, yield loss, and percentage of retested
devices.

I. INTRODUCTION

Testing the RF components of integrated circuits (ICs)
in high-volume manufacturing results in added costs, which
according to anecdotal evidence can amount up to 40%. This
high test cost originates from the specialized test instrumenta-
tion and custom-made test strategies, the test complexity, the
lengthy test application times, etc [1]. The test cost is ever
increasing as more functionality and protocols are integrated
into a single IC. This calls for immediate test solutions, which
challenge the standard specification-based test approach in
terms of incurring test cost, yet which meet the defective PPM
goals aimed by industry.

To reduce test cost, it is evident that we need to rely
on test measurements which are extracted rapidly on simple
test configurations and which correlate well with the original
specification-based tests. To this end, machine learning is a
powerful approach to derive such correlations. For example, it
has been shown that a committee of neural network classifiers
can be trained with low-cost test measurements to predict the
test decision of a full specification test set [2]. Furthermore,
individual specified performances can be predicted by training
regression functions to establish a quantitative relationship
with the low-cost test measurements. This approach is com-
monly referred to as alternate test (see for example [3], [4],
[5]). While the above results show great promise, the predictive
accuracy has so far only been validated using small sets
that typically comprise a few hundred devices. In fact, the
accuracy of any predictive model, whether based on classifiers
or regression functions, depends on the information richness
of the training set which is used in modeling.

Ideally, we would like to have available a large training
set from real devices that is collected across different lots
during a long period of time, so as to be representative of
the manufacturing process. In particular, we would like to
have data from a large population of “critical” devices that
fall marginally-in-the-specification and marginally-out-of-the-
specification bounds. However, such data sets are typically
not available during the test development phase. Brute-force
Monte Carlo analysis is not a viable option either, since it
samples only the statistically likely cases, thus it will hardly
generate any “critical” devices in a few simulation runs [6].

In this work, the objective is to generate synthetic data,
which, nevertheless, have the structure of true data. This is
achieved by first fitting a non-parametric model to provide
an estimate of the joint probability density function of test
measurements and performances [7]. Then, the estimate is
sampled to rapidly generate data corresponding to as many
“critical”, faulty, and good devices as necessary and, thereby,
to create (a) information-rich training sets and (b) a separate
(e.g. independent) arbitrarily-large validation set that can be
used to estimate test metrics of interest, such as yield loss and
test escapes, in PPM accuracy.

In this paper, we focus on the classification-based test
approach [2]. Next, we provide a brief overview of this
approach and we discuss the shortcomings of having small
and unbalanced training sets. In section III, we revisit the non-
parametric density estimation technique in [7]. In section IV,
we present the device under test and the experimental data set.
In section V, this data set is enriched to improve training and
to estimate test metrics in PPM accuracy.

II. MACHINE-LEARNING-BASED TEST

The approach consists of two linked steps. In the first step,
a low-cost alternate test configuration is identified which gives
rise to an alternate measurement pattern. The term “alternate”
serves to indicate that this measurement pattern differs from
the standard measurements obtained in specification-based
test. In the second step, a predictive model is learned that
implicitly maps this alternate measurement pattern to one of
three possible classifications: the device is good, the device
is faulty or a decision based solely on this alternate test is
prone to error. In the latter scenario, the device is retested
through the standard specification-based test approach. The
two steps are linked in the sense that the input stimuli involved
in the alternate test configuration and the output alternate
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Fig. 1. Test flow after successful training.

Fig. 2. Guard-bands placement in an alternate measurement space.

measurements are optimized jointly to achieve a minimum
error in future predictions. The test cost savings stem from
the fact that the majority of the devices are classified directly
using the alternate measurement pattern.

The predictive model consists of a committee of two onto-
genic neural networks [2], which are trained to allocate guard-
bands in the alternate measurement space, as shown in the left-
hand part of Fig. 1 and in Fig. 2. The training phase makes
use of training data from a population of device instances.
These data include the alternate measurement pattern and
the performance values of each instance. The performance
values are compared to the specifications in the data-sheet to
label each instance as good or faulty. Fig. 2 illustrates the
projection of both good and faulty instances in an imaginary
2-dimensional alternate measurement space. Training aims to
allocate two guard-bands as shown in Fig. 2: the good guard-
band that “guards” the good population, i.e. it has all good
training instances on one side, and the faulty guard-band that
“guards” the faulty population, respectively. In essence, the
guard-bands create a trichotomy in the alternate measurement
space: two regions outside the guard-banded zone that are
dominated by either good or faulty training instances and the
guard-banded zone which contains a mixed population.

In the testing phase, the guard-bands are used to test new

devices that come out of the fabrication line, as shown in
the right-hand part of Fig. 1. Instead of carrying out all
specification tests, one needs only to obtain the alternate
measurement pattern and examine the position of its footprint
with respect to the guard-banded zone that has been learned
during the training phase. If the footprint falls outside the
zone, then the device is assigned to the dominant class,
otherwise, if it falls within the zone, the device is considered to
have ambivalent status. These ambivalent devices (Nr% of all
devices) are forwarded to standard specification-based testing,
in order to reach a final accurate decision.

Predicting the label of new devices through the guard-bands
entails two types of errors: the pattern of a faulty device
might be interwoven in the “good” region giving rise to test
escapes, or the pattern of a good device might be interwoven
in the “faulty” region giving rise to yield loss. It is evident
that the wider the guard-banded zone is, i.e. the more the
guard-bands are pushed away of each other into the “clean”
regions, the less the prediction error and, of course, the larger
the percentage Nr of retested devicess. Therefore, there is a
trade-off between the prediction error, denoted hereafter by εr,
and the percentage Nr. The trade-off can be explored by two
parameters, namely λg and λf , which define the position of the
good and faulty guard-band, respectively [2]. When both are
zero, the two guard-bands collapse to a single classification
boundary (i.e. Nr = 0). When λg (λf ) increases, then the
good (faulty) guard-band is pushed into the “faulty” (“good”)
region, thus widening the guard-banded zone and decreasing
yield loss (test escape).

It is evident that the prediction accuracy heavily depends
on the information that is available during the training phase.
Indeed, the training set should include a balanced population
between faulty and good devices such that one population
does not overshadow the other (statistically speaking the last
changes of the position of the guard-bands during training
will be instigated by misclassified devices that belong to the
class with the larger number of samples). Second, the training
devices must be representative of the manufacturing process
such that they “fill up” the alternate measurement space. This
is necessary because when the pattern of a new device falls in
a subspace which was empty of patterns during training, then
the device will be assigned a random pass, fail or retest label
(the guard-bands have been curved randomly in this subspace
due to the lack of instances). Most importantly, the training
set must contain “critical” devices that are marginally-in-the-
specification and marginally-out-of-the-specification bounds
such that the true separation boundaries are approximated. The
problem lies in that such training sets with numerous faulty
and “critical” devices are not readily available during the test
development phase.

To this end, in the following section, we discuss a method
to generate synthetic data that respect the distribution of
experimental data. The resulting enhanced data set contains all
the relevant information needed for training and, in addition,
its volume can be arbitrarily large, allowing us to express the
prediction error in PPM accuracy.



III. SYNTHETIC DATA GENERATION

The underlying idea is to estimate the joint probability den-
sity function, f(x), of the random vector x = [performances,
alternate measurement pattern] and, subsequently, sample the
estimate to construct a sequence of independent observations,
yk, from it. Each observation yk corresponds to a new device
instance.

Specifically, we will use the non-parametric density estima-
tion technique that we have applied in [7] in the context of
evaluating a built-in self-test technique. The density estimate
is given by

f̃(x) =
1

nhd

n∑
i=1

Ke

(
1
h

(x− Xi)
)

, (1)

where Xi is an observation of x, i = 1, .., n, d is the
dimensionality of x, h is a parameter called bandwidth, and
Ke is the Epanechnikov kernel

Ke(t) =

{
1
2c−1

d (d + 2)
(
1− tT t

)
if tT t < 1

0 otherwise
, (2)

where cd = 2πd/2/(d · Γ(d/2)) is the volume of the unit d-
dimensional sphere. The bandwidth is chosen using the rule
of thumb [8]:

h =
{
8c−1

d (d + 4)(2
√

π)d
}1/(d+4)

n−1/(d+4). (3)

Details about the consistency of the estimate f̃(x) at a single
point (i.e. convergence of f̃(x) to the true density f(x) in
probability as n → ∞) and the uniform consistency (i.e.
convergence of sup |f̃(x) − f(x)| to zero as n → ∞) can
be found in [8].

Notice that the estimate in (1) is expressed as a sum of
bumps centered at the observations Xi. The kernel defines the
shape of the bump and the bandwidth defines its half-width.
Thus, a sample yk from f̃(x) can be generated by sampling a
vector t from the probability density function Ke(t) and then
transforming t back to yk for a random Xi:

Step 1 Choose I uniformly with replacement from
{1, ..., n}.

Step 2 Generate t to have probability density function
Ke (t).

Step 3 Set yk = XI + ht.
In order to sample Ke(t), we use the acceptance-rejection

method [9]. In particular, let U (t) be the probability density
function of the uniform distribution in [−1, 1]d and notice that
Ke(t) ≤ c ·U (t), c = c−1

d (d+2)/2, ∀t ∈ Rd. The acceptance-
rejection method is as follows:

Step 2a Generate t from U .
Step 2b Generate u from a uniform distribution in [0, 1].
Step 2c If c · u ≤ Ke (t) accept and return t, otherwise

return to step 2a.
To construct the training set, we are interested in sampling

“critical” and faulty instances. The performance values in yk

Performances Mean StdDev
LNA NF (dB) 2.422 0.235

LNA IIP3 (dBm) 0.483 0.523
LNA GAIN (dB) 12.5 0.187
CAS IIP3 (dBm) -8.481 0.724
CAS GAIN (dB) 20.155 0.425

CAS NF (dB) 6.55 0.264
MIX NF (dB) 13.478 0.153

MIX IIP3 (dBm) 2.956 0.741
MIX GAIN (dB) 10.278 0.258
MIX ISWR (dB) 7.094 0.306
LNA ISWR (dB) 1.696 0.060
LNA OSWR (dB) 2.357 0.074
LNA RevIso (dB) 18.672 0.845

TABLE I
STATISTICS OF THE AVAILABLE DATA SET.

Fig. 3. Single alternate test configuration for the ultra-high frequency receiver
front-end [4].

can be compared to the specifications in the data-sheet to
conclude whether this observation corresponds to a “critical”
or faulty instance. Sampling can be repeated as often as
necessary, in order to generate the required yk.

IV. CASE STUDY

The device under test is an ultra-high frequency receiver
front-end, which comprises a dual-band low noise amplifier
(LNA) and a balanced mixer. For the sake of simplicity, only
one band (e.g. 850 MHz) is considered, resulting in the 13
performances listed in Table I. Testing the compliance of these
performances to the corresponding specifications through the
standard specification-based test approach requires a total of
7 test configurations that involve different test equipment and
pin connections.

The selected single alternate test configuration is shown in
Fig. 3. The tester provides a test stimulus xt (t) that consists
of 7 tones with a step of 1 MHz and a central frequency of
177 MHz. The amplitudes of the tones range between -10.5
dBmb and -20 dBm. The test stimulus is first up-converted to
850 MHz using an external mixer placed on the load board.
The up-converted signal excites the LNA, its response is then
down-converted to a baseband signal of frequency 50 MHz
using the mixer of the device, passed through a low-pass filter,
and logged by a sampling scope. Since the mixers are driven
by unsynchronized free running local oscillators, the effect of
their phase difference is removed by computing a 1024-point
FFT of the output xs (t). We consider 28 output tones whose
amplitudes are above a certain noise floor. Subsequently, we
perform a principal component analysis (PCA) to reduce the
dimensionality while retaining 99.5% of the total variation in
the data. This results in a 3-dimensional alternate measurement
pattern [x1, x2, x3]. In comparison to the 7 test configurations
used in the standard specification-based testing, this single test



Fig. 4. 1-dimensional marginals of the estimated non-parametric density.

Fig. 5. Real and synthetic devices projected in 2-dimensional spaces.



configuration offers an overall reduction of 36% in testing time
while the needed test instrumentation costs 48% less.

We use a real data set which contains the values of the
13 performances and the 3-dimensional alternate measurement
pattern for a total of 541 devices. The experiment to obtain this
data set is explained in detail in [4]. The specification limits
are set to Mean±7·StdDev (+ or -, depending on whether the
performance has a lower or upper limit). The values of Mean
and StdDev are computed across the set of 541 devices and
are listed in Table I. For example, the passing limits for the
LNA IIP3 are [0.483 − 7 · 0.523,+Inf ] = [−3.178,+Inf ].
Notice that all 541 devices pass the specification tests.

V. RESULTS

A. Synthetic Data Generation

The sample data from n = 541 devices form the initial
observations Xi which are used to estimate the density in
(1). The dimensionality is d = 13 + 3 = 16. Fig. 4 shows
example 1-dimensional marginals of the estimated density. The
figure also illustrates the scaled histograms which are plotted
using the 541 devices. It can be deduced that marginals are
far from being normal. The advantage of the non-parametric
density estimation technique is that it does not make any
assumption regarding the true parametric form (i.e. normal,
log-normal, gamma, etc.). Instead, it allows the data to speak
for themselves. As can be seen, the densities fit the histograms
very well.

Once the density is estimated, it can be readily sampled
using the algorithm of section III to obtain new instances. 1
million new instances can be obtained approximately in 30
minutes using Matlab 1 on an Intel(R) Core(TM)2 2.40-GHz
PC. The defect level is 3795ppm. The example scatter plots of
Fig. 5 project the real 541 devices together with 104 randomly
generated synthetic devices in 2-dimensional spaces formed by
pairs of performances and alternate test measurements. As can
be observed, the distribution of synthetic devices respects the
structure of the real distribution very well. Fig. 5 illustrates
the full potential of the method to generate synthetic data that
are, in practice, indistinguishable from real data.

B. Machine-learning-based test

1) Training: To train the good and faulty guard-bands we
use a sample set that comprises 3 · 104 synthetic devices,
of which 1/3 are “critical”, 1/3 faulty, and 1/3 good. The
“critical” devices marginally pass the specification test: they
have at least one performance which falls within the 5·StdDev
and 7·StdDev specification limits. The faulty devices violate
at least one specification and, statistically, they fall close to
the 7·StdDev specification limit, i.e. they marginally fail one
or more specifications. The good devices are statistically an
image of the real distribution. Their performances fall actually
far from the specification limits, nevertheless they are used
in training, in order to retain a population of devices that

1MATLAB is a trademark of the MathWorks Inc.,
http://www.mathworks.com.

Fig. 6. Synthetic devices projected in the 3-dimensional alternate measure-
ment space. A good discrimination is observed.

spans the manufacturing process. Fig. 6 projects the training
devices in the 3-dimensional alternate measurement space (i.e.
the top 3 principal components). Note that the above set
consists of devices with process variations due to drifts in the
manufacturing process. Devices containing catastrophic faults
are not considered during training since a catastrophic fault is
a random event: a basic principle of machine learning is that
an unknown dependency can be learned only when the data is
drawn from a fixed distribution f(x). However, if the guard-
bands correctly classify marginally-out-of-the-specifications
devices, then, intuitively, they will also be capable of correctly
classifying devices with catastrophic faults since it is expected
that their footprints in the alternate measurement space are
scattered far-off from the core of devices with nominal process
variations.

2) Validation: Training is repeated for different values of
the parameters λg and λf , in order to examine different
placements of the guard-bands and, thereby, different widths of
the guard-banded zone. As explained in section II, this allows
us to explore a trade-off between test escapes, yield loss, and
percentage of retested devices.

The estimated density is sampled 106 times to predict test
escapes (TE) and yield loss (YL) with PPM accuracy using
relative frequencies:

TE = P
(
Cc

g |Tp

)
=

P
(
Cc

g

⋂
Tp

)
P (Tp)

≈
NCc

g

⋂
Tp

NTp

(4)

YL = P
(
T c

p |Cg

)
=

P
(
Cg

⋂
T c

p

)
P (Cg)

≈
NCg

⋂
T c

p

NCg

, (5)

where Cg is the event that a device is good and Tp is the
event that a device passes the test. The complementary events,
Cc

g and T c
p , correspond to a device being faulty and a device

failing the test, respectively.
Table II shows the results in % (i.e. one needs to multiply

by 104 to obtain the values in PPM). The third column shows



λg λf εr (%) Nr (%) TE (%) YL (%)
0 0 3.054 0 0.012 3.054
0 0.5 3.053 0.105 0.011 3.054
0 1 3.028 0.95 0.008 3.032
0 1.5 3.043 15.929 0.002 3.053
0 2 3.043 22.481 0.001 3.054

0.5 0 2.111 0.98 0.012 2.107
0.5 0.5 2.114 1.077 0.011 2.111
0.5 1 2.099 1.902 0.008 2.099
0.5 1.5 2.123 16.862 0.002 2.13
0.5 2 2.129 23.404 0.001 2.136
1 0 0.708 2.517 0.011 0.699
1 0.5 0.707 2.621 0.011 0.699
1 1 0.705 3.422 0.008 0.699
1 1.5 0.699 18.443 0.002 0.699
1 2 0.698 24.998 0.001 0.699

1.5 0 0.011 3.411 0.011 0
1.5 0.5 0.011 3.515 0.011 0
1.5 1 0.008 4.316 0.008 0
1.5 1.5 0.002 19.338 0.002 0
1.5 2 0.001 25.892 0.001 0

TABLE II
PREDICTION ERROR, RETESTED DEVICES, TEST ESCAPES, AND YIELD

LOSS AS A FUNCTION OF THE POSITION OF THE GUARD-BANDS.

Fig. 7. Test escape as a function of retested devices for constant yield loss
(all three metrics are expressed in %).

the overall prediction error, i.e. the percentage of devices that
are misclassified. Fig. 7 plots Nr versus TE for approximately
constant YL. It can be seen that, for constant λg , TE drops as
λf increases. For constant λf , YL drops as λg increases. Nr

increases as λg and/or λf increase. One can identify interesting
trade-off points, for example TE = 110ppm and YL = 0ppm
if we choose to retest Nr = 3.4% of the devices through
specification-based test. An estimate of test cost savings can
be found using the following simplified model:

C = CaTa + NrCsTs, (6)

where Ci denotes test cost per second, Ti denotes test time,
and subscripts “a” and “s” correspond to the alternate test
measurements and the standard specification-based test, re-
spectively. Since CaTa = (1 − 0.48)(1 − 0.36)CsTs =
0.333CsTs, equation (6) becomes C = (0.333 + Nr) CsTs,
which yields C = 0.367CsTs for Nr = 3.4%.

VI. CONCLUSIONS

Machine-learning-based test of analog/RF circuits offers a
low-cost alternative to standard specification-based test. How-
ever, to date it has not been possible to corroborate the claim
that the two approaches are equivalent in terms of test error. To
this end, we presented a technique to (a) improve the training
phase of learning machines and, thereby, to ameliorate their
ability for future predictions, and (b) estimate the correctness
of the predictions, in terms of resulting test escape and yield
loss, with PPM accuracy. The key benefit of this technique is
that it permits us to obtain a good estimate of the prediction
accuracy at an early stage of the test development phase. Thus,
it can also be used to choose among an array of different
alternate test configurations and measurement patterns. In this
paper, the technique was employed to train a committee of
neural network classifiers to explore the trade-off among test
cost, test escapes, and yield loss for a receiver front-end device.
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