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Abstract

In this work, we present a Lagrangean relaxation of the hull-reformulation of discrete-continuous optimiza-

tion problems formulated as linear generalized disjunctive programs (GDP). The proposed Lagrangean relax-

ation has three important properties. The first property is that it can be applied to any linear GDP. The second

property is that the solution to its continuous relaxation always yields 0-1 values for the binary variables of

the hull-reformulation. Finally, it is simpler to solve than the continuous relaxation of the hull-reformulation.

The proposed Lagrangean relaxation can be used in different GDP solution methods. In this work, we ex-

plore its use as primal heuristic to find feasible solutions in a disjunctive branch and bound algorithm. The

modified disjunctive branch and bound is tested with several instances. The results show that the proposed

disjunctive branch and bound performs better than other versions of the algorithm that do not include this

primal heuristic.

1. Introduction

Lagrangean relaxation of an optimization program is a widely-used and powerful tool to solve problems.

The review work by Guignard[1] discusses how Lagrangean relaxation can be used in different solution meth-

ods and applications. Fisher[2] provides a theoretical background for Lagrangean relaxation of mixed-integer

linear programs (MILP). The general idea in the Lagrangean relaxation is to “dualize” some of the constraints5

in the optimization problem (i.e. remove some constraints from the feasible region of the problem, and pe-

nalize the violation of such constraints in the objective function). This approach is particularly useful in

problems with complicating constraints. Some of these problems appear in planning[3], scheduling[4], facil-

ity location[5], and stochastic programming problems[6]. In this type of problems, a Lagrangean relaxation

is simpler to solve than the original problems.10

A particular method that uses Lagrangean relaxation to solve MILPs is the Lagrangean relaxation based

branch and bound[7]. This method follows the same general idea as the LP based branch and bound, but it
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solves the Lagrangean relaxation at every node instead of the LP relaxation. This method can be useful in

problems in which, by dualizing the complicating constraints, the Lagrangean relaxation is simpler to solve

than the LP relaxation. One of the main difficulties in automating this strategy, or any other method that15

uses Lagrangean relaxation, is identifying the complicating constraints, which can be non trivial and problem

specific. Typically, the modeller needs to identify the problem structure and select the constraints to dualize,

or needs to modify the model to allow such a structure[1].

Linear discrete-continuous optimization problems are typically formulated as MILPs. An alternative

framework for modelling these problems is generalized disjunctive programming (GDP)[8]. GDP models20

discrete-continuous problems through the use of disjunctions, algebraic equations, and Boolean and contin-

uous variables. Linear GDP problems can be reformulated as mixed-integer linear programs (MILP) and

solved with existing MILP solvers. The GDP-to-MILP reformulations are the Big-M (BM)[9], multiple-

parameter Big-M (MBM)[10] and Hull reformulation (HR)[11, 12]. The HR reformulations is at least as

tight, and typically tighter, than the other two. The downside of the HR is that it yields a larger MILP formu-25

lation. Alternatively to the MILP reformulation, GDP problems can be solved with specialized algorithms.

In the case of linear GDP problems, the disjunctive branch and bound is a powerful solution method[11, 12].

In this work we first present a Lagrangean relaxation of the HR for linear GDPs. The proposed La-

grangean relaxation is an MILP, and it has three important characteristics. The first one is that the solution

to the continuous relaxation of the proposed Lagrangean relaxation always yields 0-1 values for the binary30

variables of the HR. The second one is that it is easier to solve than the original problem (i.e. the HR). Fur-

thermore, it is easier to solve than the continuous relaxation of the HR. The third one is that this relaxation

can be applied to any linear GDP. This means that there is no need to specify which are the complicating con-

straints in different problems, so automating a method that uses this Lagrangean relaxation can be achieved.

We use the proposed Lagrangean relaxation to improve the performance of the disjunctive branch and bound35

algorithm. In particular, we evaluate the Lagrangean relaxation at every node and use its solution as heuristic

for finding feasible solutions to the problem. The continuous relaxation of the Lagrangean relaxation always

provides 0-1 values to the binary variables, so the value of the 0-1 variables is fixed and a small LP is solved

in search of feasible solutions.

This paper is organized as follows. Section 2 presents a brief background on Lagrangean relaxation of40

MILPs, generalized disjunctive programming and the disjunctive branch and bound. Section 3 presents the

proposed Lagrangean relaxation of the HR. This section presents the formulation and main properties. The

proposed Lagrangean relaxation is then incorporated into a disjunctive branch and bound, which is presented

in Section 4. Section 5 demonstrates the performance of the proposed disjunctive branch and bound in an

illustrative example. The performance of the disjunctive branch and bound with the Lagrangean relaxation45

is evaluated against other versions of the disjunctive branch and bound with several instances. The results of
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these instances are presented in Section 6.

2. Background

2.1. Lagrangean relaxation of mixed-integer linear programs

In this section we present a brief review of the Lagrangean relaxation of mixed-integer linear programs.50

In this work, we consider the complicating constraints to be equality constraints. We refer the reader to the

work by Guignard[1] for a comprehensive review and for proofs of the Theorems and relations presented in

this section. Throughout the manuscript, for any given optimization problem (Q) we denote v(Q) its optimal

value and F (Q) its feasible region.

Without loss of generality, consider the following general mixed-integer linear program:

min cTx

Ax = b

Cx ≤ d

x ∈ X

(P)

whereX contains the integrality and sign restrictions on x (e.g. X = Rn−q+ ×{0, 1}q). Consider thatAx = b55

are the complicating constraints (i.e. the problem becomes much simpler to solve without them). Let λ be a

vector of weights, namely the Lagrangean multipliers.

The Lagrangean relaxation of (P) is:

min cTx+ λ(Ax− b)

Cx ≤ d

x ∈ X

(LR1λ)

In (LR1λ), the complicating constraints (Ax = b) have been “dualized” (i.e. the slacks of the compli-

cating constraints have been added to the objective function, and the complicating constraints dropped from

the formulation). Note that if these constraints are inequalities (Ax ≤ b), then the corresponding Lagrange60

multipliers are non-negative.

It is easy to see that (LR1λ) is a relaxation of (P), since F (P) ⊆ F (LR1λ). Therefore, v(LR1λ) ≤ v(P)

in general. When x ∈ F (P) then v(LR1λ) = v(P) (when the complicating constraints are equalities).

Theorem 2.1.

1. If x(λ) is an optimal solution of (LR1λ) for some λ, then cTx(λ) + λ(Ax− b) ≤ v(P).65

2. If in addition x(λ) is feasible for (P), then x(λ) is an optimal solution of (P), and cTx(λ) = v(P)
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Theorem 2.1 states that Lagrangean relaxation always provides a lower bound for the MILP problem.

The best possible lower bound that the Lagrangean relaxation provides can be obtained with the following

optimization problem:

max
λ

v(LR1λ) (LD)

Problem (LD) is called the Lagrangean dual of (P) with respect to the complicating constraints Ax = b.70

Let (RP ) be the continuous relaxation of (P). In general, v(RP ) ≤ v(LD). In the particular case in

which the Lagrangean dual has the integrality property (i.e. the extreme points of {x|Cx ≤ d} are in X),

v(RP ) = v(LD).

In this work, we present a Lagrangean relaxation applicable to the MILP reformulation of problems

formulated as GDPs. In the next section, we introduce the GDP formulation and the two main GDP-to-MILP75

reformulations.

2.2. Linear generalized disjunctive programming

GDP is an alternative framework for modelling discrete-continuous optimization problems. In this section

we present the formulation for linear GDPs, as well as the two traditional GDP-to-MILP reformulations: the

BM and the HR. For a comprehensive review on formulating GDP problems, as well as the theory for general80

nonlinear GDPs, we refer the reader to Grossmann and Trespalacios[13].

The general linear GDP formulation can be represented as follows:

min cTx

s.t. Gx ≤ g

∨
i∈Dk

 Yki

Akix ≤ aki

 k ∈ K

Y
i∈Dk

Yki k ∈ K

Ω(Y ) = True

xlo ≤ x ≤ xup

x ∈ Rn

Yki ∈ {True, False} k ∈ K, i ∈ Dk

(GDP)

In (GDP), the objective is to minimize a linear function of the continuous variables x ∈ Rn. The global

constraints of the problem (Gx ≤ g) are enforced regardless of the discrete decisions. In (GDP) there is a

set of disjunctions k ∈ K. Each disjunction involves i ∈ Dk disjunctive terms that are connected by an ”or”

operator (∨). Each disjunctive term has an associated polyhedron (Akix ≤ aki) and a Boolean variables (Yki).85

Exactly one disjunctive term must be selected in each disjunction ( Y
i∈Dk

Yki). The constraints corresponding
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to the selected disjunctive term (Yki = True) are enforced, while the ones corresponding to non-selected

terms (Yki = False) are ignored. Finally, the Ω(Y ) = True represents the logic relations between the

Boolean.

The (BM) reformulation is as follows:

min cTx

s.t. Gx ≤ g

Akix ≤ aki +Mki(1− yki) k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

Hy ≥ h

xlo ≤ x ≤ xup

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(BM)

In (BM), the objective function and global constraints remain unchanged. The Boolean variables Yki are90

replaced by binary variables with a one-to-one correspondence: Yki = True is equivalent to yki = 1 and

Yki = False is equivalent to yki = 0. Constraint
∑
i∈Dk

yki = 1 enforces that exactly one disjunctive term

is selected per disjunction. When a disjunctive term is selected (yki = 1), the corresponding constraints

are enforced (Akix ≤ aki). When a term is not selected (yki = 0), the corresponding constraints become

redundant for a large enough Mki (Akix ≤ aki + Mki). The logic constraints Ω(Y ) = True are easily95

transformed into integer linear constraints (Hy ≥ h)[14, 13].

The (HR) formulation is given as follows:

min cTx

s.t. Gx ≤ g

x =
∑
i∈Dk

νki k ∈ K

Akiνki ≤ akiyki k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

Hy ≥ h

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(HR)

In (HR), the objective function and global constraints remain unchanged, the Boolean variables are re-

placed by binary variables, and the logic relations transformed into linear constraints. In this reformulation,

the continuous variables are disaggregated. The constraint xloyki ≤ νki ≤ xupyki enforces that when a term
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is selected, the corresponding disaggregated variable must lie within the bounds. When it is not selected, the100

disaggregated variable becomes zero. The constraint x =
∑
i∈Dk

νki enforces that the variables x take the same

value as the disaggregated variables of the active terms. When a term is selected (yki = 1) the constraint

is enforced for the disaggregated variable (Akiνki ≤ aki). When it is not active (yki = 0), the constraint

is trivially satisfied (0 ≤ 0). Note that this reformulation for linear GDPs is equivalent to the convex hull

representation in disjunctive programming[15].105

The (BM) reformulation generates a smaller MILP, while the (HR) provides a formulation that is as tight,

and generally tighter[16].

The solution of linear GDPs typically involve reformulating them as MILPs, and then solved using an

LP-based branch and bound method (or one of its variants). Alternatively, the GDPs can be solved by a

specialized algorithm: the disjunctive branch and bound.110

2.3. Disjunctive branch and bound

The idea behind the disjunctive branch and bound[11, 12] is to branch directly on the disjunctions, while

using the continuous relaxation of the BM or HR of the remaining disjunctions. Let (R-BM) and (R-HR) be

the continuous relaxation of (BM) and (HR), respectively. The disjunctive branch and bound is as follows:

For a node Np, let zp denote the optimal value of (R-BM) or (R-HR) of the corresponding GDPp, and115

(xp, yp) its solution. Let L be the set of nodes to be solved, and GDP0 be the original GDP. Let zup be an

upper bound for the optimal value of the objective function z∗.

0. Initialize. Set L = N0, zup =∞, (x∗, y∗) = ∅.

1. Terminate. If L = ∅, then (x∗, y∗) is optimal and algorithm terminates.

2. Node selection. Choose a node Np ∈ L, and delete it from L. Go either to 3a or to 3b.120

3a. Bound. Solve the (R-HR) of GDPp corresponding to Np. If it is infeasible, go to step 1. Else, let zp

be its objective function and (xp, yp) its solution.

3b. Bound. Solve the (R-BM) of GDPp corresponding to Np. If it is infeasible, go to step 1. Else, let zp

be its objective function and (xp, yp) its solution.

4. Prune. If zp ≥ zup, go to step 1.125

If yp ∈ Zq let zup = zp and (x∗, y∗) = (xp, yp). Delete all nodes Nr ∈ L in which zr ≥ zup, and go to

step 1. Else, go to step 5.

5. Branch. Select a disjunction k ∈ K such that yki /∈ {0, 1} for some i ∈ Dk. For every i ∈ Dk,

construct the corresponding GDP (GDP ip) by setting the constraints corresponding to the disjunctive term i

as global, and removing the Boolean variables and constraints corresponding to term i
′ 6= i; i

′ ∈ Dk. Add130

|Dk| new nodes, corresponding to GDP ip, to L. Go to step 1.

It is easy to see that this algorithm terminates finitely, in the worst case evaluating every possible node.

This algorithm can be trivially modified to consider a tolerance for termination ε > 0. The HR disjunctive
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branch and bound makes use of Step 3a at every node, while the BM disjunctive branch and bound makes

use of Step 3b at every node. It is also possible to have a hybrid disjunctive branch and bound in which135

some nodes are solved using the BM and others using the HR. It is important to note that, as the disjunctive

branch and bound progresses, the GDP problems that correspond to each node become smaller. In particular,

the constraints that correspond to the disjunctive terms that were not selected are removed from the problem

formulation in the subsequent nodes.

Note that the worst case involves
∏
k∈Dk

|Dk| leaf nodes, which is fewer than the worst case number140

of leaf nodes in a binary branch and bound algorithm (bounded by 2
∑

k∈K(|Dk|−1)) except when |Dk| =

2,∀k ∈ K (in which case the maximum number of leave nodes for both algorithms is 2|K|). The worst case

for number of evaluated nodes in the disjunctive branch and bound depends on the sequence in which the

disjunctions were branched, but it is smaller than the binary branch and bound except when |Dk| = 2,∀k (in

which case it is the same: 2|K|+1 − 1).145

It has been shown that the disjunctive branch and bound has advantages over the binary branch and

bound[11]. In this work, we improve the search of feasible solutions in the disjunctive branch and bound by

solving a Lagrangean relaxation of the HR at every node.

3. Lagrangean relaxation of the hull-reformulation of GDP

In this section we present a Lagrangean relaxation of the HR of any linear GDP. This relaxation is easier150

to solve than the continuous relaxation of the HR. The continuous relaxation of the proposed Lagrangean

relaxation can be proved to always yield 0-1 values to the binary variables of the reformulation. We first

present the Lagrangean relaxation for the case in which GDP does not involve logic relations, and we then

discuss its extension to the case in which it does. We note that these properties can be extended to nonlinear

convex GDP. This is achieved by using the theory for convex GDPs by Ruiz and Grossmann[17], which155

extends part of the rich theory of disjunctive programming[15] to GDPs with convex constraints.
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3.1. Lagrangean relaxation of the hull-reformulation of GDP without logic relations

For given Lagrangean multipliers (λkj), the following Lagrangean relaxation can be applied to the hull-

reformulation of any linear GDP:

min cTx+
∑
k∈K

∑
j∈Jk

λkj(xj −
∑
i∈Dk

νki)

s.t. Gx ≤ g

Akiνki ≤ akiyki k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk

x ∈ Rn

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(LHRλ)

where Jk is the set of variables that appear in disjunction k.

Property 3.1. The Lagrangean relaxation (LHRλ) can be applied to any linear GDP.

Property 3.1 is trivial, since the decomposition is applied to the MILP reformulation of the general form160

of linear GDP.

Note that in problem (LHRλ) the variables xj and νki do not appear together in any constraint. Further-

more, variables νki and νk
′
i
′

for k
′ 6= k; i ∈ Dk; i

′ ∈ Dk′ do not appear together in any constraint either.

Therefore, (LHRλ) can be decomposed into |K|+ 1 simpler problems.

The first problem, that involves only the continuous variables and global constraints, is as follows:

min cTx+
∑
k∈K

∑
j∈Jk

λkjxj

s.t. Gx ≤ g

x ∈ Rn

(LHR0)

The remaining k ∈ K problems, each one containing the νki variables corresponding to disjunction k,

are as follows:
min −

∑
j∈Jk

λkj(
∑
i∈Dk

νki)

s.t. Akiνki ≤ akiyki k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(LHRk)

Property 3.2. The optimal solution of (LHRλ) can be obtained by the summation of the optimal values of165

|K|+ 1 problems: v(LHRλ) = v(LHR0) +
∑
k∈K v(LHRk).
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Property 3.2 indicates that it is possible to solve |K|+ 1 smaller MILPs to solve (LHRλ). Furthermore,

(LHRλ) and each of these problems can be solved as an LP, as is shown in Property 3.3.

Property 3.3. Let (x̂, ŷ) be a vertex of the continuous relaxation of (LHRλ). Then, for every k ∈ K there

exists an i ∈ Dk such that ŷki = 1, and ŷki′ = 0,∀i′ ∈ Dk, i
′ 6= i.170

Proof. The proof is presented by analyzing the decomposed problem. Problem (LHR0) does not involve

any binary variable or disaggregated as decision variable. In problems (LHRk), only the binary variables yki

and the disaggregated variables νki, that correspond to the disjunction (k ∈ Dk) are optimization variables.

From Corollary 2.1.2 of Balas[15], for any vertex (ν̄, ȳ) of the feasible region of the continuous relaxation of

(LHRk) there exists a i ∈ Dk such that ŷki = 1, and ŷki′ = 0,∀i′ ∈ Dk, i
′ 6= i. Therefore, for every k ∈ K175

the vertices of their corresponding problem have {0, 1} values for yki. Since there are no constraints linking

the variables of the feasible region of each of the |K| + 1 problems, then all of the vertices of the feasible

region of the continuous relaxation of (LHRλ) have {0, 1} values for yki. �

Note that Property 3.3 indicates that every solution of (LHRλ) yields 0-1 values for the binary variables.

One of the main advantages of this property, together with 3.2, is that (LHRλ) can be solved by solving180

|K|+ 1 small LPs. The solution of (LHRλ) can be used as a heuristic for finding “good” feasible solutions

for (GDP). On the downside, this property indicates that the best possible bound that can be obtained from

(LHRλ) is the same as the optimal value of the continuous relaxation of (HR)[1].

3.2. Including logic relations in (LHRλ)

In cases in which there are logic relations between the Boolean variables of the GDP, (LHRλ) needs185

to be modified to preserve Properties 3.3 and 3.2. This can be achieved by either introducing additional

variables or including the propositional logic in the solution method[18]. Using the propositional logic in the

solution method enables a large set of tools that combine logic-based methods with optimization. The work

by Hooker[19] has established important theories and results in this field. However, the scope of this work

is to establish the properties of a general Lagrangean relaxation of (HR), as well as the basis for using this190

relaxation as primal heuristic. For this reason, we will present in this section a modified version of (LHRλ)

by introducing additional variables, and leave the integration of (LHRλ) with logic-based methods for future

work.
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Consider the following problem, that is equivalent to (GDP):

min cTx

s.t. Gx ≤ g

∨
i∈Dk


Yki

ȳki = 1

Akix ≤ aki

 k ∈ K

Y
i∈Dk

Yki k ∈ K∑
i∈Dk

ȳki = 1 k ∈ K

Hȳ ≥ h

xlo ≤ x ≤ xup

0 ≤ ȳki ≤ 1 k ∈ k, i ∈ Dk

x ∈ Rn

ȳki ∈ R k ∈ K, i ∈ Dk

Yki ∈ {True, False} k ∈ K, i ∈ Dk

(1)

Note that in (1), a continuous variable (0 ≤ ȳki ≤ 1) is introduced. The linear constraints that represent

the logic relations are expressed for ȳ. It is easy to see that (1) is equivalent to (GDP), in the sense that

Yki = True implies ȳki = 1, and Yki = False implies ȳki = 0. Note that (1) also has the structure

required: there are no logic relations between Boolean variables, and the global constraints and disjunctive

terms involve only continuous variables. It is possible to perform the (HR) reformulation of (1). After few

algebraic substitutions, the HR of (1) is as follows:

min cTx

s.t. Gx ≤ g

y = ȳ

x =
∑
i∈Dk

νki k ∈ K

Akiνki ≤ akiyki k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

Hȳ ≥ h

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk

x ∈ Rn

ȳki ∈ R k ∈ K, i ∈ Dk

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(2)
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For Lagrangean multipliers λ1, λ2, the following Lagrangean relaxation of (2) is obtained:

min cTx+
∑
k∈K

∑
j∈Jk

λ1kj(xj −
∑
i∈Dk

νki) +
∑
i∈Dk

λ2ki(yki − ȳki)


s.t. Gx ≤ g

Akiνki ≤ akiyki k ∈ K, i ∈ Dk∑
i∈Dk

yki = 1 k ∈ K

Hȳ ≥ h

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk

x ∈ Rn

ȳki ∈ R k ∈ K, i ∈ Dk

yki ∈ {0, 1} k ∈ K, i ∈ Dk

(3)

which decomposes into |K|+ 1 subproblems (where Hȳ ≥ h is a global constraint and appears in (LHR0)).

In some cases, the solution of (LHRλ) including the logic constraints for the original variables might still195

yield 0-1 values to the binary variables (e.g. it can still be solved as an LP). However, it might not be possible

to decompose (LHRλ) in smaller LPs (depending on the structure of the logic relations). Different methods

could make use of problem (LHRλ) to solve (GDP). For example, it can be used as heuristic in the search of

feasible solutions.

4. Lagrangean relaxation as primal heuristic in the disjunctive branch and bound200

The disjunctive branch and bound presented in Section 2.3 can be adapted to incorporate (LHRλ) as

primal heuristic. Before presenting the algorithm, consider the LP subproblem (SP) that results when the

value of the Boolean variables (or binary variables in the MILP reformulation) are fixed. Given ŷ such that,

for every k ∈ K there is only one i ∈ Dk for which ŷki = 1 and ŷki′ = 0,∀i′ ∈ Dk, i
′ 6= i, the following

(SP) is obtained:

min cTx

s.t. Gx ≤ g

Akix ≤ aki ∀ŷki = 1

xlo ≤ x ≤ xup

x ∈ Rn

(SP)

In (SP), the constraints corresponding to active disjunctive terms ŷki = 1 are enforced while constraints

corresponding to non-active terms ŷki′ = 0 are removed.

The modified algorithm is as follows:

0. Initialize. Set L = N0, zup =∞, (x∗, y∗) = ∅. Initialize λ0kj = 0.
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1. Terminate. If L = ∅, then (x∗, y∗) is optimal and algorithm terminates.205

2. Node selection. Choose a node Np ∈ L, and delete it from L. Go either to 3a or to 3b.

3a. Bound. Solve the (R-HR) of GDPp corresponding to Np. If it is infeasible, go to step 1. Else, let zp

be its objective function and (xp, yp) its solution. Set λpkj to be the Lagrangean multipliers corresponding to

the constraints xj =
∑
i∈Dk

νki; k ∈ K; j ∈ Jk.

3b. Bound. Solve the (R-BM) of GDPp corresponding to Np. If it is infeasible, go to step 1. Else, let zp210

be its objective function and (xp, yp) its solution.

4. Prune. If zp ≥ zup, go to step 1.

If yp ∈ Zq let zup = zp and (x∗, y∗) = (xp, yp). Delete all nodes Nr ∈ L in which zr ≥ zup, and go to

step 1. Else, go to step 5 or 6.

5. Primal heuristic (optional). Solve (LHRλ) of GDPp with λpkj . Let ẑp be its objective function and ŷ215

the value of the integer variables. Let zp = max{zp, ẑp}.

Solve (SP) with fixed ŷ and, if it is feasible, let z̄p be its objective function and (x̄p) its solution. If z̄p ≤ zup

let zup = z̄p and (x∗, y∗) = (x̄p, ŷp). Delete all nodes Nr ∈ L in which zr ≥ zup. If zp = z̄p, go to step 1.

Else, fo to step 6.

6. Branch. Select a disjunction k ∈ K such that yki /∈ {0, 1} for some i ∈ Dk. For every i ∈ Dk,220

construct the corresponding GDP (GDP ip) by setting the constraints corresponding to the disjunctive term

i as global, and removing the Boolean variables and constraints corresponding to term i
′ 6= i; i

′ ∈ Dk.

Add |Dk| new nodes, corresponding to GDP ip, to L. For every one of the new nodes, let the corresponding

Lagrange multipliers (λp,ikj ) be λpkj . Go to step 1.

There are two main differences in the proposed disjunctive branch and bound with respect to the one225

presented in Section 2.3. The first in Step 3a and the second is the inclusion of the new Step 5.

The first difference is that when Step 3a is selected, the Lagrangean multipliers are updated. Note that

this implies that for the particular node in which the (R-HR) was solved, (LHRλ) is in fact the Lagrangean

dual of the HR of GDPp. It is important (while not required) to perform Step 3a at the root node, so the

Lagrangean multipliers are initialized with the Lagrangean dual of the HR of the original GDP. In subsequent230

nodes, it may or may not be useful to solve the larger HR reformulation in order to obtain better lower bounds

and updated Lagrangean multipliers.

The second difference is Step 5, which is optional. In step 5, (LHRλ) is solved to obtain integer solutions.

The discrete solution is fixed and a small LP is solved (which corresponds to the original GDP with fixed

decisions). If the LP is feasible, it provides a valid upper bound and feasible solution. Note that if Step 3a235

was selected (LHRλ) is in fact the Lagrangean dual. Otherwise, it is a Lagrangean relaxation that uses the

Lagrangean multipliers inherited from the parent node. Also note that if step 3b was selected, it is possible

that ẑp ≥ zp (e.g. the Lagrangean relaxation of the HR provides better bound than the continuous relaxation

12



of the BM). For this reason, Step 5 sets zp = max{zp, ẑp}.

Same as the disjunctive branch and bound presented in Section 2.3, this algorithm converges in a finite240

number of iterations. In the worst case, evaluating every single resulting node of the search tree.
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5. Illustrative example

In this section, we present a simple example and the application of the proposed disjunctive branch and

bound to solve it. Consider the following analytical example:

min 7x1 − 2x2

s.t.
Y11

0.9487x1 + 0.3162x2 ≤ 11.3842

−0.5145x1 − 0.8575x2 ≤ −10.2899

x2 ≤ 9

 ∨


Y12

0.9615x1 − 0.2747x2 ≤ 5.7691

−0.6247x1 + 0.7809x2 ≤ 0.4685

−0.7071x1 − 0.7071x2 ≤ −4.2426



∨


Y13

0.8944x1 + 0.4472x2 ≤ 6.2610

−0.9864x1 + 0.1644x2 ≤ −0.3288

0.5547x1 − 0.8321x2 ≤ −2.7735




Y21

0.9806x1 − 0.1961x2 ≤ 2.1573

−0.6x1 + 0.8x2 ≤ 4.8

−0.5547x1 − 0.8321x2 ≤ −4.9923

 ∨


Y22

0.9806x1 + 0.1961x2 ≤ 7.2563

−0.9487x1 + 0.3162x2 ≤ −3.4785

0.3162x1 − 0.9487x2 ≤ 0.3162



∨


Y23

x1 ≤ 10

−0.3162x1 + 0.9487x2 ≤ 6.3246

−0.5547x1 − 0.8321x2 ≤ −11.3714




Y31

x1 ≤ 6

−0.3714x1 − 0.9285x2 ≤ −3.1568

−x1 ≤ −1

x2 ≤ 6


∨


Y32

0.7071x1 + 0.7071x2 ≤ 10.6066

−0.3162x1 − 0.9487x2 ≤ −7.9057

−0.4472x1 + 0.8944x2 ≤ 6.7082


Y

i∈Dk

Yki; k ∈ {1, 2, 3}

0 ≤ x1, x2 ≤ 10

Yki ∈ {True, False}; k ∈ {1, 2, 3}, i ∈ Dk

(4)

The feasible region of problem (4) is shown in Figure 1. Figure 1a shows the feasible region of each

disjunction, projected onto the space of the continuous variables. Figure 1b shows the optimal solution to

problem (4) in the projection onto the continuous variables.245
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Figure 1: Illustration of the feasible region of: a) the feasible region projected onto x1 and x2, and b) the optimal solution.

The application of the proposed disjunctive branch and bound to (4) is as follows:

0. Initialize. Set L = N0, zup =∞, (x∗, y∗) = ∅. Initialize λ0kj = 0.

1. Terminate. L = N0, go to Step 2.

2. Node selection. Choose node N0 and delete it from L. Go to 3a.

3a. Bound. The solution of the (R-HR) of GDP0 (which corresponds to N0) yields the following values:250

Continuous variables and objective function (x01, x
0
2, z

0) = (1.5, 7.1,−3.6) (Point A in Figure 1b).

Binary variables y013 = y021 = 1, y011 = y012 = y022 = y023 = 0, and y031 = 0.43, y032 = 0.57

Lagrangean multipliers λ0kj = (−6.286, 1.048,−0.714, 0.952, 0, 0) (i.e. Lagrangean multipliers corre-

sponding to the constraints xj =
∑
i∈Dk

νki; k ∈ K; j ∈ Jk in (R-HR)).

4. Prune. Since z0 < zup and y0 /∈ Zq , go to step 5.255

5. Primal heuristic (optional). The solution of (LHRλ) of GDP0 with λ0kj yields: ẑ0 = −3.6, ŷ013 =

ŷ021 = ŷ032 = 1 (Point B in Figure 1b).

The solution (SP) with fixed ŷ0 is feasible and it yields the following values:

Continuous variables and objective function (x̄01, x̄
0
2, z̄

0) = (2.15, 7.62,−0.154).

Note that this solution indicates that even at the root node, it is possible to obtain a feasible solution. In260

this case, we update the best known solution: zup = −0.154, (x∗, y∗) = (x̄0, ŷ0)

6. Branch. Select k = 3 for branching. Since |D3| = 2, two new nodes are created: LDGP 1
0 , LDGP

2
0 .

15



LDGP 1
0 is as follows:

min 7x1 − 2x2

s.t. x1 ≤ 6

− 0.3714x1 − 0.9285x2 ≤ −3.1568

− x1 ≤ −1

x2 ≤ 6
Y11

0.9487x1 + 0.3162x2 ≤ 11.3842

−0.5145x1 − 0.8575x2 ≤ −10.2899

x2 ≤ 9

 ∨


Y12

0.9615x1 − 0.2747x2 ≤ 5.7691

−0.6247x1 + 0.7809x2 ≤ 0.4685

−0.7071x1 − 0.7071x2 ≤ −4.2426



∨


Y13

0.8944x1 + 0.4472x2 ≤ 6.2610

−0.9864x1 + 0.1644x2 ≤ −0.3288

0.5547x1 − 0.8321x2 ≤ −2.7735




Y21

0.9806x1 − 0.1961x2 ≤ 2.1573

−0.6x1 + 0.8x2 ≤ 4.8

−0.5547x1 − 0.8321x2 ≤ −4.9923

 ∨


Y22

0.9806x1 + 0.1961x2 ≤ 7.2563

−0.9487x1 + 0.3162x2 ≤ −3.4785

0.3162x1 − 0.9487x2 ≤ 0.3162



∨


Y23

x1 ≤ 10

−0.3162x1 + 0.9487x2 ≤ 6.3246

−0.5547x1 − 0.8321x2 ≤ −11.3714


Y

i∈Dk

Yki; k ∈ {1, 2, 3}

0 ≤ x1, x2 ≤ 10

Yki ∈ {True, False}; k ∈ {1, 2, 3}, i ∈ Dk

(5)

Note that in (5), the constraints corresponding to Y31 = True are included as global constraints, while

constraints corresponding to Y32 = True are removed from the formulation. LDGP 2
0 can be constructed

in the same manner, but including as global constraints the ones corresponding to Y32 = True while re-

moving the constraints corresponding to Y31 = True. For simplicity, p = 1 is assigned to LDGP 1
0 ,265

and p = 2 to LDGP 2
0 . Two new nodes are added L: L = {N1, N2} (corresponding to p = 1, 2). The

Lagrangean multipliers of the new nodes are initialized using λ0kj from the parent node: λ1kj = λ2kj =

(−6.286, 1.048,−0.714, 0.952, 0, 0).

In the second iteration, the following results are obtained for the node N1 using step 3a:
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Figure 2: Disjunctive branch and bound tree for: a) the proposed algorithm, b) HR, and c) BM.

(R-HR): (z1, x11, x
1
2, y

1
11, y

1
12, y

1
13, y

1
21, y

1
22, y

1
23) = (−2.67, 1.33, 6, 0, 0, 1, 0.852, 0.025, 0.123)270

(LHRλ): (ẑ1, ŷ111, ŷ
1
12, ŷ

1
13, ŷ

1
21, ŷ

1
22, ŷ

1
23) = (−2.67, 1.33, 6.0, 0, 0, 1, 1, 0, 0)

(SP): (z̄1, x̄11, x̄
1
2) = (−2.67, 1.33, 6) (Point C in Figure 1b).

Note that the solution obtained by (R-HR) is optimal in the continuous variables. However, it did not

yield 0-1 values to (y121, y
1
22, y

1
23). After solving (LHRλ), the best known solution is updated: zup = −2.67,

(x∗, y∗) = (x̄0, ŷ0). The node can be pruned since z1 = zup.275

Node N2 yields an integer solution with z2 = −0.154 and it can be pruned. After evaluating N1, N2, all

the nodes are pruned (L = ∅) and the algorithm terminates.

Figure 2 shows the disjunctive branch and bound tree for different versions of the algorithm for problem

(4). Figure 2a shows the tree for the proposed algorithm, as described earlier (using step 3a in each of the

nodes). Figure 2b presents the tree of the HR disjunctive branch and bound (i.e. the algorithm presented in280

Section 2.3 using Step 3a at every node). Finally, Figure 2b presents the tree of the BM disjunctive branch

and bound (i.e. using Step 3b at every node).

It is easy to see from Figure 2 that the proposed algorithm requires fewer number of nodes than the

other two algorithms (3 in the proposed algorithm, 6 in the HR, and 12 in the BM). Nevertheless, it requires

the evaluation of 3 LPs in N0 and in N1, while the BM and HR disjunctive branch and bound require the285

evaluation of one LP at every node. In this simple example, the solution of every LP takes a fraction of a

second. However, in larger problems the difference in solution time among (R-HR), (LHRλ), (R-BM), and

(SP) can be very significant. For example, in instance 11 of Section 6.1 the solution times (using CPLEX

12.6.1[20]) of (R-HR), (LHRλ), (R-BM), and (SP) at the root node are 21.5s, 0.7s, 0.2s, 0.1s, respectively.

Note that the solution time of (LHRλ) is about 30 times faster than the solution of (R-HR) ((LHRλ) is290

the Lagrangean dual of (R-HR), so they provide the same lower bound). Also, (LHRλ) was evaluated as a

single LP and a single core, so the difference in solution time comes from CPLEX exploiting the structure of

(LHRλ). If (LHRλ) is solved by solving the smaller LPs in parallel (Property 3.2), the solution time can be
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further reduced.

6. Results295

In this section, we present the performance of the proposed disjunctive branch and bound against the

simple BM and HR disjunctive branch and bound. We also compare against a fourth disjunctive branch and

bound with a “random heuristic”. This algorithm is exactly the same as the proposed algorithm, but the

primal heuristic is random (i.e. instead of solving (LHRλ) and fixing ŷ at its solution, ŷ is fixed randomly).

This comparison is important to show that (LHRλ) provides a good heuristic for finding feasible solutions,300

and it is not only the additional work at each node what drives the improvement in the disjunctive branch and

bound. The M-parameters of the Big-M reformulation were obtained by using the variable bounds (i.e. for a

constraint of the type ax ≤ b the parameter M =
∑
j:aj≥0 x

up −
∑
j:aj<0 x

lo − b).

The results were obtained using an Intel(R) Core(TM) i7 CPU 2.93 GHz and 4 GB of RAM. The algorithm

was implemented in GAMS 24.4.5[21] using CPLEX 12.6.1[20]. The proposed algorithm uses step 3b at305

every node, except for the root node (i.e. it solves (R-HR) at the root node, initializes the Lagrangean

multipliers, then solves (R-BM) at every other node without modifying the multipliers). (LHRλ) is solved

as a single LP by CPLEX, but computational experience shows that CPLEX can exploit the decomposable

structure of (LHRλ) (as described in Section 5). The algorithms use a breadth first branching strategy, and

at every node selects the disjunction with fewest disjunctive terms that yielded non integer variables for310

branching.

The solution times presented in this section refer to the solve time (i.e. it includes the time to generate

the model at every node, but ignores the time to create each node and to decide on branching and pruning).

While in most cases the wall time is very close to the solve time, in some instances it is not. The reason for

comparing the solve time (vs. wall time) is to consider only the time spent in solving the problem, and ignore315

inefficiencies in the code (that could be reduced in a lower level programming language or improvements in

the branch and bound code).

Note that this implementation of the disjunctive branch and bound algorithm is a prototype, and its pur-

pose is to show the improvement of the basic algorithm when using (LHRλ) as a primal heuristic. The

algorithm is implemented in GAMS, and it has to generate an MILP model at every node of the search tree.320

Also, it does not include presolve, heuristics or cuts, so it is much slower than CPLEX. Future work includes

improvements in the implementation of the algorithm.

The algorithms were tested with 100 instances of 3 problems (i.e. a total of 300 instances). The solution

time performance curve over all instances is presented in Figure 3. Figure 3 shows the percentage of instance

solved vs. time. The figure shows four algorithms: “HR” refers to the HR disjunctive branch and bound,325

“BM” to the BM one, “ALG” to the proposed modified algorithm, and “RAN” to the algorithm with a random
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Figure 3: Solution time performance curve for the 300 tested instances.

heuristic. It can be observed from the figure that the proposed algorithm is considerably better than the rest.

The HR branch and bound performs second, but the random heuristic algorithm performs similarly in larger

instances. The worst performer is the BM disjunctive branch and bound. Out of the 300 instances, the BM,

HR, ALG, and RAN solve 253, 266, 296, and 269 instances, respectively.330

While Figure 3 presents the performance over all instances, the performance varies in the different ex-

amples. In the remaining of this section, we present more details and results for each example. We first

present random instances for unstructured linear GDP problems. We than present results of two particular

GDP problems: the strip packing and the contracts problem. The strip packing problem does not include

logic constraints, while the contracts problem does. 100 instances are tested for each of these problems.335

6.1. Unstructured GDP problems

For this example, 100 random instance are generated for the unstructured GDP problems without logic

relations or global constraints (note that any GDP with global constraints can always be reformulated as a

GDP without global constraints by using improper basic steps[13]). The coefficients of aki range between

−1.00 and 1.00. The coefficient range of c is [−10.0, 10.0]; of xlo is [−100,−10]; and of xup is []10, 100].340

In order to avoid very high density in the matrices Aki, and to give the problem structure (e.g. to relate

more some variables to some disjunctions), the following formula was used to calculate Aki; k ∈ K, i ∈ Dk

(where e ∈ Eki are the constraints in ki and j ∈ Jk are the variables in k ∈ K):

Akiej = A0kiejα
ki
ejβ

ki
ej

where,345

A0kiej is a random parameter between −1.00 and 1.00.

αkiej is the probability of a variable appearing in an equation. (in all tested instances αkiej = 0.5).

βkiej = round(rand-between(0, 1− |(j − k ∗ |J |/|K|)/|J ||)).

19



Table 1: Average statistics for the different random problems

Problem # instances Emax 0-1 vars. Variables Constraints

BM HR BM HR

k5-i40-v40 10 50 106 147 3,511 3,064 9,948

k5-i40-v50 10 50 113 164 4,650 3,344 12,515

k6-i25-v40 10 50 82 123 2,723 2,361 7,750

k6-i25-v50 10 50 86 137 3,523 2,523 9,533

k7-i15-v40 10 40 61 102 2,032 1,442 5,524

k7-i15-v50 10 40 63 114 2,567 1,490 6,674

k8-i5-v40 10 30 28 69 942 470 2,466

k8-i5-v50 10 30 29 80 1,202 500 3,061

k10-i3-v50 10 20 25 76 1,053 304 2,648

k10-i3-v80 10 20 25 106 1,655 304 4,022

To illustrate the idea behind the generation of Aki, consider a problem with 40 variables, 10 disjunctions,

20 disjunctive terms per disjunction, and a maximum of 30 constraints per disjunctive term. In disjunction350

k = 1, the probability of variable j = 1 appearing in any constraint of any disjunctive term is α1,i
e,1β

1,i
e,1. Since

β1,i
e,1 = round(rand-between(0, 0.925)), the probability is α1,i

e,1β
1,i
e,1 = (0.5)(0.46) = 23%. Note that, since

there are up to 30 constraints in each of the 20 disjunctive terms of disjunction k = 1, there is a very high

probability that this variable appears in a constraint of k = 1. For k = 1 and j = 20, β1,i
e,20 = round(rand-

between(0, 0.6)) so the probability of variable j = 20 appearing in any constraint of any disjunctive term of355

k = 1 is 8%. The probability of variable j > 25 appearing in any constraint of any disjunctive term of k = 1

is 0%. The probability of variable j = 20 appearing in any constraint of any disjunctive term of k = 5 is

25%.

Table 1 presents the statistics for the instances that were generated randomly. All infeasible instances

were removed from the test set, and all infeasible disjunctive terms were removed from the feasible instances.360

The number of constraints in a disjunctive term (|Eki|) is random between Emax/5 and Emax. The problem

identifier indicates the number of disjunctions |K|, disjunctive termsDk, and number of continuous variables

in the GDP. The table shows the average number of binary variables, as well as the average problem size for

the BM and HR. It can be observed from Table 1 that in some of these instances the difference in problem

size between the BM and HR is considerable, particularly in the number of variables.365

Figure 4 shows the performance of the different algorithms for the 100 random instances. Figure 4a

shows that the solution time performance of the proposed and the random algorithms is much better than the
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Figure 4: Performance curves for the different algorithm for: a) solution time, and b) number of nodes for the 72 instances that all

algorithms solve.

traditional BM and HR disjunctive branch and bound for this example. The figure shows that the proposed

and random algorithms solve 98 of the instances, while the BM and HR versions can only solve 81 and 72,

respectively. Note that in this example, the BM disjunctive branch and bound performs better than the HR.370

This is because the number of nodes required in the BM and HR disjunctive branch and bound is very similar

as can be observed in Figure 4b. Figure 4b shows the required number of nodes to solve the 72 instances that

all algorithms solved. The figure shows that the proposed algorithm requires the fewest number of nodes.

The BM and HR, however, require very similar number of nodes. Considering that the HR generates a much

larger MILP (as shown in Table 1), it is expected that the solution time of the BM disjunctive branch and375

bound is faster than that of the HR.

Figure 5 shows the number of nodes required to find the optimal solution and the first feasible solution

for the 72 instances that all algorithms solve. While the figure does not show the time to prove optimality,

finding a feasible and the optimal solution is an important consideration in practice. It can be observed from

the figure that the proposed algorithm is better at finding the optimal solution (Figure 5a) and the first feasible380

solution (Figure 5b). The random heuristic algorithm is very good in this example, requiring a similar number

of nodes to find the first and optimal solution as the proposed method. However, the BM and HR versions

require many more nodes to find a feasible solution and the optimal solution. The figure shows that there

is small difference in the HR and BM disjunctive branch and bound with respect to the number of nodes

required to find first and optimal solutions. The small difference seems to indicate that the HR requires fewer385

nodes to find the optimal solution, while the BM requires fewer to find the first feasible solution.

Note that the proposed algorithm performs better than the other versions of the disjunctive branch and

bound for unstructured GDP instances. In the remaining of this section, we present results for two particular

GDP problems: strip packing and contracts.
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Figure 5: Number of nodes required to find: a) the optimal solution, and b) the first feasible solution for the 72 instances that all

algorithms solve.

Figure 6: Illustration of the strip packing problem.

6.2. Strip packing problem390

Given set ofN rectangles, the strip packing problem consists on placing them on a strip while minimizing

the its length. The rectangles cannot overlap or be rotated. The height and length of each rectangle is known

(Hi, Li; i ∈ N ), and the strip has width W [22]. Figure 6 illustrates the strip packing problem.
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Figure 7: Performance curves for the different algorithm for: a) solution time, and b) number of nodes.

The GDP formulation of this problem is as follows[22, 23]:

min lt

s.t. lt ≥ xi + Li i ∈ N[
Z1
ij

xi + Li ≤ xj

]
∨

[
Z1
ji

xj + Lj ≤ xi

]

∨

[
Z2
ij

yi −Hi ≥ yj

]
∨

[
Z2
ji

yj −Hj ≥ yi

]
i, j ∈ N, i < j

Z1
ij Y Z

1
ji Y Z

2
ij Y Z

2
ji i, j ∈ N, i < j

0 ≤ xi ≤ UB − Li i ∈ N

Hi ≤ yi ≤W i ∈ N

Z1
ij , Z

2
ij ∈ {True, False} i, j ∈ N, i 6= j

(6)

In (6), the objective is to minimize the length lt. The coordinates of the upper-left corner of rectangle i

are represented with the variables (xi, yi). The global constraints (lt ≥ xi + Li) enforce length of the strip395

corresponds to the largest xi + Li (i.e. the coordinate of the top-left corner plus the length of the rectangle).

There is a disjunction for every pair of rectangles i, j ∈ N, i < j. Each of the terms of the disjunction

represents the relative position of rectangle i with respect to rectangle j. The first term, corresponding to

Z1
ij = True, represents rectangle i to the left of rectangle j. Z1

ji = True represents rectangle i to the right

of rectangle j. Z2
ij = True represents rectangle i on top of rectangle j. Finally, Z2

ji = True represents400

rectangle i below rectangle j. The parameter UB is an upper bound for the strip (e.g. UB =
∑
i Li).

The different algorithms were tested on 100 random instances of the strip packing problem. The range of

values of the random parameters is as follows: N = 4, 5;W = 5-7;Li = 1-10;Hi = 2-5.

Figure 7a shows that the HR disjunctive branch and bound performs better than the other three for this

problem. The BM, random heuristic, and the proposed branch and bound perform similarly in terms of405
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Figure 8: Number of nodes required to find: a) the optimal solution, and b) the first feasible solution.

solution time. It is interesting to note that the proposed algorithm performs the third in terms of solution

time. However, Figure 7b shows that the proposed algorithm requires the fewest number of nodes. Because

some of the nodes require the evaluation of more than one LP, the fewer number of nodes is not reflected in the

solution time for this problem. As expected, the random heuristic and the HR disjunctive branch and bound

require fewer nodes than the BM disjunctive branch and bound. The random heuristic algorithm requires410

similar number of nodes as the HR. However, it requires the evaluation of two LPs in many of the nodes, so

the performance in terms of the solution time is worse (as shown in Figure 7a). The heuristic that uses the

Lagrangean relaxation requires fewer nodes than the random heuristic, which shows that the former is a better

heuristic than randomly fixing variables. However, the improvement is small in this example, and hence the

time spent in solving the Lagrangean relaxation at every node increases the total solution time. Note that for415

this problem the performance curves of all algorithms are not very different.

Figure 8 shows the performance curve of the number of nodes required to find the optimal solution and

to find a feasible solution. Figure 8a shows that the number of nodes required to find an optimal solution is

smaller for the proposed algorithm than for the others. Figure 8b shows that the first feasible solution can be

almost always be found at the root node in the proposed and random algorithms. In particular, the proposed420

algorithm finds the first feasible solution at the root node in 94 instances; and in 4 instances it finds it at the

first node. The improvement in finding optimal and feasible solutions can be better appreciated in Table 2.

Table 2 shows an average of the metrics presented in Figures 7 and 8. Note that both algorithms with primal

heuristic find the optimal and feasible solutions faster than the BM and HR disjunctive branch and bound.

Out of the two algorithms with primal heuristic, the one that uses the Lagrangean relaxation finds the optimal425

and first feasible solution in fewer nodes.
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Table 2: Average of performance metrics for the different algorithms

Average of metric BM HR LAG RAN

Solution time (s) 172.6 93.0 167.4 143.9

Total number of nodes 1,546 859 763 843

Number of nodes to find optimal 1,258 447 229 364

Number of nodes to find feasible 493 214 2 66.5

6.3. Contracts problem

Given feedstock requirements of a raw material at every time period Dt; t ∈ T , the problems consists

on finding the best purchasing contracts to minimize costs. The inventory of the feedstock st allows to carry

material from a time period to the next ones, but there is a cost associated with inventory αSt . In general, there430

are three types of contracts. The “standard contract” which allows buying any amount of material at a given

price γt. The “bulk contract” which provides a discount βBt of the material, but there is a minimum purchase

requirement FB,lot . The last type of contract requires purchasing materials for the following q ≥ 1 time

periods, all of which include the same discount βLtq over the same price γt and the same minimum purchase

requirement FL,lotq .435
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The GDP of the contracts problem is as follows:

min
∑
t∈T

(αSt st + ct)

s.t. ft ≥ Dt t ∈ T

st = st−1 + xt − ft t ∈ T

[
Y St

ct = γtxt

]
∨

 Y Bt

ct = (1− βBt )γtxt

xt ≥ FB,lot

∨

∨

[
Y 0
t

0 ≤ ct

]
∨

q=1,...,|T |−t

 Y Ltq

ct′ = (1− βLtq)γtxt′ t′ = t, ..., t+ q

xt′ ≥ FL,lotq t′ = t, ..., t+ q

 t ∈ T

Y St Y Y
B
t Y Y

0
t Y
q=1,...,|T |−t

Y Ltq t ∈ T

Y 0
t ⇔ ∨

t′<t
q≥t−t′

Y Lt′q t ∈ T

Y 0
1 = False

0 ≤ xt ≤ xup t ∈ T

0 ≤ ct ≤ cup t ∈ T

0 ≤ st ≤ sup t ∈ T

Y St , Y
B
t , Y

0
t ∈ {True, False} t ∈ T

Y Ltq ∈ {True, False} 1 ≤ q ≤ |T | − t; t ∈ T

(7)

The global constraints in (7) enforce the demand satisfaction (ft ≥ Dt) and the material balance at the

inventory (st = st−1+xt−ft). At each time period t ∈ T there is a disjunction. The term that corresponds to

the Boolean variable Y St represents the “standard contract”, where any amount xt can be purchased at price

γt. Y Bt represents the “bulk contract”, where xt ≥ FB,lot can be purchased with a discount in the price βBt .440

Y 0
t is active when a long term contract from a previous time period is selected, and such a contract involves

time period t (Y 0
t ⇔ ∨ t′<t

q≥t−t′
Y Lt′q). For example, if Y L1,3 is selected (e.g. in the time period t = 1, a contract

with a length of q = 3 time periods was selected), then Y 0
2 = Y 0

3 = Y 0
4 = True. The term associated with

Y 0
t does not constrain the variables, since the corresponding cost and purchase bound are determined at the

time period in which the long term contract is active (ct′ = (1 − βLtq)γtxt′ ;xt′ ≥ FL,lotq ; t′ = t, ..., t + q).445

For the first time period, Y 0
1 cannot be selected. When performing the BM or HR reformulation, the logic

constraint (Y 0
t ⇔ ∨ t′<t

q≥t−t′
Y Lt′q) can be reformulated as (y0t =

∑
t′<t
q≥t−t′

yLt′q).

Note that (7) involves logic constraints. Therefore, in order to preserve Properties 3.2 and 3.3, it would

be necessary to use (3). However, the continuous relaxation of the HR and BM reformulations of (7) (as
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Figure 9: Performance curves for the different algorithm for: a) solution time, and b) number of nodes for the 71 instances that all

algorithms solve.

well as (LHRλ) with the logic constraints reformulated for the original binary variables) can be solved in450

a fraction of a second. Therefore, Property 3.2 (which established that (LHRλ) can be solved by solving

small LPs) does not have an important impact in the solution time of the problem. Furthermore, out of the

over 2.2 million nodes solved for the instances of this example, there was not a case in which the continuous

relaxation of (LHRλ) with the logic constraints reformulated for the original variables gave a non-integer

solution. While this is no proof that Property 3.3 holds, it indicates that (LHRλ) with the logic constraints455

reformulated for the original variables can be used as primal heuristic for the tested instances.

The different algorithms were tested with 100 random instances of the contracts problem. The range of

values of the random parameters is as follows: |T | = 9-11;Dt = 50-100;αSt = 5-20; γt = 10-30;βBt =

0.050-0.500;βLtq = 0.010-0.999;FB,lot = 50-100;FL,lotq = 50-100. The algorithm uses (LHRλ) with the

logic constraints reformulated for the original variables as the primal heuristic.460

Figure 9 presents the performance plots of the algorithms for solving the contracts problem instances.

Figure 9a shows the performance of the solution times. It can be observed that the HR disjunctive branch and

bound performs the best for the smaller problems. However, the proposed algorithms outperforms the HR

after about 4,000 seconds. Of the 100 instances, the proposed algorithm solves 98, the HR 94, the BM 72,

and the random heuristic 71. It is clear from Figure 9a that the BM and heuristic algorithms perform much465

worse than the other two for this problem. Figure 9b shows the number of nodes required to solve the 71

instances that all algorithms solve. Similar to the solution time, the HR and the proposed algorithm are the

best performers. Their performance is close, the HR being better at first and the proposed algorithm taking

over in the more difficult problems. In this example, the heuristic algorithms performs exactly the same as

the BM branch and bound, in terms of number of nodes. This indicates that the random heuristic is poor,470

since it requires additional work and it does not reduce the number of nodes required for the BM disjunctive

branch and bound.
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Figure 10: Number of nodes required to find: a) the optimal solution, and b) the first feasible solution for the 71 instances that all

algorithms solve.

Figure 10 presents the number of nodes required to find the optimal solution and the first solution. Figure

10a shows that the proposed algorithm is faster in finding the optimal solution. Furthermore, Figure 10b

shows that the algorithm finds a feasible solution in every instance at the root node. Again, these two figures475

show that the heuristic algorithms performs exactly the same as the BM branch and bound in terms of number

of nodes. For this example, the BM and random heuristic branch and bound perform much worse than the

HR and the proposed algorithm.

7. Conclusions

In this work, we have presented a Lagrangean relaxation of the hull-reformulation of linear GDP prob-480

lems. This Lagrangean relaxation can be applied to any linear GDP. We proved two important properties

of this relaxation. The first one is that any vertex of the continuous relaxation of the Lagrangean relaxation

yields 0-1 values for the binary variables of the hull reformulation. The second one is that it can be solved by

solving several small LPs (potentially in parallel). This relaxation was incorporated into a disjunctive branch

and bound as a primal heuristic, and the proposed algorithm was tested with 300 instances on 3 problems:485

unstructured GDPs, strip packing and contracts.

For every problem, the number of nodes required by the proposed algorithm is smaller than the number

of nodes required by the HR, BM, and “random heuristic” disjunctive branch and bound. Furthermore, the

number of nodes to find a feasible and optimal solution to problems is drastically improved when using

the Lagrangean relaxation as primal heuristic. Over all the instances, the solution time performance of the490

proposed algorithm is better than alternative disjunctive branch and bound methods. Over all the instances,

the BM, HR, ALG, and RAN solve 253, 266, 296, and 269, respectively.

In terms of solution time, the proposed algorithm and the heuristic one are the best for the unstructured
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GDP instances. Not only is their solution time performance curve better, but they solve considerably more

instances than the rest within the time limit (98% for the proposed and heuristic algorithms vs. 81% for the495

BM, and 72% HR). For the two examples of structured GDPs, the performance of the solution time is different

for each of the problems. For the strip packing problem, the HR disjunctive branch and bound performs the

best, while de proposed algorithm performs third (and very close to the last performer: the BM disjunctive

branch and bound). For the contracts problem, the proposed algorithm performs the best, solving 98% of the

instances (while the BM, HR, and random heuristic algorithm solve 72%, 94%, and 71%). The performance500

curve is similar to that of the HR disjunctive branch and bound, but it is able to solve more instances.

The proposed Lagrangean relaxation can be extended to nonlinear convex GDP problems. Future work

will address these problems through the Lagrangean relaxation described in this paper, as well as improve-

ments in the implementation.
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