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ExtendedKalmanfilters (EKF) have beenwidely used for sensorless field oriented control (FOC) in permanentmagnet synchronous
motor (PMSM). The first key problem associated with EKF is that the estimator requires all the plant dynamics and noise
processes are exactly known. To compensate inaccurate model information and improve tracking ability, adaptive fading extended
Kalman filtering algorithms have been proposed for the nonlinear system. The second key problem is that the EKF suffers from
computational burden and numerical problems when state dimension is large. The two-stage extended Kalman filter (TSEKF)
with respect to this problem has been extensively studied in the past. Combining the advantages of both AFEKF and TSEKF, this
paper presents an adaptive two-stage extended Kalman filter (ATEKF) for closed-loop position and speed estimation of a PMSM
to achieve sensorless operation. Experimental results demonstrate that the proposed ATEKF algorithm for PMSMs has strong
robustness against model uncertainties and very good real-time state tracking ability.

1. Introduction

Owing to their characteristics of high efficiency, high power
density, and reliability, ACmachines and more recently espe-
cially permanent magnet synchronous machines (PMSMs)
have obtained dominance [1]. However, a PMSM cannot
be easily controlled because of the uncertainties such as
parameter variations and load-torque variations. Therefore,
the linear-control methods such as PID control cannot
guarantee high performance. To solve this problem, many
researchers have proposed various design methods, for
example, adaptive control [2, 3], robust control [4], sliding
mode control [5], nonlinear feedback linearization control
[6], and fuzzy control [7]. Recently, several authors [8–11]
have proposed disturbance-observer-based PMSM control
methods that can effectively suppress parameter variations or
load-torque variations.

In most PMSM drives, some types of shaft sensors such
as an optical encoder or a resolver are connected to the rotor
shaft.However, such sensors cause several disadvantages such

as high drive cost, low reliability, low noise immunity, and
increase in machine size and maintenance requirements.
Therefore, the interest toward sensorless FOC of PMSMs has
grown in order to increase the reliability and to reduce the
costs [12, 13].

Various methods of indirect (or sensorless) position and
speed estimation have been investigated for PMSMs. One of
majormethods is based on extendedKalman filter (EKF) [14–
17].The EKF is an optimal estimator in the least-square sense
for estimating the states of dynamic nonlinear systems, and
it is, thus, a viable and computationally efficient candidate
for the online determination of rotor position and speed of
a PMSM.

In spite of its successful use, extended Kalman filter still
has some drawbacks. This extended Kalman filtering tech-
nique requires complete specifications of both dynamical
model parameters and statistic noise levels of the system [18,
19]. In a number of practical situations, the models contain
parameters that may deviate from their nominal values. The
statistic noise levels of themodel are given before the filtering
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process and will be maintained unchanged during the whole
recursive process. Commonly, this a priori information is
determined by test analysis and certain knowledge about the
observation type beforehand. However, a priori information
of this kind is often unavailable. Inaccuracy in systemmodels
or poor estimates of noise statistics may seriously degrade the
performance of the filter and sometimes even leads to filtering
divergence.

To overcome these drawbacks, several adaptive extended
Kalman filtering algorithms have been proposed for the
nonlinear system. Most of the work reported in this area has
concentrated on innovation based adaptive estimation (IAE),
which utilizes new statistical information from the innova-
tion sequence to improve the estimation of the covariance
matrices. IAE is originally proposed in [20] and later utilized
in combination with fuzzy logic and neurofuzzy logic in
[21, 22], for linear and nonlinear systems, respectively. One of
the IAEs is called the adaptive fading extended Kalman filter
(AFEKF) [23], which employs suboptimal fading factors. A
weighting factor, which enhances the influence of innova-
tion information, may be incorporated as a multiplier for
improving the tracking capability in high dynamic control of
PMSM.

On the other hand, Kalman filter (KF) appears to be very
complex because of the high order of the mathematical mod-
els. The applicability of the KF to real-time state estimation
problems is generally limited by the complex mathematical
operations. To solve this problem, Friedland [24] proposed
to employ the two-stage Kalman filter (TSKF) to decouple the
KF into two parallel reduced-order filters. Many researchers
[25, 26] have contributed to this problem. However, the
results they obtained are suboptimal. The two-stage Kalman
estimator in [27] can be optimal when satisfying an algebraic
constraint, but almost all practical systemswill not satisfy this
algebraic constraint.

To improve the performance of TSKF, Hsieh and Chen
propose an optimal two-stage kalman estimator (OTSKE)
[28], in which the algebraic constraint [27] is removed and
the optimal performance is guaranteed. OTSKE ismathemat-
ically equivalent to KF without requiring system constraints.
Although the proposedOTSKE is slightlymore complex than
the TSKF, it prevents the performance degradation inherent
in the TSKF. Therefore, the proposed OTSKE is the best
balance between the performance and the computational
complexity. It is known that many practical processes require
nonlinear observers. In some works [29, 30], two-stage
extended Kalman filter (TSEKF) has been developed by
extending TSKF to nonlinear systems. In this paper, the
structure of TSEKF will be employed in sensorless algorithm
to reduce the computational complexity.

Combining advantages of TSEKF and AFEKF, we present
an adaptive two-stage extended Kalman filter (ATEKF) for
estimating rotor position and speed by the following two-
step procedure: (1) in order to enhance robustness, astrin-
gency, and tracking ability, we introduce a fading factor
into the conventional EKF to formulate AFEKF; (2) to solve
the problem of computational complexity, an ATEKF is
obtained based on proposedAFEKF algorithm.Theproposed
ATEKF is effective implementation of AFEKF. The complete

equations of this filter are presented and compared with
straight implementation of the AFEKF equations.

The paper is organized in six sections. In Section 2,
according to the discrete model of the PMSM, a conventional
EKF algorithm for estimating rotor position and speed is
designed. In Section 3, an AFEKF is proposed, which uses
the conventional EKF algorithm. In Section 4, ATEKF are
developed by the same approach used for the OTSKE, and its
stability is analyzed. In Section 5, to verify the performance
of the ATEKF, experimental results are discussed. Finally, a
conclusion wraps up the paper.

2. Conventional EKF Theory

2.1. The Model of PMSM. As elaborated in [6], the machine
equations in the rotor (dq) reference frame are as follows:
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(2)

where 𝑢𝛼, 𝑢𝛽 are the stator voltages in the (𝛼𝛽) reference
frame, 𝑖𝑑, 𝑖𝑞 are stator flux currents in the (dq) reference
frame, 𝐿𝑑 and 𝐿𝑞 are the machine dq axes inductances, 𝑅𝑠 is
the stator winding resistance, and 𝜓𝑓 is the flux produced by
the magnets.The angular velocity𝜔𝑟 is measured in electrical
radians per second. 𝜃𝑟 is the electrical position.𝑇𝑠 is sampling
period.

2.2. The EKF Algorithm. When treating 𝑋𝑘 as the full order
state and Θ𝑘 as the augmented system state, the state vector
is chosen to be 𝑋𝑎

𝑘
= [𝑋𝑘 Θ𝑘]

𝑇. 𝑢𝛼, 𝑢𝛽 and 𝑖𝛼, 𝑖𝛽 are chosen
as input and output vectors because these quantities can be
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easily obtained from measurements of stator phase currents
and voltage construction usingDC link voltage and switching
status. Considering the noise and parameter errors, the state
space model in the rotor (dq) reference frame is described by
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where 𝑊𝑘 and 𝜂𝑘 are zero-mean noise and are independent
from the system state 𝑋𝑎

𝑘
. The system noise 𝑊𝑘 takes into

account system disturbance and model inaccuracies, while
𝜂𝑘 represents the measurement noise. The noise covariance
matrices are defined as follows:
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Based on discretized machine equations, an EKF is
constructed to estimate the rotor position and speed of the
PMSM. The overall structure of the EKF is well known by
employing a two-step prediction and correction algorithm
[15]. The first step (prediction step) performs a prediction
of both quantities based on the previous estimates 𝑋𝑎

𝑘−1|𝑘−1

and the input vector 𝑈𝑘−1 actually applied to the system. The
second step is the innovation step, correcting the predicted
state estimation and its covariancematrix through a feedback
correction gain 𝐾𝑘 that makes use of the actual measured
quantities. Hence, the filter is given by
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3. AFEKF Algorithm Based on
Innovation Covariance Estimation

Innovation of the filter, which is a directly observable param-
eter, can be used as a reference for the filter performance by
observing the covariance of the innovation sequence. From
the incoming measurement 𝑌𝑘 and the optimal prediction
𝑋𝑎
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obtained in the previous step, the innovation sequence
is defined as
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Then, the innovation covariance of the EKF is
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where 𝑉𝑘 is referred to as the theoretical innovation covari-
ance. Moreover, according to Shademan and Sharifi [31], an
innovation covariance can be calculated by
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where𝑀 is a window size.This𝑉𝑘 is the estimated innovation
covariance.
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If the system dynamic can be modeled exactly, the inno-
vation of the filter should be a white noise sequence with zero
mean. However, the statistical characteristics of the observed
innovation sequence will become complex due to the fact
that the prior knowledge of the process and measurement
noise is not known exactly. This means that the theoretical
error covariance 𝑉𝑘 is inconsistent with the estimated error
covariance 𝑉𝑘 in practical applications. We can use a scale
factor to weigh the relation between 𝑉𝑘 and 𝑉𝑘. This factor
is defined as 𝑉𝑘 = 𝛼𝑘𝑉𝑘. Then, the scalar variable 𝛼𝑘 can be
estimated by

𝛼𝑘 = max {1, 1
𝑚

tr (𝑉𝑘𝑉
−1

𝑘
)} . (15)

Considering complexity of matrix inversion, the above equa-
tion can be replaced by

𝛼𝑘 = max{1,
tr (𝑉𝑘)
tr (𝑉𝑘)

} . (16)

In order to compensate the effect of unmodeled dynamic,
the approach envisaged by the fading memory is based on
applying a scale factor 𝜆𝑘 to the a priori estimate error covari-
ance to deliberately increase the variance of the predicted
state vector, thus resulting in more “weight” given to the
actual measurements. Thus, when the innovation covariance
is increased by unaccounted errors, the increased predicted
error covariance 𝑃𝑘|𝑘−1 can be utilized to compensate the
effect of an inexact dynamic equation. 𝑃𝑘|𝑘−1 is obtained by

𝑃𝑘|𝑘−1 = 𝜆𝑘𝑃𝑘|𝑘−1. (17)

Here, the scale factor 𝜆𝑘 is called a fading factor and
𝜆𝑘 ≥ 1. Different fading memory approaches employ
several algorithms to calculate the fading factor. One simple
approach is to assign the fading factor as a constant, but
this leads to some drawbacks. In this paper, we propose
a fading memory algorithm using a variable fading factor
that will be determined based on the innovation sequence
associatedwith the dynamic and observationmodel accuracy.
According to the above analysis, 𝑉𝑘 can be represented by
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In (18), we can obtain the following equations:
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Then 𝜆𝑘 can be approximated by the following equation:
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It can be inferred from (3) that time-varying motor
parameters, such as stator resistance and inductance, are
not included in (3). This means that the measurement
dynamic equation does not have unaccounted errors. So the
innovation covariance is mainly affected by predicted error
covariance not by the measurement covariance. Therefore,
the ratio of innovation covariances 𝜆𝑘 is mainly determined
by 𝛼𝑘. In this paper, our hypothesis is that 𝛼𝑘 is equal to 𝜆𝑘;
then the ratio between the error covariance can be replaced by
𝛼𝑘. Thus, (7) in conventional EKF can be rewritten as follows
to build AFEKF by employing the multiplier 𝜆𝑘:

𝑃𝑘|𝑘−1 = 𝜆𝑘 (𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹
𝑇
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+ 𝑄𝑘−1) . (21)

As stated in [32], this type of AEKF is called as “the
AFEKF with rescaling-𝑃𝑘|𝑘−1.” Compared to the proposed
adaptive algorithms with excessive computational load in
[21, 22], the AFEKF with rescaling-𝑃𝑘|𝑘−1 is simple and easy
to realize.

4. The Adaptive Two-Stage Extended
Kalman Filter

4.1. The ATEKF Algorithm. Following the same coordinate
transformation as used in OTSKE [28], the ATEKF is obta-
ined by decoupling AFEKF into two parallel filters: one for
full order states and another one for the augmented states. So
it is necessary to define a transformationmatrix𝑇(⋅), and𝑇(⋅)
is specified as follows:
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in the new base can be obtained:

𝑋
𝑎

𝑘|𝑘−1
= 𝑇 (𝑀𝑘)𝑋

𝑎

𝑘|𝑘−1
,

𝑃𝑘|𝑘−1 = 𝑇 (𝑀𝑘) 𝑃𝑘|𝑘−1𝑇(𝑀𝑘)
𝑇
,

𝑋
𝑎

𝑘|𝑘
= 𝑇 (𝑁𝑘)𝑋

𝑎

𝑘|𝑘
,

𝐾𝑘 = 𝑇 (𝑁𝑘)𝐾𝑘,

𝑃𝑘|𝑘 = 𝑇 (𝑁𝑘) 𝑃𝑘|𝑘𝑇(𝑁𝑘)
𝑇
,

(24)
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where

𝑋
𝑎

𝑘
= [

𝑋𝑘
Θ𝑘
] , 𝐾𝑘 =

[

[

𝐾
𝑥

𝑘

𝐾
Θ

𝑘

]

]

. (25)

So the following relations are obtained:

𝑃
𝑥

𝑘|𝑘−1
= 𝑃
𝑥

𝑘|𝑘−1
+𝑀𝑘𝑃

Θ

𝑘|𝑘−1
𝑀
𝑇

𝑘
, (26)

𝑃
Θ

𝑘|𝑘−1
= 𝑃
Θ

𝑘|𝑘−1
, (27)

𝑃
𝑥Θ

𝑘|𝑘−1
= 𝑀𝑘𝑃

Θ

𝑘|𝑘−1
, (28)

𝑃
𝑥

𝑘|𝑘
= 𝑃
𝑥

𝑘|𝑘
+ 𝑁𝑘𝑃

Θ

𝑘|𝑘
𝑁
𝑇

𝑘
, (29)

𝑃
Θ

𝑘|𝑘
= 𝑃
Θ

𝑘|𝑘
, (30)

𝑃
𝑥Θ

𝑘|𝑘
= 𝑁𝑘𝑃

Θ

𝑘|𝑘
. (31)

Considering characteristic of matrix 𝑇(⋅), (24) becomes

𝑋
𝑎

𝑘|𝑘−1
= 𝑇 (−𝑀𝑘)𝑋

𝑎

𝑘|𝑘−1
,

𝑃𝑘|𝑘−1 = 𝑇 (−𝑀𝑘) 𝑃𝑘|𝑘−1𝑇(−𝑀𝑘)
𝑇
,

𝑋
𝑎

𝑘|𝑘
= 𝑇 (−𝑁𝑘)𝑋

𝑎

𝑘|𝑘
,

𝐾𝑘 = 𝑇 (−𝑁𝑘)𝐾𝑘,

𝑃𝑘|𝑘 = 𝑇 (−𝑁𝑘) 𝑃𝑘|𝑘𝑇(−𝑁𝑘)
𝑇
.

(32)

To obtain a full order filter and an augmented states filter, the
following two-step iterative substitution method is used.

Step 1. Substituting (6)–(10) into (32), we have

𝑋
𝑎

𝑘|𝑘−1
= 𝑇 (−𝑀𝑘) 𝐴𝑘−1𝑋

𝑎

𝑘−1|𝑘−1
+ 𝑇 (−𝑀𝑘) 𝐵𝑘−1𝑈𝑘−1,

𝑃𝑘|𝑘−1 = 𝜆𝑘 (𝑇 (−𝑀𝑘) 𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹
𝑇

𝑘−1
𝑇(−𝑀𝑘)

𝑇

+ 𝑇 (−𝑀𝑘) 𝑄𝑘−1𝑇(−𝑀𝑘)
𝑇
) ,

𝐾𝑘 = 𝑇 (−𝑁𝑘) 𝑃𝑘|𝑘−1𝐻
𝑇

𝑘
(𝐻𝑘𝑃𝑘|𝑘−1𝐻

𝑇

𝑘
+ 𝑅𝑘)

−1

,

𝑋
𝑎

𝑘|𝑘
= 𝑇 (−𝑁𝑘) (𝑋

𝛼

𝑘|𝑘−1
+ 𝐾𝑘 (𝑌𝑘 − 𝐶𝑘𝑋

𝑎

𝑘|𝑘−1
)) ,

𝑃𝑘|𝑘 = 𝑇 (−𝑁𝑘) 𝑃𝑘|𝑘−1𝑇(−𝑁𝑘)
𝑇

− 𝑇 (−𝑁𝑘)𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1𝑇(−𝑁𝑘)
𝑇
.

(33)

Step 2. Substituting (32) into the right-hand side of (33), the
following equations are written:

𝑋
𝑎

𝑘|𝑘−1
= 𝑇 (−𝑀𝑘) 𝐴𝑘−1𝑇 (𝑁𝑘−1)𝑋

𝑎

𝑘−1|𝑘−1

+ 𝑇 (−𝑀𝑘) 𝐵𝑘−1𝑈𝑘−1,

(34)

𝑃𝑘|𝑘−1 = 𝜆𝑘 (𝑇 (−𝑀𝑘) 𝐹𝑘−1𝑇 (𝑁𝑘−1) 𝑃𝑘−1|𝑘−1

× 𝑇(𝑁𝑘−1)
𝑇
𝐹
𝑇

𝑘−1
𝑇(−𝑀𝑘)

𝑇

+ 𝑇 (−𝑀𝑘) 𝑄𝑘−1𝑇(−𝑀𝑘)
𝑇
) ,

(35)

𝐾𝑘 = 𝑇 (𝑀𝑘 − 𝑁𝑘) 𝑃𝑘|𝑘−1𝑇(𝑀𝑘)
𝑇
𝐻
𝑇

𝑘

× (𝐻𝑘𝑇 (𝑀𝑘) 𝑃𝑘|𝑘−1𝑇(𝑀𝑘)
𝑇
𝐻
𝑇

𝑘
+ 𝑅𝑘)

−1

,

(36)

𝑋
𝑎

𝑘|𝑘
= 𝑇 (𝑀𝑘 − 𝑁𝑘)𝑋

𝑎

𝑘|𝑘−1
+ 𝐾𝑘 (𝑌𝑘 − 𝐶𝑘𝑇 (𝑀𝑘)𝑋

𝑎

𝑘|𝑘−1
) ,

(37)

𝑃𝑘|𝑘 = 𝑇 (𝑀𝑘 − 𝑁𝑘) 𝑃𝑘|𝑘−1𝑇(𝑀𝑘 − 𝑁𝑘)
𝑇

− 𝐾𝑘𝐻𝑘𝑇 (𝑀𝑘) 𝑃𝑘|𝑘−1𝑇(𝑀𝑘 − 𝑁𝑘)
𝑇
.

(38)

Supposed variance-covariancematrices𝑃(𝑀) are block diag-
onal.The following relation is obtained by using (35) and (38):

0 = 𝜆𝑘 (𝑀𝑘𝐺𝑘−1𝑃
Θ

𝑘−1|𝑘−1
𝐺
𝑇

𝑘−1
+ 𝑄
𝑥Θ

𝑘−1

− 𝑀𝑘 (𝐺𝑘−1𝑃
Θ

𝑘−1|𝑘−1
𝐺
𝑇

𝑘−1
+ 𝑄
Θ

𝑘−1
)) ,

0 = 𝑀𝑘 − 𝑁𝑘 − 𝐾
𝑥

𝑘
𝑆𝑘,

(39)

where

𝑀𝑘 = (𝐹𝑘−1𝑁𝑘−1 + 𝐸𝑘−1) 𝐺
−1

𝑘−1
,

𝑆𝑘 = 𝐻
1

𝑘
𝑀𝑘 + 𝐻

2

𝑘
.

(40)

The above equations lead to

𝑀𝑘 = 𝑀𝑘 + 𝜆𝑘 (𝑄
𝑥Θ

𝑘
−𝑀𝑘𝑄

Θ

𝑘
) (𝑃
Θ

𝑘|𝑘−1
)
−1

,

𝑁𝑘 = 𝑀𝑘 − 𝐾
𝑥

𝑘
𝑆𝑘.

(41)

Then, based on corresponding relationship in (34)∼(38), the
ATEKF algorithm can be organized by the next two parts
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[33, 34]. The first part of ATEKF for state and parameter
prediction is as follows:

𝑃
Θ

𝑘|𝑘−1
= 𝜆𝑘 (𝐺𝑘−1𝑃

Θ

𝑘−1|𝑘−1
𝐺
𝑇

𝑘−1
+ 𝑄
Θ

𝑘−1
) , (42)

𝐸𝑘 =
𝜕

𝜕Θ

Θ𝑘|𝑘
(𝐴𝑘 (𝑋𝑘 + 𝑁𝑘Θ𝑘) + 𝐵

Θ

𝑘
Θ𝑘 + 𝐵

𝑢

𝑘
𝑈𝑘) , (43)

𝑀𝑘 = (𝐹𝑘−1𝑁𝑘−1 + 𝐸𝑘−1) (𝐺𝑘−1)
−1
, (44)

𝑀𝑘 = 𝑀𝑘 + 𝜆𝑘 (𝑄
𝑥Θ

𝑘−1
−𝑀𝑘𝑄

Θ

𝑘−1
) (𝑃
Θ

𝑘|𝑘−1
)
−1

, (45)

𝑄
𝑥

𝑘
= 𝑄
𝑥

𝑘−1
− 𝑄
𝑥Θ

𝑘−1
𝑀
𝑇

𝑘
−𝑀𝑘(𝑄

𝑥Θ

𝑘−1
−𝑀𝑘𝑄

Θ

𝑘−1
)
𝑇

, (46)

𝑃
𝑥

𝑘|𝑘−1
= 𝜆𝑘 (𝐹𝑘−1𝑃

𝑥

𝑘−1|𝑘−1
𝐹
𝑇

𝑘−1
+ 𝑄
𝑥

𝑘−1
) , (47)

Θ𝑘|𝑘−1 = 𝐺𝑘−1Θ𝑘−1|𝑘−1, (48)

𝑢𝑘−1 = (𝐴𝑘−1𝑁𝑘−1 + 𝐵
Θ

𝑘−1
−𝑀𝑘𝐺𝑘−1)Θ𝑘−1|𝑘−1, (49)

𝑋𝑘|𝑘−1 = 𝐴𝑘−1𝑋𝑘−1|𝑘−1 + 𝐵
𝑢

𝑘−1
𝑈𝑘−1 + 𝑢𝑘−1, (50)

𝑆𝑘 = 𝐶𝑘𝑀𝑘, (51)

𝑆𝑘 = 𝐻
1

𝑘
𝑀𝑘 + 𝐻

2

𝑘
, (52)

with

𝑉𝑘 = 𝐻
1

𝑘
𝑃
𝑥

𝑘−1|𝑘−1
(𝐻
1

𝑘
)
𝑇

+ (𝐻
1

𝑘
𝑁𝑘−1 + 𝐻

2

𝑘
) 𝑃
Θ

𝑘−1|𝑘−1

× (𝐻
1

𝑘
𝑁𝑘−1 + 𝐻

2

𝑘
)
𝑇

+ 𝑅𝑘,

𝜂𝑘 = 𝑌𝑘 − 𝐶𝑘𝑋𝑘|𝑘−1 − 𝑆𝑘Θ𝑘|𝑘−1,

𝑉𝑘 =
1

𝑀 − 1

𝑘

∑
𝑖=𝑘−𝑀+1

𝜂𝑖𝜂
𝑇

𝑖
,

𝜆𝑘 = max{1,
tr (𝑉𝑘)
tr (𝑉𝑘)

} .

(53)

The second part for state and parameter correction is as
follows:

𝐾
Θ

𝑘
= 𝑃
Θ

𝑘|𝑘−1
𝑆
𝑇

𝑘
(𝐻
1

𝑘
𝑃
𝑥

𝑘|𝑘−1
(𝐻
1

𝑘
)
𝑇

+ 𝑅𝑘 + 𝑆𝑘𝑃
Θ

𝑘|𝑘−1
𝑆
𝑇

𝑘
)
−1

,

(54)

𝑃
Θ

𝑘|𝑘
= 𝑃
Θ

𝑘|𝑘−1
− 𝐾
Θ

𝑘
𝑆𝑘𝑃
Θ

𝑘|𝑘−1
, (55)

Θ𝑘|𝑘 = Θ𝑘|𝑘−1 + 𝐾
Θ

𝑘
𝜂𝑘, (56)

𝐾
𝑥

𝑘
= 𝑃
𝑥

𝑘|𝑘−1
(𝐻
1

𝑘
)
𝑇

(𝐻
1

𝑘
𝑃
𝑥

𝑘|𝑘−1
(𝐻
1

𝑘
)
𝑇

+ 𝑅𝑘)
−1

, (57)

𝑃
𝑥

𝑘|𝑘
= 𝑃
𝑥

𝑘|𝑘−1
− 𝐾
𝑥

𝑘
𝐻
1

𝑘
𝑃
𝑥

𝑘|𝑘−1
, (58)

𝑋𝑘|𝑘 = 𝑋𝑘|𝑘−1 + 𝐾
𝑥

𝑘
(𝑌𝑘 − 𝐶𝑘𝑋𝑘|𝑘−1 + (𝑆𝑘 − 𝑆𝑘)Θ𝑘|𝑘−1) ,

(59)

𝑁𝑘 = 𝑀𝑘 − 𝐾
𝑥

𝑘
𝑆𝑘. (60)

Using (26), the original state𝑋 can be obtained by the sum of
the state𝑋 with the augmented state Θ:

𝑋𝑘|𝑘−1 = 𝑋𝑘|𝑘−1 +𝑀𝑘Θ𝑘|𝑘−1,

𝑋𝑘|𝑘 = 𝑋𝑘|𝑘 + 𝑁𝑘Θ𝑘|𝑘.

(61)

The initial conditions of this ATEKF are established with the
initial conditions of the AFEKF (𝑋0|0, Θ̂0|0, 𝑃

𝑥

0|0
, 𝑃Θ
0|0
, 𝑃𝑥Θ
0|0

), so
that

𝑁0 = 𝑃
𝑥Θ

0|0
(𝑃
Θ

0|0
)
−1

, 𝑋0|0 = 𝑋0|0 − 𝑁0Θ0|0,

Θ0|0 = Θ̂0|0, 𝑃
𝑥

0|0
= 𝑃
𝑥

0|0
− 𝑁0𝑃

Θ

0|0
𝑁
𝑇

0
,

𝑃
Θ

0|0
= 𝑃
Θ

0|0
.

(62)

By using the number of arithmetic operations (multi-
plications and additions) as the measure of computational
complexity, the computational advantage of the two-stage
Kalman filter over the conventional Kalman Filter has been
demonstrated in [28, 33]. The analysis of computational
complexity of ATEKF has rather similar process and does not
need to be discussed here.

4.2. The Stability Analysis of the ATEKF

Theorem 1. The discrete-time adaptive fading extended
Kalman filter ((6), (8), (9), (10), and (21)) is equivalent to the
adaptive two-stage extended Kalman filter ((42)∼(62)).

Proof. Before proving the theorem, the following relation-
ships are needed.

Using (42) and (45),

𝑀𝑘𝐺𝑘−1𝑃
Θ

𝑘−1|𝑘−1
𝐺
𝑇

𝑘−1
=

1

𝜆𝑘
𝑀𝑘𝑃
Θ

𝑘|𝑘−1
− 𝑄
𝑥Θ

𝑘−1
. (63)

Using (54) and (57),

𝐾
𝑥

𝑘
𝑍𝑘 = 𝑃

𝑥

𝑘|𝑘−1
(𝐻
1

𝑘
)
𝑇

+ 𝐾
𝑥

𝑘
𝑆𝑘𝑃
Θ

𝑘|𝑘−1
𝑆
𝑇

𝑘
, (64)

𝐾
Θ

𝑘
𝑍𝑘 = 𝑃

Θ

𝑘|𝑘−1
𝑆
𝑇

𝑘
, (65)

where

𝑍𝑘 = 𝐻
1

𝑘
𝑃
𝑥

𝑘|𝑘−1
(𝐻
1

𝑘
)
𝑇

+ 𝐻
1

𝑘
𝑀𝑘𝑃
Θ

𝑘|𝑘−1
𝑆
𝑇

𝑘

+ 𝐻
2

𝑘
𝑃
Θ

𝑘|𝑘−1
𝑆
𝑇

𝑘
+ 𝑅𝑘.

(66)

Using (55), (64), and (65),

𝑃
Θ

𝑘|𝑘
𝑆
𝑇

𝑘
(𝐾
𝑥

𝑘
)
𝑇

= (𝑃
Θ

𝑘|𝑘−1
𝑆
𝑇

𝑘
− 𝐾
Θ

𝑘
𝑍𝑘) (𝐾

𝑥

𝑘
)
𝑇

+ 𝐾
Θ

𝑘
𝐻
1

𝑘
𝑃
𝑥

𝑘|𝑘−1

= 𝐾
Θ

𝑘
𝐻
1

𝑘
𝑃
𝑥

𝑘|𝑘−1
.

(67)

Assume that at time k, the estimated𝑋 and Θ̂ are, respectively,
equal to the 𝑋 and Θ. By recurrence reasoning, we show
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that the ATEKF is equivalent to the AFEKF because these
properties are still true at time k + 1:

𝑋𝑘|𝑘 = 𝑋𝑘|𝑘, Θ𝑘|𝑘 = Θ̂𝑘|𝑘, 𝑃
𝑥

𝑘|𝑘
= 𝑃
11

𝑘|𝑘
,

𝑃
𝑥Θ

𝑘|𝑘
= 𝑃
12

𝑘|𝑘
, 𝑃

Θ

𝑘|𝑘
= 𝑃
22

𝑘|𝑘
,

(68)

where [ 𝑃
𝑥
𝑃
𝑥Θ

(𝑃
𝑥Θ
)
𝑇

𝑃
Θ ] and [ 𝑃

11
𝑃
12

(𝑃
12
)
𝑇

𝑃
22 ] represent the variance-

covariance matrices of the system and estimated variables,
respectively.

Using (6), (48)∼(50), (61), and (68), we obtain

𝑋𝑘|𝑘−1 = 𝐴𝑘−1 (𝑋𝑘−1|𝑘−1 + 𝑁𝑘−1Θ𝑘−1|𝑘−1)

+ 𝐵
Θ

𝑘−1
Θ𝑘−1|𝑘−1 + 𝐵

𝑢

𝑘−1
𝑈𝑘−1

= 𝑋𝑘|𝑘−1 − 𝑢𝑘−1 + 𝐴𝑘−1𝑁𝑘−1Θ𝑘−1|𝑘−1

+ 𝐵
Θ

𝑘−1
Θ𝑘−1|𝑘−1

= 𝑋𝑘|𝑘−1 +𝑀𝑘Θ𝑘|𝑘−1

= 𝑋𝑘|𝑘−1.

(69)

Using (6), (48), and (68), we obtain

Θ𝑘|𝑘−1 = 𝐺𝑘−1Θ𝑘−1|𝑘−1 = 𝐺𝑘−1Θ𝑘−1|𝑘−1 = Θ𝑘|𝑘−1. (70)

Using (21), (26)∼(28), (42), (43), and (45)∼(47), we obtain

𝑃
𝑥

𝑘|𝑘−1
= 𝜆𝑘 (𝐹𝑘−1𝑃

𝑥

𝑘−1|𝑘−1
𝐹
𝑇

𝑘−1

+ 𝐸𝑘−1𝑃
Θ

𝑘−1|𝑘−1
𝐸
𝑇

𝑘−1
+ 𝐹𝑘−1𝑃

𝑥Θ

𝑘−1|𝑘−1
𝐸
𝑇
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Using (21), (27), and (42), we obtain
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Figure 1: System diagram of the proposed ATEKF sensorless
scheme.

Using (21), (28), (30), (31), and (44),
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Using (10), (51), and (71)∼(73),
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Using (64), (65), and (74),
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Using (9), (51), (56), (60), (61), (69), (70), and (75),
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Figure 2: Experimental results for speed and position estimation (ATEKF and AFEKF).

= 𝑋𝑘|𝑘 + 𝑁𝑘Θ𝑘|𝑘

= 𝑋𝑘|𝑘,

(77)
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Figure 3: Experimental results with step change of speed reference.

Using (10), (31), (51), (55), (58), (60), (71), and (72),

𝑃
𝑥Θ

𝑘|𝑘
= 𝑃
𝑥Θ

𝑘|𝑘−1
− 𝐾
𝑥

𝑘
(𝐻
1

𝑘
𝑃
𝑥Θ

𝑘|𝑘−1
+ 𝐻
2

𝑘
𝑃
Θ

𝑘|𝑘−1
)

= (𝑀𝑘 − 𝐾
𝑥

𝑘
𝑆𝑘 − 𝑁𝑘𝐾

Θ

𝑘
𝑆𝑘)𝑃
Θ

𝑘|𝑘−1

= 𝑁𝑘𝑃
Θ

𝑘|𝑘
.

(81)

Using (10), (30), (51), (55), (58), (72), (73), and (76),
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Finally, show that (68) holds at time k = 0.This can be verified
by the initial parameters in (62).

5. Experimental Results

The experiment of this paper aims at making a comparison
among ATEKF, AFEKF, and EKF to verify validity and feasi-
bility of ATEKF algorithm. The proposed PMSM sensorless
control strategy based on ATEKF is shown in Figure 1. The
drive system consists of a three-phase, eight-pole, 1.2 kW
PMSM, driven from a three-phase insulated gate bipolar
transistor (IGBT) inverter. The PMSM is mechanically cou-
pled to a magnetic clutch, which provides rated torque, even
at very low speeds. The drive system is implemented by
an Expert3 control system of Myway company. The core
DSP processor in Expert3 control system is TMS320C6713
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Figure 4: Experimental results with step change of load torque.

with a clock speed of 225MHz. The actual rotor position
and speed are obtained from an incremental encoder with
10000 pulses per revolution. The inverter space-vector PWM
control, current regulator, and observer algorithm operate
with a 100𝜇s sampling/integration time step. The currents
flowing in the stator windings are measured with two hall
effect current sensors. The parameters of the PMSM are
shown in Table 1.

In the experiments, real-time parameter estimations
observed by ATEKF are used to formulate the closed loop,
such as rotor speed and position. The estimations obtained
by conventional EKF or AFEKF are not included in the
sensorless FOC and only evaluated in open loop.

Experiment 1 (equivalence between AFEKF and ATEKF).
In this experiment, a comparison is made to verify the

Table 1: PMSM prototype specification.

Quantity Value
Nominal torque 4Nm
Nominal speed 3000 rpm
Stator resistance 𝑅𝑠 0.525Ω
𝑑 axes inductances 𝐿𝑑 1.65mH
𝑞 axes inductances 𝐿𝑞 1.65mH
PM Flux linkage 𝜓𝑓 0.0744Wb
Rotor inertia 0.54 × 10−3 kg⋅m2

Poles pairs 4

equivalence between AFEKF and ATEKF. The machine is
accelerated from 0 rpm to 600 rpm at 0 s and the torque
load is set to 2Nm. The results are shown in Figure 2.
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Figure 5: Experimental results with parameter variation.

During the transient, the maximum difference in speed and
position measured by the two estimators is 0.0039 rpm and
0.0000037 rad, respectively. When PMSM reaches the given
speed, the difference is rather null as we can see in Figure 2.
Due to limited computer word, the differences can be seen
as finite-word-length errors caused by single-precision arith-
metic used inC code.These experimental results demonstrate
that the two observers are mathematically equivalent.

Experiment 2 (dynamics in speed step). From Experiment 2
to Experiment 4, a comparison is made between ATEKF and
EKF to verify the performance of the former.

The machine is accelerated from 0 rpm to 600 rpm at 0 s
and the torque load is set to 2Nm. Figures 3(a) and 3(c) show
that ATEKF gets better dynamic speed response performance
than EKF when PMSM is at the stage of start-up towards
expected speed command. Figures 3(b) and 3(d) show the

speed and position error in the ATEKF and the EKF for the
sensorless control system. As expected, the steady errors of
the ATEKF are smaller than those of the EKF.

Experiment 3 (dynamics in load-torque steps). Figure 4
shows the dynamic response of the sensorless drive with a
load disturbance.The load torque varies from 2Nm to 4Nm,
at a constant speed of 600 rpm. In response to disturbance
acting in the electrical system, the actual velocity deviates sig-
nificantly from the reference. It should be remarked that
when the load changes, the speed response with ATEKF-
based observer is faster than the one with EKF-based
observer.

Experiment 4 (dynamics in parametermismatch). In order to
further verify the robustness against model-plant parameter
mismatches of the ATEKF, the change in stator resistance
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is considered. When the motor is running, stator resistance
increases due to temperature. To simulate this condition, the
stator resistances in ATEKF and EKF module are reduced
to 80%. This is equivalent to the stator resistances which
increased to 125% in PMSM. The machine is still accelerated
from 0 rpm to 600 rpm at 0 s and the torque load is set to
2Nm.

It is obvious that the motor speed and position observed
by ATEKF can track their real value faster than EKF during
the transient. A comparison is made between results of
Experiments 2 and 4. Compared to Figure 3, Figure 5 shows
that the increases in dynamic and steady errors of the ATEKF
are obviously smaller than those of the EKF. This means that
the performance, which results from the conventional EKF,
is influenced heavily by increase in uncertainty, while in the
proposed ATEKF the influence of the uncertainty is very
small. Good robustness of ATEKF is verified.

The experimental results show that the ATEKF has strong
robustness against model-plant parameter mismatches and
good real-time state tracking ability.

6. Conclusion

To obtain satisfactory tracking results of EKF, the designers
are required to have good knowledge about both the dynamic
process and measurement models. Moreover, the real-time
digital implementation of extended Kalman filters algorithm
for sensorless FOC requires a very fast signal processor
to perform complex mathematical calculation. The above
demands are widely regarded as main limitations to apply
EKF to PMSMs in the industrial field. So this paper proposes
a novel extended Kalman filter called adaptive two-stage
extended Kalman filter, which has the characteristics of both
AFEKF and TSEKF. To design the ATEKF, the AFEKF is
firstly designed. Then AFEKF is decoupled into two parallel
filters to formulate ATEKF. Experimental results verified the
robustness and strong tracking ability ofATEKF.On the other
hand, the ATEKF algorithm provides a new idea to solve
computational complexity and allows us to use cheaper DSP
in practical application.
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