
Timing Estimation for Behavioral Descriptions

Doron Mintz and Carlos Dangelo

LSI Logic Corporation

Abstract

Behavioral, or high-level synthesis (HLS)

generally produces an RTL code which in

turn is synthesized into a netlist. The RTL

code that is generated by the HLS pTogram

needs to meet user constraints such as clock

cycle, available function units, area, etc.

This paper shows that most synthesis pTo-

gTams will not meet the user timing con-

straint in many cases. As a Tesult, a gen-

erated design might be functionally incor-

rect. we pTesent an algorithm for estimat-

ing the minimum clock cycle for a synthe-

sized design. The algorithm considem false

paths, interconnect, wire and control unit de-

lays to derive the minimal clock cycle time.

A method that uses the a~gorithm to syn-

thesize behavioral descriptions that meet the

useT timing constraints is also given.

Most HLS system perform scheduling and binding

of the behavioral code at separate stages of t he synthe-

sis. In the scheduling step, function units are assigned

to clock cycle time slots where only the intrinsic de-

lay on the function units is taken into consideration.

Only at the binding stage, the operators that repre-

sent the behavioral code are bound to actual function

units. In this stage, mutually exclusive operations can

be assigned to the same function unit (sharing). The

binding algorithm tries, among others, to minimize

the number of different signals (or variables) that are

input to the same function unit and thus save on mul-

t iplexing costs (delay and area). However, most de-

signs will end up multiplexing the inputs to some of

the function units. This additional delay may result in

a larger than the clock cycle time needed for a sched-

uled register to register path.

Even-systems t~at do-perform both scheduling and

binding at the same time usually fail to consider

the delavs that multirdexers. registers. wires. and the. . ,“

control logic add to the datapath elements intrinsic

delays [l O]. This overhead delay is found to be very

0-81 86-5785-5/94 $03,0001994 IEEE

significant especially in large control oriented designs

where man y of t he function units are shared. At times,

both the delay and area overhead attributed to mul-

tiplexer at the inputs of shared function units and

registers is as large as the function unit’s or regist er’s

delay and area.

For designs which the timing, for example, is very

critical, a post processing procedure can traverse the

bound design and reduce delays by splitting multi-

plexer and adding functional units. This can cause

area overhead and sub-optimal solutions. In order to

find out if the design meets or exceeds the timing con-

straints all paths need to be checked while ignoring

possible false paths. This could be very time consum-

ing for large designs.

Next we briefly talk about related research and in

Section 2 we present an average case linear time algo-

rit hm to estimate the minimal clock cycle for a design.

Section 3 demonstrates how this algorithm is used to

arrive at a timing correct design and Section 4 shows

experiment results. Section 5 presents concluding re-

marks.

1 Related Work

Operator delays are the minimal information needed

for a datapath scheduling algorithm. Early schedul-

ing algorithms assigned unit delays to each one of the

operators regardless oft heir actual delay[6]. More ma-

ture algorithms allow for variable operator delays as

well as chaining, pipelining, and multicycle operations

[7]. Still, most algorithms do not consider the effect

of the interconnect on the actual timing. Chippe [1],

Adam[4] and other synthesis systems that do use es-

timates of timing (and area) generally do not take

interconnect delay into consideration. Chippe [I] does

consider bus delays but for the purpose of estimating

the total time i.e. the critical path time. In [5] the

“best” clock cycle is computed as the largest function

unit delay or the length of the critical path divided by

the number of the cent rol steps. Again, no considera-

tion of interconnect delays.

Recently more researchers recognize the fact that

42

interconnect delavs become more and more imDor-.
tant. In [2] the fact that resource sharing introduces

mult iplexers and thus increases the delay h discussed.

ISIS [2] tries to optimize area and timing by chang-

ing the allocation and the sharing. It uses a low level

timing analyzer to compute the timing. This timing

analyzer does not consider the effect of false paths in

the design. It also seems that the optimization is done

on a state by state basis.

Hsieh et aL[3] present TinkerTool, a behavioral syn-

thesis tool that derives a schedule that meets the

user clock cycle constraint. TinkerTool exhaustive y

searches all the paths in the scheduled and bound

control and dataflow graph (CDFG) to find the crit-

ical path. The maximum interconnect delays for ev-

ery operator input is added to it’s intrinsic delay and

the CDFG is scheduled again. The control unit time

seems to be added once to the control step time.

TinkerTool’s model of the delays is very simplistic.

A critical path may run through a non multiplexed

operator input yet the tool adds the maximal input

delay to the intrinsic delay. This will result in longer

and wrong critical pat h timing. Moreover, the iter~

tive process of changing the delays does not promise

convergence at all.

This paper presents a better model for the path

delays that incorporates the interconnect delays and

control unit delays. We also present an average time

linear algorithm to compute the critical path delay

(unlike the exhaustive search used by TinkerTool).

Finally we show a method for deriving the desired

schedule that will converge.

2 Estimating the timing of a

scheduled description

A behavioral code is usually synthesized into a syn-

chronous design. At the end of the clock cycle, values

are stored in the registers and these values are used in

the beginning of the next. The values need to be cor-

rect and read y before they are latched in. Therefore,

the clock cycle time should be larger than any register

to register path in the design. As mentioned before, if

delay overhead is not considered while scheduling, the

given clock cycle might not be enough for the design

to be functionally correct.

The problem is to find the minimal clock cycle time

such that for each register to register path in the de-

sign there is enough time for the values to propagate

from the source to the end register.

First we consider the netlist that is generated by the

RTL synthesis tool. It is possible that some paths in

the netlist are not relevant to the functionality of the

design. Therefore, a regular delay predictor cannot

predict the actual clock cycle from the netlist. Con-

sider for example the code in Figure 1. Given only

one multiplier, the code needs to be scheduled in two

steps and the multiplier will be shared between the

two multiplications. The corresponding netlist is seen

in Figure 2. Since the multiplier is chained to the

y = C1+C2;

z=y*c2;

W= Z*C2. 7
X= w-cl;

Figure 1: HDL code.

adder in the first clock cycle and to the subtracter in

the second, a register to register path {cl,+, *,-,x} ex-

ists in the netlist but it will not be relevant for the

functionality of the design. Therefore, state informa-

tion is also necessary to~dentify the real paths.

cl C2
—1 \

JJJ!-
..—

/’‘

+

cl ,x

[r—

*-. v>. *,,& .L. ,.2.,+/ ,,’

r
“.
Y ‘Y

L-
x

Figure 2: RTL netlist for the HDL code.

The solution then is to extract only those paths that

will actually be executed. If this “is to b: done at

the netlist ievel, the estimator needs to consider the

control signals to the multiplexer. Several scans of

the netlist will be necessary. Another possibility is to

sensitize the paths [8].

We will show that by constructing a new graph from

the control and data-flow graph (CDFG) the delay can

be estimated in one pass.

We construct a weighted graph in the following way:

1.

2.

For each operator in the CDFG crest a node in

the graph. Attribute each node with the intrinsic
delay of the unit it is bound to.

Add arcs between nodes that correspond to

chained operators. Assign to the arcs weights

43

3.

4.

5.

6.

7.

8.

that correspond to the delay on the input mul-

tiplexer on the function units which the destina-

tion operator is bound to.

Add zero weighted arcs between nodes that cor-

respond to operators that conditionally depend

on each other (read-write, write-read, and write-

write combinations).

Crest two dummy nodes marked as source and

destination. Assign zero weights to both.

Each data arc that crosses a clock cycle line (in

the CDFG) represents a store operation in the

design. For each such arc crest a node in the

graph. Connect that node to the source of the

arc. Attribute this node wit h the delay associat ed

with the corresponding register. Attribute the arc

with the delay of the multiplexer that inputs to

that register.

Direct the output of this node to the destination

node? Assign a zero weight to that arc.

Direct a zero weight arc from the souTce node to

the destination of the original arc in the CDFG.

For each arc that flows from a ~ort or a constant.
in the CDFG, connect the source node to the arcs

destination (zero weight).

We have constructed a weighted graph that contains

the original operators with the addition of dummy op-

erators in place of arcs that cross the clock cycle lines.

This graph represents a simplistic model of the ac-

tual flow of the design. One factor that was not taken

into account waa the need for the control signals to

function units and multiplexer to be stable before

the computation. This might add a delay on paths

and make non critical paths into critical ones.

One option is to compute the control signals at the

end of the execution cycle and therefore the delay on

the control unit can be added once to the maximal

path delay. Under this model, all control values are

ready at the next clock cycle and thus the graph that

we constructed is a model of that design. This, how-

ever, is a restrictive model since it enforces that only

one control related evaluation be done at each clock

cycle. In a cent rol oriented design (one that cent tins

nested Ifs and Loops) this means that many clock cy-

cles will be needed to evaluate the conditions even

though there might be enough resources to do it in

much less. Moreover, if the control signals to multi-

plexer, for example, are not needed to begin a cycle

computation, the control can execute in parallel with

the execution of the datapath. Our algorithm takes

care of the control related issues too.

In our H LS system, the evaluation of t he conditions

is a part of the datapath. Conditional arcs connect

the evaluation operators and the operators that are

executed depending on the condition. Also, results of

condition evaluation are stored in registers if they are

needed in clock cycles other than the one that they

are computed in. The database cent ains information

about the membership of operators in the control re-

lated hierarchy of the original code. We therefore add

the following steps to the graph construction.

9.

10.

For each operator: if the condition for it’s execu-

tion is computed in it’s clock cycle then add an

arc between the condition evaluation and the op-

erator nodes in the graph, otherwise add an arc

from the source to the corresponding node.

Let cu be a global variable that stores the maxi-

mal delay through the control unit. Assign a ref-

erence to this variable aa the weight on the arcs.

For each operator inuut that is multiplexed, add.
a similar arc (from the condition evaluation or

source). The arc weight is computed aa a refer-

ence to cu with the addition of the multiplexer

delay.

All souTce to destination paths in this graph are
actual paths in the design execution. The problem
now is to find the maximal such path.

One obvious solution is to generate all the source to
destination paths and sort based on their time. Ob-

viously this could be non linear in time and space

complexity. A linear complexity algorithm would be

preferable.

It seems that the solution is a regular depth first

search traversal. Each node needs to be visited only

once and after all the output arcs are considered the

maximal delay to the destination is recorded. Unfor-

tunately, this will not result in the correct estimate.

Since some paths span more than one clock cycle (mul-

ticycle operations), the actual clock cycle is the path

time scaled by the number of steps. Given that, we try

to perform the same traversal but recording the scaled

estimate. For this scheme to work, it is necessary that

the following will hold:

The mazimum scaled path j%om one node

to “destination” can be computed from the

maximum path times of its children.

This, however is not true. Consider the graph in Fig-

ure 3. Assume that the delays are 0.5 for opl, 2 for

op2, 1.5 for op3 and 5.2 for op4. The maximum length

path from (soume and) op2 to destination is {op2,
op4} which is 3.6 (scaled for two cycles). However, if
the previous assumption holds then the maximal path
at opl will be {opl, op2, op4} which is 3.85 (scaled),
while the path {opl, op2, op3} is 4.0 and is the re-
quested value. Therefore, it is not possible to compute
only one maximal value at each node. On the other
hand it is not necessary to keep all the paths times
at each node either, only one time is needed for each

scale factor. The maximum number of values that
need to be saved is the length of the longest path that
contains multicycle operations. This cannot be more
than the number of control steps in the graph.

44

Figure 3: Hypothetical example.

Given that, each node considers all the values from

it’s successor nodes and keeps the maximal value for

each scale factor. The maximum can come from dif-

ferent successors for different scale factors. Each node

computes it’s maximal value aa the maximum of these

values (scaled by the scale factor). The correct infor-

mat ion is thus propagated back to the source node.

The algorithm is given below. Each node has an

array Pat hs such that Paths [i] is the maximal accu-

mulated delays along a path from this node to desti-

nation that spans i clock cycles. Initially Path[i] =

–00. Each node also remembers its maximal such

i. To execute this algorithm the call is: Longest-

PathTo(sou~ce, destination).

Begin
If not visited

For each output arc

Let Child be the destination of the arc

FindLongestPath(Child, destination)

for each valid i

let j be the path length in clock cycles

for that path including ThisNode

ThisNode.Paths~] =

rnaz{Child. Paths[i] + Arc. Weight+

ThisNode. Weight,

ThisNode.Paths[j]}

ThisNode.Max = max{Paths[k]/k} Vk

End

Let n and v be the number of operators and arcs in

the original CDFG and let s be the number of control

steps in the design. The new graph contains at most

n+v+ z nodes (since in the worst case all arcs cross the

cycle line) and at most 4V arcs (for the same reason,

the control arcs, and the connections to source and

destination). Each arc is considered only once and
for each arc the father node considers all the possible
scale factors (in the worst case – the number of steps).
The complexity is therefore O(vs).

Let d be the depth of the graph. d is the length of

the path that spans the maximum number of control

steps. In the average case, d should be much less than

s. The reason being that long multicycle paths result

in area overhead since all the inputs along the path

need to be preserved and stable throughout it’s exe-

cution. This means that more registers and sometimes

function units will be needed while the saving in time

can be insignificant, Minor changes to the schedule,

such sa splitting such paths so that intermediate val-

ues are latched, can reduce the length of these paths

and thus reduce d.

The time complexity of the algorithm in the aver-

age case is thus linear with the number of arcs in the

CDFG.

3 Synthesizing timing correct designs

The algorithm presented in the previous section es-

timates the minimal clock cycle time needed for the

design to be functionalist y correct. This estimate needs

the delay added by the control unit and does not con-

sider the wire delays.

A HLS system needs to synthesize a design that

meets the user clock cycle constraint and therefore

these factors should be taken into account. Since esti-

mation of these missing values is not available before

the actual synthesis we propose that the synthesis will

be performed in several iterations.

At first, the behavioral description is synthesized

in the classic manner where only the intrinsic delays

are considered. We use the Force Directed Scheduling

algorithm [7]. After scheduling and binding, the over-

all area for the datapath and the control unit can be

estimated. This area can be used to extract bounds

on the wire delays. The delay that is contributed by

the control unit can be estimated by a regular delay

predictor as the maximum path in the cent rol logic.

To find a schedule that meets the user clock con-

straints we use a simple search scheme that converges

in relatively few steps and does not impose any hard-

ships on the scheduler. We will make the search trans-

parent to the scheduler by trying to find a clock cycle

time that will eventually result in a correct timing

(according to the user clock cycle). Essentially we do

not change the CDFG, only the clock cycle time. Un-

der this scheme, given a user clock cycle C we try to

schedule the design with a clock cycle c (c s C).

After the first iteration and estimation of the tim-

ings we derive and fix the control unit time so that all

arcs that refer to cu have a determined value. This

45

is a good enough approximation since the control unit

criti~al path d~es ~~t change much between the differ-

ent schedules. The area for the design will also remain

approximately the same for different schedules so the

wire delays can be fixed too. We can now find e, the

minimum clock time for the synthesized design. Let c

and C be as above and w be the average wire delay.

We already have one synthesized design that can run

correctly at e + aw (where a is related to the aver-

age number of chained units in a clock cycle). With

the lack of any other information we assume that the

ratio ~ will be similar when we synthesize with other

clock cycles. We therefore choose c’ = :(C – aw) as a

new clock cycle and schedule again (no dummy oper-

ators). In most cases this should result in having two

data points bounding the wanted clock cycle. If not,

we choose & again in the same way. Once two bound-

ing values are found, a simple binary search can find

the needed value. If the accepted tolerance is Ins, for

example, this process can takes about 3 iterations.

As a result of this process we get a synthesized de-

sign which stands a better chance of meeting the user

clock constraints when synthesized into a netlist. The

time overhead spent in this stage is significantly less

than the time that will be spent in completing a de-

sign cycle that goes through several RTL and logic

syntheses because of timing problems.

4 Experimental results

We have applied our algorithm to many designs. Once

a schedule that meets the user clock cycle constraint

is found the RTL code is created. The critical paths

identified by the algorithm where verified to be less

than the user’s clock cycle.

The results were verified after RTL synthesis us-

ing a static timing analyzer. For designs that contain

chained operators our algorithm was ‘a worst case es-

t imate because of issues discussed above.

As an example we take the well known elliptic wave

filter description. We try to synthesize a design that

meets a 20ns clock cycle. We omit the details about

delays of functiomd units and interconnect since these

are specific to the technology we used. The first at-

tempt to schedule with a 20ns clock cycle resulted in a
minimal clock of 30ns. This is the result of a chaining

of two aclders whose delays are approximately 10ns.

The longest path in that clock cycle consists of the

two adders and three multiplexer and a register. The

delays on these units add up to 30ns. This illustrates

the importance of our approach. The next attempt

using a 13.25ns clock results in a 17ns estimate. A

third attempt with a 16.6ns clock results in 20. 15ns

estimate. This is within our tolerance and thus the

search ends.

5 Conclusion and Further Research

We have shown that some real design issues are fre-

quently not considered in many HLS systems. It is

not surprising that there are many more dimensions

to the minimization problems that HLS systems try

to solve.

We presented an algorithm for better estimating the

timing of a scheduled description. This algorithm have

been &ed to synthesize a design that wH1 meet the

timing constraint. The algorithm is also integrated

into an automated constraint driven partitioning algo-

rithm for behavioral descriptions. Based on the timing

estimation partitions are created such that the timing

does not violate users constraints.

In a recent publication [9] the authors present algo-

rit hms to estimate lower bounds on performance and

resources for a given CDFG. The performance (i.e.

clock cycle) estimation does not take into consider-

ation the interconnect delay. We believe that such

algorithms could be combined to estimate the inter-

connect area and delay together with a better estimate

of the clock cycle time. This might be a direction that

we will follow to extend our research.

Further improvements to the methods we presented

can include better computation of the control unit de-

lay specific to each unit and better wire delay estim~

tion. When such wire delay estimates are available

they could be added to the arcs in the graph aa op-

posed to the heuristic aw factor. Also, better models

of delays for chained units can be derived and inte-

grated into the computation. It is also possible that a

better scheme of scheduling and binding can be found

such that no iterations will be needed.

References

[1]

[2]

[3]

[4]

[5]

F. Brewer and D. Gajski. Chippe: A system

for constraint driven behavioral synthesis. IEEE

Transactions on Computer-Aided Design of Inte-

g~aged CiTcuits and Systems, 9(7):681-695, July

1990.

B. Gregory, D. MacMillen, and D. Fogg. ISIS:

A system for performance driven resource shar-

ing. In Proceedings of the 29th Design Automa-

tion conference, pages 285–290, 1992.

Y-W Hsieh, S. P. Levitan, and B. M. Pangrle. In-
corporating interconnection delays in VH DL be-

havioral synthesis. In dth A CM/SIGDA Physical

Design Workshop, Lake Arrowhead, California,

April 1993.

R. Jain, K. Kucukcakar, M. J. Milnar, and

A. Parker. Experience with the ADAM synthesis

system. In Proceedings of the 26th Design Au-

tomation conference, pages 56–61, 1989.

R. Jain, M. J. Milnar, and A. Parker. Area-time

model for synthesis of non-pipelined designs. In

46

Proceedings of the IEEE International Confer-

ence on Computer Aided Design, pages 48–51,

1988.

[6] M. C. McFarland. Using bottom-up design tech-

niques in the synthesis of digital hardware from

abstract behavioral descriptions. In Proceedings

of the 23th Design Automation conference, pages

474-480, July 1986.

[7] P. G. Paulin and J. P. Knight. Force-directed

scheduling for the behaviral synthesis of ASICYS.

IEEE Transactions on Compute T-Aided Design

of IntegTaged Circuits and Systems, 8(6) :661–679,

June 1989.

[8] K. Roy and J. A. Abraham. A novel approach to

accurate timing verification using RTL descrip-

t ions. In PToceedingg of the 26th Design A utoma-

tion conference, pages 638–641, 1989.

[9] A. Sharma and R. Jain. Estimating architectural

resources and performance for high-level synthe-

sis applications. IEEE Tmnsactions on VeTy

Large Scale Integration, 1(2):175–190, June 1993.

[10] J-P Weng and A. C. Parker. 3D scheduling: High-
level synthesis with floorplanning. In Proceedings
of the 28th Design Automation conference, pages

668–673, 1991.

47

	Main Page
	ISSS94
	Front Matter
	Table of Contents
	Author Index

