
Application-level Data Dissemination in Multi-hop
Wireless Networks

Péter Vingelmann
Budapest University of Technology and Economics

Dept. of Automation and Applied Informatics
Budapest, Hungary

Frank H. P. Fitzek
Aalborg University

Dept. of Electronic Systems
Aalborg, Denmark

Daniel E. Lucani
MIT

Research Laboratory of Electronics
Cambridge, Massachusetts, USA

Abstract— We investigate different schemes for data dissem-
ination in multi-hop ad-hoc networks using network coding.
We study the performance of these schemes in terms of the
completion time when a set of data packets must be disseminated
from a single source to all nodes in a multi-hop network, i.e. a
network where at least one node is several hops away from the
source. Therefore some network nodes must relay information
to other nodes that are farther away from the source. In this
setting, a relay node does not send a particular data packet,
but a linear combination of the packets that it has previously
received. The selection of such relays has a significant impact
on performance. We present a graphical simulator based on
OpenGL that allows to study performance and illustrate the
status of network nodes in real time during the dissemination
of an image file. Features of real-life ad-hoc networks such
as packet losses and collisions are taken into consideration in
our simulator. Numerical results are presented for simple linear
meshed networks and for arbitrary topologies. Results indicate
that schemes promoting parallel non-interfering transmissions
complete the dissemination process faster.

I. INTRODUCTION

Data dissemination in wireless ad-hoc networks can be used
to share data, e.g. pictures, sound, video, among a set of source
nodes and a set of receivers or sink nodes. Data may be a
large file or a continuous stream which is divided into multiple
batches of packets as necessary. An interesting objective is to
find a trade-off between completion time, energy consumption
and protocol overhead. Since all receivers are requesting the
same data, the broadcast nature of the wireless channel allows
for an efficient delivery of innovative information. That is,
with a single transmission possibly more than one node and
potentially all nodes in range will increase their knowledge of
the original data set.

Wireless ad-hoc networks typically have 1) packet losses,
i.e. an uncertainty of reception of transmitted packets, and
2) information delivered through possibly different paths or
routes. Consequently different nodes may require entirely
different data packets to increase their current knowledge. A
shrewd way to maximize the impact of each transmission is by
applying network coding [1], [3]. Transmitting linear combi-
nations of data packets, instead of just forwarding information,
relaxes the objective of each node. A network node is no
longer required to gather all data packets one-by-one, instead
it only has to receive enough independent linear combinations
to decode the entire data set. This relaxation allows us to

simultaneously benefit multiple nodes in a single transmission,
because the transmitter can send a linear combination instead
of choosing a specific packet, which may benefit only one
node in range.

The authors in [8] proposed an efficient solution for mobile
devices considering a single-hop network (i.e. all nodes are
within range of the source). A simple application based on this
solution was presented in [9]. However, multi-hop networks,
where some nodes are not directly reachable by the source,
require different techniques to deliver data to sinks that are
farther away from the source. This is only possible if some
nodes, called relays, propagate the received data to other
nodes. A relay node in the context of this work is both
interested in receiving the original data set and helping in the
dissemination process by generating and transmitting encoded
packets.

Note that a single packet can be delivered to every node
using simple flooding, but precautions have to be taken to
avoid duplicate deliveries and infinite loops. However, using
(naive) flooding is not a feasible approach for disseminating
a large set of packets: it would cause a lot of contention,
collision, and congestion in the system. Reference [6] called
this the broadcast storm problem. There are numerous refer-
ences, e.g. [2], [10], [7], [4], dealing with efficient reliable
broadcasting protocols for wireless ad-hoc networks. They
have one thing in common: they intend to ensure reliable
delivery of individual packets to all nodes. This approach can
be extremely costly, because all protocols require a significant
overhead (e.g. acknowledgement and notification packets) to
be generated for every single packet.

The authors in [5] investigated the same scenario and
compared the performance of several network coding schemes.
They proposed a greedy algorithm that tries to maximize the
impact on the network at each time slot, i.e. maximize the
average number of nodes that will benefit from a transmission.
The scheme based on this greedy algorithm also tries to benefit
transmissions that will allow potential parallel non-interfering
transmissions in the future. The scheme is designed for the
MAC level, and it requires a centralized controller with a
perfect knowledge of the information at each of the nodes.

In this paper, we devise new schemes which are instantly
deployable in any modern wireless network to disseminate data
to all nodes in the network. We developed a new network



Fig. 1. Screenshot of the simulator showing 9 nodes. The leftmost node was chosen as the initial source. Nodes in green are complete. Nodes in blue are
in progress. Nodes in red are transmitting at the moment.

simulator to test the performance of several schemes before
conducting experiments with real mobile devices. Using a
simulator allows us to determine the performance of the new
schemes compared to a modified version of the aforemen-
tioned greedy scheme, which is used as a reference in terms
of completion times. Similarly to [5], we first focus on linear
networks, i.e. network nodes deployed in a straight line. Later
we compare the performance of our schemes in arbitrary
network topologies.

This paper is organized as follows. Section II introduces our
network simulator. Section III describes the operation of the
implemented schemes. Sections IV and V present simulation
results for linear networks and arbitrary topologies. Section VI
concludes this paper.

II. SIMULATOR

The simulator’s design is based on a few assumptions that
are commonly known as the ”Flat Earth” model:

1) The world is flat.
2) A radio’s transmission area is circular.
3) All radios have equal range.
4) If I can hear you, you can hear me (symmetry).
5) Signal strength is a simple function of distance.
6) All nodes are fixed.
7) There is no external interference.
8) There are no obstacles.
The simulator has a visual frontend which was developed

in OpenGL (see Figure 1). Nodes are depicted as boxes, and
certain interactions are allowed to manipulate these nodes.

They can be moved or deleted, and new nodes can be inserted
interactively. Complete networks can be saved or loaded on
demand. A certain node is selected as the initial source by
double-clicking it. It loads up and renders a specified image
whose lines will form the data packets that we intend to
disseminate. For example, an RGBA image of dimensions
256×256 has 256 scanlines, which translates into 256 packets.
The size of each scanline in memory is 256 × 4 = 1024
bytes, which will be the size of a single packet (not including
headers).

There can be only one source at a time. When a certain
node is selected to be the source, the memory of the other
nodes is wiped (they start with a blank image), and the
source will begin sending out data packets according to the
chosen scheme and other simulation parameters. All of these
settings are also adjustable in the GUI. Time is assumed to be
continuous and the nodes are constantly making independent
choices to send or to remain silent. Our intent is to simulate
the behavior of UDP broadcast transmissions with appropriate
delays, collisions and packet losses.

A predefined channel capacity determines the maximum
sending rates of the nodes. Collisions will occur if they try to
exceed this limitation. Naturally, there is a small delay between
sending and receiving a packet. Packet losses are based on the
Packet Error Probability (PEP ) variable, which can be ad-
justed run-time, and on the distance to the recipient node. The
PEP value is used at the maximum transmission range, but
nodes closer to the sender experience lower loss probabilities
starting from 0.5 · PEP at 0 range, incresing linearly with



the distance. Losses are independent and memoryless, i.e. a
sent packet is lost at each receiver independently of losses
at other receivers, and independently of past transmissions.
Collisions are also detected on the receiver side, overlapping
transmissions are considered to be corrupted, therefore they
are automatically dropped.

If an uncoded packet is received, its data will be inserted
into the image instance at the receiver, i.e. a new line becomes
visible. Nodes can also use network coding over GF(2) (as
described in [8]) or over GF(28) (as described in [11]). Based
on the current scheme, certain packets can be encoded if
necessary. Coded packets will be decoded by the receiver,
whose image instance will be updated to reflect changes in the
decoding matrix. A separate signaling channel exists which
is free from packet losses and collisions, but transmissions
are also delayed. Nodes should use this channel as little as
possible, and no data packets can be sent over it.

Note the simulator provides a simplified model of wireless
networks. We consider some important characteristics, e.g.
packet losses, collisions, but we ignore other effects present
in real-life wireless networks.

III. SCHEMES

Since we consider multi-hop networks, the first problem to
address is how to select relay nodes that will forward data
packets to nodes that are farther away from the source. Let us
divide network nodes into hop levels: the 1st hop level consists
of nodes directly reachable from the source, nodes at the 2nd

hop level can be reached with 2 hops (through a relaying
node), and so on. Hop levels can be quickly determined with
a hop counter variable upon starting a new dissemination
session. In Figure 1 the resulting hop levels are visible at the
bottom left corner of each node’s box. Nodes can also keep
a record of their direct neighbors and propagate this list to
them. Based on this information, certain nodes can be selected
as relays. If Node A can communicate with Node B at the
next hop level, and no other nodes from Node A’s hop level
can reach Node B, then Node A must be a relay. In this case
Node A covers Node B. If Node B is covered by multiple
nodes from the previous hop level, it is enough to select one of
these. Moreover, Node B might be indirectly covered by Node
C at the same hop level, if Node C is connected to another
relay at Node A’s hop level. Consequently, Node A should not
necessarily be a relay. It is imperative to select as few relays as
possible to minimize network load and energy consumption.
Without prior knowledge of the network topology, individual
nodes should be able to select themselves as relays, i.e. we
need a self-configuring multi-hop network.

Four different schemes have been implemented in the sim-
ulator, these are explained in the following. The first two
schemes use the relay selection mechanism described above,
but they activate the relays at different times.

• Progressive Base Station: The initial source broadcasts
all data packets, and ensures that all relays at the first
hop level receive all those packets. Packet losses are
corrected using systematic network coding as described in

[8], i.e. the source transmits random linear combinations
of all packets until all its neighbor nodes are ready.
After this, the selected relays (at the first hop level)
will become active and continue to disseminate data
packets to all nodes at the next hop level, and it goes
on until we reach the last hop level. Note that relays
follow the same approach as the initial source. A limited
number of acknowledgements are used in this scheme to
indicate when a node could fully decode all data packets.
Completion time is expected to be a linear function of
the number of hop levels.

• Scheduled: This scheme is similar to the previous one,
but data packets are transmitted in short bursts (e.g. 32
packets) from the source to relays at the first hop level.
When a relay fully receives a burst, it begins broadcasting
that burst towards the next hop level. The sender stops
automatically when it senses a transmission from a higher
hop-level, i.e. we use implicit acknowledgements only. In
the Scheduled scheme, data is spreading in waves. The
initial source starts the next burst (i.e. next wave) after
waiting at least 2 burst intervals. Packet losses within
a burst are corrected right away by the sender with
some encoded packets to ensure that data packets can
spread efficiently towards higher hop levels as soon as
possible. This protocol leverages the power of parallel
non-interfering transmissions in combination with a strict
schedule. Completion time is not expected to be a linear
function of the number of hop levels.

• Greedy: This scheme is loosely based on the Greater
Impact/Greedy algorithm proposed in [5]. This is the
only scheme where a centralized controller manages the
nodes’ actions. Consequently, it is not applicable in a
real-life network. The controller periodically selects the
node with the most benefit points to transmit. A node
gets benefit points for each neighbor to which it can
send an innovative packet. Neighbors with less knowledge
are worth more benefit points which is multiplied by the
probability of a successful transmission to that neighbor.
Parallel non-interfering transmissions are also possible
here, since multiple nodes are selected to transmit if their
transmissions do not cause collisions. In accordance with
the formulae presented in [5], we expect a significant gain
compared to the Progressive scheme.

• Naive Broadcast: When a node receives a new (or
innovative) packet, it simply retransmits it after a short
delay. Nodes at the highest hop level (i.e. leaf nodes) will
not retransmit any packets. This scheme is similar to the
default broadcast solution in the upcoming IEEE 802.11s
standard. As we are dealing with multiple packets, a
couple of adjustments must be made. The initial source
is transmitting at full rate. If a node decodes all the data,
it begins transmitting encoded packets at a variable rate.
Explicit acknowledgements are not implemented, a node
simply stops when all its neighbors are ready. A lot of
collisions are expected here due to the broadcast storm
problem.



Fig. 2. Completion times over increasing line length (M = 256, B =
32, N = 2, P = 30%, varying H)

IV. LINEAR NETWORKS

Linear networks are toy examples where all nodes are along
a straight line (e.g. on Figure 1). In addition, we also assume
that every hop level consists of the same number of nodes.
We begin our simulations with these networks to get a clear
view about the performance of our schemes. Let us declare the
following symbols for describing network topology and other
parameters:

• H = number of hop levels
• N = number of nodes per hop level
• K = total number of nodes (H ·N )
• M = number of packets to be disseminated
• B = burst size for the Scheduled scheme
• P = packet error probability
The simulator can be used to measure completion times. A

dissemination session is completed when all nodes have all the
data packets, i.e. the full image is decoded. In every session an
RGBA image of dimensions 256×256 will be disseminated. It
means 256 packets, each containing 1024 bytes of raw image
data. Maximum sending rate is set to 25.6 packets/sec, so that
it takes exactly 10 seconds to transmit all packets to a direct
neighbor if P = 0%. By default, GF(2) is used for network
coding. GF(28) results can also be included, but this is always
explicitly stated.

First of all, we examine how completion times change with
increasing line length (see Figure 2). In this simulation P is
fixed to a typical value of 30%, we start with a source and
two direct neighbors in a line, then we gradually increase the
number of hop levels by adding two more nodes to the end
of the line.

Note that results presented here are averages of several
measurements, except for Naive Broadcast where the lowest
measured value is shown, since this scheme may fail to
complete. Completion times for the Progressive Base Station

Fig. 3. Completion times over increasing Packet Error Probability. (M =
256, B = 32, N = 2, H = 4, varying P )

scheme increase linearly with the line length, as expected.
However, the Greedy and Scheduled schemes start with similar
performance to the Progressive Base Station scheme, but after
3 hop levels their completion times only slightly increase. This
is because parallel non-interfering transmissions are present
in these schemes, and two nodes must be separated by at
least 3 hop levels if they intend to transmit simultaneously
without causing a collision. Results have a relatively low
standard deviation for the first 3 schemes, but the completion
times for Naive Broadcast are highly erratic. Even though
we chose topologies with only 2 nodes per hop level to
minimize interference, thousands of collisions are registered
at this scheme.

It is also interesting to test how schemes react to increasing
PEP values (see Figure 3). Notice that completion times for
the Scheduled and Progressive Base Station schemes follow
the expected T0 · 1/(1−P ) value where T0 is the completion
time at P = 0%. Decay for the Greedy scheme is much better,
because the probability of successful transmissions to different
nodes is taken into account in this scheme, therefore it will
try to benefit closer nodes with lower PEP values. In general,
the Greedy scheme is much more flexible in comparison with
Scheduled and Progressive BS which are restricted to use fixed
relays (after they are selected).

The simulator is also capable of producing time diagrams
depicting the knowledge of each network node. The dissemina-
tion progress is clearly visible on these diagrams. We chose to
make a time diagram for the network shown in Figure 1. The
differences between certain schemes are easy to understand
by looking at Figure 4. Each row represents a specific node.
Note that nodes at the bottom are closer to the initial source.
Progressive Base Station starts by transmitting the entire data
set to nodes at the first hop level, which prevents any parallel
transmissions in the system. On the contrary, the Greedy



Fig. 4. Time diagram depicting the knowledge of individual nodes. (M =
256, B = 32, N = 2, H = 4, P = 30%)

scheme tries to continuously increase the knowledge of every
node (favoring nodes with less knowledge), thus we see lines
with a steady slope. Innovative packets will quickly spread
towards the last node in the line, thereby facilitating parallel
transmissions. Diagrams for the Scheduled scheme indicate
that this is a mixture of the other two. If we decrease the burst
size to 8 or 4, the lines will get closer to those of the Greedy
scheme. However, this only works when there are no packet
losses (P = 0%), since a smaller burst size would imply
network coding with a really small generation size, which
would require more transmissions per packet. On the other
hand, we can approximate the behavior of the Progressive
Base Station scheme by increasing the burst size significantly.
According to our measurements, the burst size of 32 gives
the best results, it seems to be a good trade-off between the
characteristics of the other two schemes.

V. ARBITRARY NETWORKS

In this section we consider an arbitrary network topology
consisting of 33 randomly placed nodes. Some nodes were
added manually to establish a connected network. The topol-
ogy is shown in Figure 5.

We consider two different starting nodes in our simulations,
marked with blue and purple frames in Figure 5, to get a
better understanding about the performance of our schemes.
We chose a node in the middle and one in a long branch.
Figures 6 and 7 present numerical results obtained in the two
sets of measurements with increasing PEP values.

Notice that the charts are quite similar to Figure 3, but the
Scheduled scheme outperforms Greedy in this setting. The

Fig. 5. The chosen network topology. Nodes marked with blue and purple
frames are selected as initial sources.

Fig. 6. Completion times when starting from the middle node (M =
256, B = 32, K = 33, varying P )

performance of Naive Broadcast is even worse in this arbitrary
network. More than 10000 collisions are typical during a single
session, and many times it is unable to complete, therefore the
lowest measured value is shown, not the average.

Although the Greedy scheme performs well in many cases,
we know that it is a suboptimal strategy in general. As it was
discussed in [5], the optimal solution would be to find the
best sequence of transmissions, which is a difficult scheduling
problem. In the given topology, the initial source (marked
with blue frame) will get the most points for benefiting 4
neighbors. Consequently, no other node can transmit until
these 4 neighbors are ready, i.e. information is not spreading
towards higher hop levels. Later on, another problem may
arise: branches with fewer nodes can be neglected due to lower



Fig. 7. Completion times when starting from the leftmost node (M =
256, B = 32, K = 33, varying P )

benefit points. In order to avoid these issues, we modified the
Greedy scheme to always favor nodes at higher hop levels in
benefit point calculations. Even this mechanism did not show
a considerable improvement.

On the other hand, the predefined behavior in the Scheduled
scheme always forces the waves to happen in all directions.
Spatial diversity is better exploited here, the dissemination
process cannot get stuck as it does with Greedy. In addition,
branches with fewer nodes are considered to be equally to
important. Advantages of the Scheduled scheme are derived
from the strict, pre-programmed schedule and the proper
selection of relay nodes.

An important difference between starting from the middle
and the leftmost node is that we get 5 and 9 hop levels,
respectively. It means that data packets must traverse a longer
chain of nodes, which has a severe negative impact on the per-
formance of the Naive Broadcast and Progressive Base Station
schemes (as shown on Figure 7). On the contrary, completion
times do not increase significantly for Scheduled and Greedy,
because a longer chain also means more opportunities for
parallel transmissions.

VI. CONCLUSION

We have introduced a graphical simulator that allows us
to design and evaluate schemes for data dissemination. We
have described four different schemes and presented nu-
merical results to compare their performance under various
circumstances. The Scheduled and Greedy schemes perform
quite well in most cases due to the high number of parallel
non-interfering transmissions. The Progressive Base Station
scheme works in a sequential manner, thereby its performance
will deteriorate as the network size increases. Our last scheme,
Naive Broadcast suffers from the broadcast storm problem,
consequently it is outperformed by the other schemes, espe-
cially in larger networks.

In this paper we only considered static networks, so the next

logical step is to experiment with moving nodes. Nevertheless,
designing schemes for mobility requires a different approach,
since the concept of hop levels is no longer valid if neighbor
nodes might move out of range. Other features of real-life
networks, such as obstacles or nodes with variable range and
bandwidth, should also be taken into consideration in the
future.

Naturally, we intend to conduct experiments with state-
of-the-art mobile devices. Our decision to focus on an
application-level implementation has its advantages. We have
designed our schemes (except for Greedy) to be readily de-
ployable in any wireless network that supports UDP broadcast,
no tampering with the MAC layer is required.

REFERENCES

[1] R. Ahlswede, Ning Cai, S.-Y.R. Li, and R.W. Yeung. Network informa-
tion flow. Information Theory, IEEE Transactions on, 46(4):1204–1216,
Jul 2000.

[2] S. Alagar, S. Venkatesan, and JR Cleveland. Reliable broadcast in mobile
wireless networks. In IEEE Military Communications Conference, 1995.
MILCOM’95, Conference Record, volume 1, 1995.

[3] Christina Fragouli, Jean-Yves Le Boudec, and Jörg Widmer. Network
coding: an instant primer. SIGCOMM Comput. Commun. Rev., 36(1):63–
68, 2006.

[4] C.S. Hsu, Y.C. Tseng, and J.P. Sheu. An efficient reliable broadcasting
protocol for wireless mobile ad hoc networks. Ad Hoc Networks,
5(3):299–312, 2007.

[5] D.E. Lucani, F.H.P. Fitzek, M. Medard, and M. Stojanovic. Network
coding for data dissemination: It is not what you know, but what your
neighbors know. In RAWNET/WNC3 2009, June 2009.

[6] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu.
The broadcast storm problem in a mobile ad hoc network. In MobiCom
’99: Proceedings of the 5th annual ACM/IEEE international conference
on Mobile computing and networking, pages 151–162, New York, NY,
USA, 1999. ACM.

[7] E. Pagani and G.P. Rossi. Providing reliable and fault tolerant broadcast
delivery in mobile ad-hoc networks. Mobile Networks and Applications,
4(3):175–192, 1999.

[8] M. Pedersen, J. Heide, F.H.P. Fitzek, and T. Larsen. Network coding for
mobile devices - systematic binary random rateless codes. In Workshop
on Cooperative Mobile Networks 2009 - ICC09. IEEE, June 2009.

[9] M.V. Pedersen, J. Heide, F.H.P.Fitzek, and T. Larsen. Pictureviewer - a
mobile application using network coding. In European Wireless 2009,
Aalborg, Denmark, May 2009.

[10] J. Tourillhes. Robust broadcast: improving the reliability of broadcast
transmissions on CSMA/CA. HP LABORATORIES TECHNICAL RE-
PORT HPL, 1998.

[11] P. Vingelmann, P. Zanaty, F.H.P.Fitzek, and H. Charaf. Implementation
of random linear network coding on opengl-enabled graphics cards. In
European Wireless 2009, Aalborg, Denmark, May 2009.


