
Evaluating CDCL Variable Scoring Schemes?

Armin Biere and Andreas Fröhlich

Johannes Kepler University, Linz, Austria
armin.biere@jku.at andreas.froehlich@jku.at

Abstract. The VSIDS (variable state independent decaying sum) de-
cision heuristic invented in the context of the CDCL (conflict-driven
clause learning) SAT solver Chaff, is considered crucial for achieving
high efficiency of modern SAT solvers on application benchmarks. This
paper proposes ACIDS (average conflict-index decision score), a variant
of VSIDS. The ACIDS heuristics is compared to the original implementa-
tion of VSIDS, its popular modern implementation EVSIDS (exponential
VSIDS), the VMTF (variable move-to-front) scheme, and other related
decision heuristics. They all share the important principle to select those
variables as decisions, which recently participated in conflicts. The main
goal of the paper is to provide an empirical evaluation to serve as a
starting point for trying to understand the reason for the efficiency of
these decision heuristics. In our experiments, it turns out that EVSIDS,
VMTF, ACIDS behave very similarly, if implemented carefully.

1 Introduction

The application track of SAT competitions [1,2] is dominated by conflict-driven
clause learning (CDCL) [3] solvers. Beside learning [4], the most important fea-
ture of these solvers is the variable state independent decaying sum (VSIDS) deci-
sion heuristic [5], actually in its modern variant exponential VSIDS (EVSIDS) [6],
as first implemented in the MiniSAT solver [7]. The EVSIDS heuristic allows fast
selection of decision variables and adds focus to the search, but also is able to
pick up long-term trends due to a “smoothing” component, as argued in [6].

On the practical side, there have been various attempts to improve on the
EVSIDS scheme. These include the variable move-to-front (VMTF) strategy
of the Siege SAT solver [8], the BerkMin strategy [9], which is focusing on
recently learned clauses, and the clause move-to-front (CMTF) strategies of
HaifaSAT [10] and PrecoSAT [11]. In this paper, we suggest another new deci-
sion heuristic, called average conflict-index decision score (ACIDS). Our main
contribution, however, is to show that EVSIDS, VMTF, and ACIDS empirically
perform equally well, if implemented carefully. Beside allowing simpler imple-
mentation, these empirical results further shed light on what EVSIDS actually

? Supported by Austrian Science Fund (FWF), national research network RiSE
(S11408-N23). Builds on discussions from the 2014 workshop on Theoretical Foun-
dations of Applied SAT Solving (14w5101), hosted by Banff International Research
Station, and Dagstuhl Seminar 15171 (2015), Theory and Practice of SAT Solving.

means. They open up new directions for treating practically successful decision
heuristics formally, for instance in the context of proof complexity.

Regarding alternative decision schemes, we refer to the cube-and-conquer
approach [12]. It combines CDCL with classical look-ahead [13] solving, and is
particularly effective for solving hard combinatorial benchmarks (in parallel).
The rest of the paper will focus on decision heuristics for CDCL solving, related
to VSIDS. This paper also complements recent developments which try to relate
and explain VSIDS with community structure [14,15,16].

2 Decision Heuristics

Following the same decision order in every branch of a DPLL [17] search tree
amounts to a simple static decision heuristic, as in ordered binary decision dia-
grams (BDDs) [18], which even with dynamic variable reordering are restricted
to one variable order along each path from root to a leaf. The freedom of being
able to pick an arbitrary variable in every node “dynamically” is generally con-
sidered an advantage of SAT over BDDs, e.g., in the context of bounded model
checking [19]. These dynamic decision heuristics originally only took the current
partial assignment in a search node into account when selecting the next decision
variable. They did not consider how the search progressed to reach this point
in the search space. We call this set of restricted dynamic heuristics first-order
dynamic decision heuristics. A typical example is the dynamic literal individual
sum heuristic (DLIS). It selects as next decision literal one with the largest DLIS
score, which is computed as the number of still unsatisfied clauses in which a
literal occurs. A well-known and often applied variant of DLIS is the Jeroslow-
Wang heuristic [20], which for instance is discussed in [21], together with other
related early decision heuristics, including Bohm’s, MOM’s, etc.

With the introduction of learning in Grasp [4], these first-order heuristics
implicitly became second-order dynamic heuristics, since learned clauses were
used in computing scores too, and they do capture the history of the search
progress. An early evaluation [21] of decision heuristics, originally designed as
first-order heuristics but then applied as second-order heuristics together with
clause learning, showed that variants of DLIS actually perform quite well.

In principle, one has to distinguish between selecting a decision variable and
selecting a decision phase, i.e., the Boolean constant to which the selected vari-
able is assigned. However, almost all modern CDCL solvers implement phase
saving [22], which always reassigns the decision variable to the last phase it
was previously assigned. Modulo initialization, typically based on (one-sided)
Jeroslow-Wang’s heuristic [20], phase saving turns the decision heuristic into a
variable selection heuristic. Accordingly, we focus on variable selection, which in
turn will be based on selecting a variable with the highest decision score.

Using learned clauses for computing scores is actually quite expensive, since
it requires either to traverse the whole clause data base, which is growing fast due
to adding learned clauses, or requires expensive book keeping of scores during
propagation of assigned variables. The latter became expensive after it was pos-

sible to reduce propagation effort through lazy clause watching techniques [5,23],
particularly since learned clauses tend to be large [24]. Thus, one of the most
important observations in the seminal Chaff paper [5] was that it is possible
and even beneficial to replace DLIS by an even more aggressive dynamic scoring
scheme, the VSIDS (variable state independent decaying sum) scheme, which
does not require to traverse the clause data base at decision variable selection,
nor to use expensive full occurrence list traversal for accurate score updates.

VSIDS The variable state independent decaying sum (VSIDS) of Chaff [5] main-
tains a variable score for each variable. The basic idea is that variables with
large score are preferred decisions. The original VSIDS implementation in Chaff
worked as follows. Variables are stored in an array used to search for a decision
variable. After learning a clause, the score of its variables is incremented. Further,
every 256th conflict, all variable scores are divided by 2, and the array is sorted
w.r.t. decreasing score. This process is also called variable rescoring. Moreover,
note that the order of decision variables is not changed between rescores.

The process of updating scores of variables is also referred to as variable
bumping [7]. Note, however, that in modern solvers and also in our experiments
we not only bump variables of the learned clause, but all seen variables occur-
ring in antecedents used to derive the learned clause through a regular input
resolution chain [25] from existing clauses.

The decide procedure selects the next decision variable, by searching for the
first unassigned variable in the ordered array, starting at the lower end, e.g., the
variable with the highest score during sorting. An essential optimization in Chaff
is to cache the position of the last found decision variable with maximum score
in the ordered array. This position is used as starting point for the next search. If
a variable in the array with a position smaller than the cached maximum score
position becomes unassigned then the maximum score position is updated to
that position. During rescoring, similar updates might be necessary.

The first part of VSIDS, e.g., only incrementing scores, constitutes an ap-
proximation of dynamic DLIS. It counts occurrences of variables in clauses, ig-
noring whether a clause is satisfied or not, or even removed during learned clause
deletions [3] (called clause database reduction in the following). This restricted
version of VSIDS without smoothing is denoted INC (or inc in the experiments).

As an alternative to using frequent rescoring, we propose that the smoothing
part of VSIDS can also be approximated by adding the conflict-index to the score
instead of just incrementing it. The conflict-index is the total number of conflicts
that occurred so far. We call this scheme SUM (or sum in our experiments).

At each conflict, a new clause is learned, except for instance if on-the-fly sub-
sumption [26,27] is employed. This might trigger additional conflicts, through
strengthening existing clauses, without learning a new clause. Our implementa-
tion does not bump variables in this case, nor does it increase the conflict-index.

EVSIDS If variables are rescored at each conflict, a variant of VSIDS, called
normalized VSIDS (NVSIDS) [6], is an exponential moving average on how often

a variable occurred in antecedents of learned clauses [6]. For NVSIDS, the score
s of a bumped variable is computed as s′ = f · s + (1 − f), using a damping
factor f with 0 < f < 1. The score of other variables, which are not bumped,
still have to be “rescored”, e.g., s′ = f · s.

At each conflict, NVSIDS requires to update the score of all variables. A more
efficient implementation, which we called exponential VSIDS (EVSIDS) in [6],
was originally proposed by the authors of MiniSAT [7]. It updates only scores of
(the much smaller set) of bumped variables by adding an exponential increasing
score increment gi, with i denoting the conflict-index and g = 1/f , thus g > 1.
As the relative order of variables for NVSIDS and EVSIDS is identical [6], the
notion of NVSIDS is only of theoretical interest (for the purpose of this paper).

Typical values for g are in the range of 1.01 to 1.2. Small values have been
shown to be useful for hard satisfiable instances (like cryptographic instances).
Large values are useful with very frequent restarts, particularly in combination
with the reuse-trail technique [28]. In Glucose 2.3, even without reusing the trail,
it was thus suggested to slowly decrease g over time from a large value to a small
one.1 In the (new) version of Lingeling used in our experiments, g is kept at 1.2.

Instead of rescoring variables explicitly, MiniSAT uses a priority queue, which
is implemented as a binary heap. This data structure allows fast insertion and
removal of variables and also updating scores, all in logarithmic time. If this
priority queue was updated eagerly to contain exactly all the unassigned vari-
ables, then searching for an unassigned variable with maximal score would even
be possible in constant time. However, the number of propagated variables per
decision can be quite large (on average, 323 propagations per decision for 275
benchmarks in the evsids column in Tab. 2). Removing them eagerly is too costly.

A lazy alternative, as first implemented in MiniSAT [7] and now being the
default implementation of modern CDCL solvers, is to remove variables with
maximum score from the priority queue until the removed variable turns out to
be unassigned. It is then used as the next decision variable. Note that, during
backtracking, this lazy scheme still requires to insert variables back into the pri-
ority queue, as they are unassigned, in order to make sure that the priority queue
contains all unassigned variables (but assigned ones are not eagerly removed).

While the original implementation of VSIDS in Chaff [5] can be considered
to be lazy too, variable selection is still imprecise, since rescoring is delayed.
An attempt to provide a more efficient implementation of rescoring with pre-
cise variable selection was implemented in the JeruSAT solver [29]. It still uses
counters, i.e., inaccurate integer scores, but instead of using one sorted array for
all variables, partitions them into doubly linked lists of variables with the same
score. This allows faster insertion, removal, update, and rescoring.

Another invention in MiniSAT, particularly important for EVSIDS, is to use
a precise floating-point representation instead of integers as in previous solvers.
Even though we do not have separate experimental evidence in this paper, our
experience suggests that using integer scores dramatically deteriorates perfor-
mance compared to using floating-point scores. Even fixed-point scores (as in

1 every 5000th conflict, f is increased by 0.01, starting at 0.8 until 0.95 is reached

PrecoSAT [11]) need additional techniques like clause based decision heuristics
in order to be competitive with floating-point based EVSIDS.

However, gi usually grows very fast: Note that 1.014459, 1.2244 > 264, and,
more severely, 1.0171333, 1.23894 > 1.797·10308 (≈ maximum value in 64 bit IEEE
double floating-point representation). Thus, even for EVSIDS with floating-
points, the variable scores and the score increment have to be rescored occa-
sionally, as in the VSIDS scheme. This also becomes necessary if the score of
a bumped variable would overflow during an update. We will report how often
this occurs and how much time is spent on rescoring in our experiments.

VMTF Variable selection heuristics can be seen as online sorting algorithms of
variable scores. This view suggests to use online algorithms with efficient amor-
tized complexity, such as move-to-front (MTF) [30]. A similar motivation was
given in the master thesis of Lawrence Ryan [8], which precedes MiniSAT [7] and
introduced the Siege SAT solver as well as the variable move-to-front (VMTF, or
vmtf in the experiments) strategy. As in Chaff, the restriction in Siege’s VMTF
bumping scheme was to only move variables in the learned clause. Actually, only
a small subset of those variables, e.g., of size 8, was selected, according to [8].

The restriction in Siege to move only a small subset of variables might have
been partially motivated by the cost of moving many. It is not uncommon that
tens of thousands variables occur in antecedents of a learned clause, which also
are rather long for some instances. In our experiments in Sect. 4, the default
decision heuristic (evsids in Tab. 2) bumped on average 276 literals per learned
clause of average length 105 (on 275 considered instances). Unfortunately, details
on how even this restricted version of VMTF is implemented in Siege were not
provided. The source code is not available either. We give details for a fast
implementation of unrestricted VMTF in Sect. 3.

ACIDS As further extension to the proposed SUM heuristic we want to in-
troduce the average conflict-index decision score (ACIDS, or acids in our ex-
periments). While SUM realizes a certain amount of smoothing (compared to
INC) by giving a larger weight to later conflicts, this effect is rather small when
compared to the exponential kind of smoothing that is applied in VSIDS and
EVSIDS. However, as smoothing is conjectured to be an important part for vari-
able score heuristics [6], the latter kind of smoothing might be preferable. We
realize this as follows. In the ACIDS scheme, in the same way as for INC, SUM,
VSIDS, and EVSIDS, we keep a score for each variable. Whenever a variable is
bumped, its score is updated to be s′ = (s+ i)/2, with i being the conflict-index.
Compared to SUM, much stronger smoothing is realized by ACIDS. In addi-
tion to giving a larger weight to later conflicts, the influence of earlier conflicts
decreases exponentially in the number of times the variable is bumped.

To compare the influence of the current conflict with that of earlier ones, we
can represent the score of the variable by s = sc+sp, with sc and sp representing
the contribution of the current conflict and the previous conflicts, respectively.
As before, we define i to be the current conflict-index. Further, Ip is the set of

variable score s′ after i conflicts

bumped not-bumped

STATIC s s static decision order
INC s + 1 s increment scores
SUM s + i s sum of conflict-indices

VSIDS h256
i · s + 1 h256

i · s original implementation in Chaff [5]
NVSIDS f · s + (1− f) f · s normalized variant of VSIDS [6]
EVSIDS s + gi s exponential dual of NVSIDS [6,7]
ACIDS (s + i)/2 s average conflict-index decision scheme
VMTF i s variable move-to-front [8]

Table 1. Summary of considered variable scoring schemes, where s and s′ denote cur-
rent and updated variable scores, i the conflict-index, and f a damping factor with
0 < f < 1, used in our reformulation NVSIDS of VSIDS as exponential moving aver-
age [6]. For EVSIDS, we use the inverse g = 1/f of f (thus g > 1). For the VSIDS
version implemented in Chaff, we set hm

i = 0.5 if m divides i, and hm
i = 1 otherwise.

indices of all previous conflicts the variable was involved in. For SUM, sc = i
and sp = ΣIpip, with ip being the elements of Ip. By definition, this will lead to
sp > sc in most cases, particularly after a certain number of conflicts occurred.
Similarly for INC, sc = 1 and sp = |Ip|, which already implies sp > sc as soon
as a variable is bumped twice. However, for the ACIDS heuristic, we obviously
have sp < sc at every point in the search.

Note that, in contrast to VSIDS and NVSIDS, scores of variables that are not
bumped do not change for ACIDS. This not only allows to keep track of accurate
scores in each step, but also avoids (delayed) variable rescoring. Additionally,
compared to EVSIDS, the scores of variables grow much slower when using the
ACIDS heuristic. In particular, the score of a variable in ACIDS is bounded by
the conflict-index i, instead of being exponential in the number of conflicts, as it
was the case for EVSIDS. Thus, also rescoring of variables to prevent overflow
does not occur in practice. Considering overall performance, our experiments in
Sect. 4 show that ACIDS works as well as EVSIDS and VMTF.

Clause Based Decision Heuristics There also is related work on using re-
cently learned clauses in variable selection, such as the BerkMin heuristic [9],
or clause-move-to-front (CMTF) strategies [10,11]. In our experience, they are
inferior to variable scoring schemes as considered in this paper, and we leave it
to future work for a more detailed comparison. The same applies to one-sided
schemes which select literals instead of variables (without phase saving).

3 Implementation

We describe how the VMTF scheme can be implemented efficiently, as well as
how these techniques can be lifted to implement a generic priority queue, which

(empirically) is efficient for all the considered scoring schemes. This new imple-
mentation of a priority queue for variable selections combines ideas originally
implemented in Chaff [5] and JeruSAT [29], but adds additional optimizations
and works with arbitrary precise floating-point scores, in contrast to an imprecise
earlier version implemented in Lingeling [31].

Variable scores play a role while (a) bumping variables participating in de-
riving a learned clause, (b) deciding or searching for the next decision variable,
(c) unassigning variables during backtracking, (d) rescoring variable scores ei-
ther for explicit smoothing in VSIDS or due to protecting scores from overflow
during bumping, and (e) comparing past decisions on the trail to maximize
trail reuse [28]. First, we explain a fast implementation for VMTF, focusing on
(a)-(c). Next, we address its extension to precise scoring schemes using floating-
point numbers, which in previous implementations followed the example set by
MiniSAT to use a binary heap data structure. Last, we discuss (d) and (e).

3.1 Fast Queue for VMTF

According to Sect. 2, the score of a variable in VMTF is the conflict-index, e.g.,
the number of conflicts at the point a variable was last bumped. With this score
definition, VMTF can be simulated with a binary heap. However, every bump
then needs a logarithmic number of steps to “bubble-up” a bumped variable
in the heap. Instead, a queue, implemented as doubly linked list which holds
all variables, only requires two simple constant time operations for bumping:
dequeue the variable and enqueue it back at the end of the list, which we consider
as head. Even storing the score seems to be redundant.

To find the next decision variable in the queue, we could start at the end
(head) of the queue and traverse it backwards until an unassigned variable is
found. Unfortunately, this algorithm has quadratic accumulated complexity. For
example, consider an instance with 10000 variables and a single clause containing
all variables in default phase. However, we can employ the same2 optimization as
used in Chaff (see Sect. 2) and remember the variable up to which the last search
proceeded until finding an unassigned variable. Since the solver will restart the
next search at this variable, we call this reference next-search.

During backtracking, variables are unassigned and (as in Chaff) next-search
potentially has to be updated to such an unassigned variable if it sits further
down the queue closer to head than the next-search variable. In order to achieve
this, we could use the scores of the variables for comparing queue position.
However, in VMTF, variables bumped at the same conflict all get the same score,
and thus simply using the score leads to violation of the following important
invariant: variables right of next-search (closer to head) are assigned.

To fix this problem, we globally count enqueue operations to the queue with
an enqueue-counter and remember with each variable the value of the enqueue-
counter at the point the variable was enqueued as enqueue-time. Thus, the

2 but in reverse order, e.g., while we prefer the variable with largest score at the end
of the queue, Chaff had the variable with largest score at the first array position

enqueue-time precisely captures the order of the elements in the queue and can
be used to precisely compare the relative positions of variables in the queue.
In the actual implementation, we use a 32-bit integer for the enqueue-counter,
which occasionally, e.g., after billion enqueue operations, requires to reassign
enqueue-times to all queue elements in a linear scan of the queue. Note that, in
a dedicated queue implementation for VMTF (like queue in our experiments),
the scores become redundant again, after adding enqueue-times.

3.2 Generic Queue for all Decision Heuristics

For other schemes, it is tempting to also just use a queue implemented as doubly
linked list as for VMTF, maintaining both scores and enqueue-times. Every
operation remains constant time except for bumping. We have to ensure that
the queue is sorted w.r.t. score. However, only for VMTF, bumped variables are
guaranteed to be enqueued at the end (head) of the queue, i.e., in constant time.
For other scoring schemes, a linear search is required to find the right position,
which risks an accumulated quadratic bumping effort. To reduce enqueue time,
we propose three optimizations and two modifications to the bumping order.

The first optimization is inspired by bucket sort and already gives accept-
able bumping times for EVSIDS. It is motivated by the following observation.
For EVSIDS, rescoring to avoid floating-point overflow of scores and score in-
crement occurs quite frequently, e.g., roughly every 2000 conflicts, as Tab. 2
suggests. Thus, the exponents of variable scores represented as floating-point
numbers will tend to span the whole range of possible values3. So instead of a
single queue, we keep a stack of queues, indexed by the exponent of the scores of
variables. Variables belong to the queue of the floating-point exponent of their
score. As the motivation on rescoring shows, this stack will soon grow to its max-
imum size for EVSIDS, but for other scoring schemes (particularly for VMTF
or INC) it will only have very few elements or even just one.

Note that, since exponents can be negative, the actual index to access the
stack is obtained after adding the negation of the minimum negative exponent.
Furthermore, Lingeling uses its own implementation of floating-points, in order
to make execution of Lingeling deterministic across different hardware, compil-
ers, and compiler flags. These software floats have a 32 bit exponent, but we re-
strict exponents to 10 bits including a sign bit, by proper rescoring of large scores
and truncation of small scores. MiniSAT/Glucose use 10100 as an upper score
limit, which is only a slightly smaller maximum limit than ours 2512 ≈ 10154,
but then does not use any truncation for small scores, which means that the
minimum score exponent in MiniSAT is (roughly) 2−10. So Lingeling uses 9 bits
for positive scores and 9 bits for negative scores, while MiniSAT uses slightly
less than 9 bits for positives scores and (almost) full 10 bits for negative scores.

When searching for decisions as well as during backtracking, more specifically
during unassigning variables, we additionally have to maintain the highest expo-

3 almost 2048 values for an 11-bit exponent in IEEE representation of 64 bit doubles

nent of an unassigned variable. This follows the same idea as for next-search in
a single queue and only adds constant time effort for all considered operations.

During conflict analysis, variables participating in resolutions to derive a
learned clause are collected on a seen-variables stack, before they are bumped (or
discarded if on-the-fly subsumption succeeds). The analysis traverses the trail of
assigned variables in reverse order. Thus, there is a similarity between the order
of variables on the seen-variables stack and the reverse order of assignments.
However, this is not guaranteed, particularly for variables with smaller decision-
level. The order of bumping these variables then follows this order too.

At a conflict, it can happen that thousands of variables with different score
are bumped and end up in almost random order w.r.t score order on the seen-
variables stack (or worse, in reverse order) before they are bumped. For many of
these variables, even for EVSIDS, the new updated score might end up having the
same exponent and all those variables have to be enqueued to the same queue.
However, since their scores still differ, enqueueing them degrades to insertion-
sort. There are instances where bumping leads to a time-out due to this effect.

A first modification to the order in which variables are bumped prevents
this problem. Before actually first dequeuing a bumped variable, then updating
its score, and finally enqueueing it back, we sort the seen-variables stack w.r.t. in-
creasing score. However, a similar problem occurs if all bumped variables have
the same score exponent, which also does not change during update. This is for
instance almost always the case for INC. The second modification prevents
this corner case by first dequeuing all variables on the seen-variables stack, and
only then updating their score and enqueueing them back in score order.

While EVSIDS exponents of variable scores are more or less spread out, other
schemes do not have this property, clearly not INC, but probably also SUM and
ACIDS to a smaller extent. For these schemes, score exponents might cluster
around some few values. Thus, our second optimization repeats the bucket
sort argument w.r.t. some fixed number of highest bits of the mantissa of a
variable score. For each queue (indexed by exponent), we add another cache-
table (indexed by highest bits of mantissa) of references pointing to the last
element in the queue with matching highest mantissa bits. This ensures that
these variables referenced in the cache-table have the maximum score among
variables in this queue with the same highest bits of the mantissa of their score.
In our implementation, we use the highest 8 bits and thus a cache-table of size
256. This cache is only used for fast enqueue and can be ignored otherwise.

If bumping individual variables is done in the order of their scores, as sug-
gested by the first modification above, there is a high chance that consecutively
bumped variables end up in the same queue one after each other or at least close
to each other. Thus, as a third optimization, we propose to additionally cache
the last-enqueued variable for each (sub) queue consisting of variables with the
same highest mantissa bits. In an enqueue operation, we first check whether the
corresponding cache-table entry of the second optimization points to a variable
with smaller (or equal) score. If this is the case, we enqueue right next to it. Oth-
erwise, we obtain the last-enqueued variable and start searching for the proper

enqueue position from there towards the end, e.g., towards larger scores. This
might fail if the score of the last-enqueued variable is larger or if the last-enqueue
reference is not valid, e.g., if the variable is already dequeued. We then search
backwards from the cache-table reference (towards smaller scores).

Altogether, these optimizations and modifications seem to avoid the most
severe worst-case corner cases. We track this by profiling relative and total decide
and particularly bump time per instance. Total time summed for these over all
instances are shown in Tab. 2. Further distribution plots are included in the
additional material, mentioned in the results in Sect. 4.

3.3 Rescore, Reuse-Trail and Complexity

For the original array based VSIDS implementation, rescoring requires sorting
variables. For a binary heap implementation, one would expect that the heap
does not change, since rescoring does not change the relative order of variables.
However, due to finite precision of scores, even when using floating-points, rescor-
ing will make the score of some variables the same, even though they differed in
score before rescoring. Moreover, scores of many variables will become zero after
a few rescores (particularly in EVSIDS). In this situation, the binary heap will
only remain unchanged after rescoring if the actual scores are the only mean to
compare variables (and for instance the variable index is not used as a tie breaker
for comparing variables with the same score). The same argument applies to our
improved queue based implementation.

The reuse-trail optimization [28] is based on the following observation. After
a restart, it often happens that the same decisions are taken and the trail ends
up with the same assigned variables. Thus, the whole restart was useless. By
comparing scores of assigned previous decisions with the score of the next deci-
sion variable before restarting, this situation can be avoided. With some effort,
this technique can be lifted to our generic queue implementation. To simplify
the comparison in favor of a clean experiment, the results presented in Sect 4
are without reuse-trail (except for sc14ayv, the old 2014 version of Lingeling).

While we do not have a precise complexity analysis for this new data struc-
ture, our empirical results show that it performs almost as good as a dedicated
binary heap for EVSIDS (heap) and as a dedicated simplified queue for VMTF
(queue). This makes our empirical comparison of decision heuristics more accu-
rate since they all use the same implementation. This data structure should also
allow to experiment with new scoring schemes without the need to implement
dedicated data structures. It might also be possible to improve it further, while
our binary heap implementation is close to being as fast and compact as possible.

4 Results

The variants of Lingeling used in the experiments evolved from the SAT compe-
tition 2014 version ayv [32] (sc14ayv)4. This old 2014 version of Lingeling solved

4 acronyms in sans serif font denote SAT solver versions and configurations

the largest number of instances in the SAT+UNSAT application track. This suc-
cess of Lingeling can be contributed to the rather long time limit of 5000 seconds
as used in the competition. For shorter time limits, Glucose version 2.3 [33,34]
(glucose-2.3) from 2013 and particularly its 2014 derivative SWDiA5BY A26 [35]
(swdia5bya26) show much better performance, despite lacking many effective pre-
processing and inprocessing techniques [36].

Our post competition analysis showed that this effect can be contributed to
two different aspects. On the one hand, the benchmark selection scheme used in
the SAT competition 2014 (and already in 2013) had a strong influence on those
results. Benchmarks were selected in such a way to level out performance of
solvers. The goal of the organizers was to make the competition as interesting as
possible, with the unfortunate effect, however, that unique solving capabilities,
such as inprocessing [36], are deemphasized. On the other hand, our analysis
showed that there is indeed an algorithmic feature implemented in all the Glucose
variants taking part in the competition, which on these competition benchmarks
is quite effective: the Glucose restart strategy [37].

This strategy uses the glucose level of learned clauses, which is the number of
different decision levels [33] in the learned clause. It compares current short term
average glucose level of learned clauses with a long term average. If short term
average is substantially larger than long term average (say 25%), a restart is
triggered, unless a restart happened very recently (less than 50 conflicts earlier).

To derive this conclusion, we implemented all techniques used in Glucose 2.3
and SWDiA5BY A26 previously not available in Lingeling, and compared their
effect on the considered SAT competition 2014 application track benchmarks.
Without being able to give more details, which is also not the focus of this
paper, implementing a variant of the Glucose dynamic restart scheme [37] had
the largest impact and allowed us to solve a comparable number of benchmarks
as the aforementioned Glucose variants even with much smaller time limits.

Beside incorporating effective techniques from Glucose and SWDiA5BY, the
base line version b7ztzu of Lingeling (evsids), as used in this evaluation, differs
from the 2014 version sc14ayv mainly in the implementation of the priority queue
used for selecting decision variables as detailed in Sect. 3. In other solvers, and
previously in Lingeling, the priority queue was implemented with a binary heap
data structure, as pioneered by MiniSAT [7]. This change was necessary to avoid
slowing down the decision selection procedure for certain decision heuristics,
particularly the variable move-to-front strategy (VMTF), which does not require
the overhead of a binary heap. It is also slightly faster than using a binary heap.

As Glucose (and thus SWDiA5BY) is based on MiniSAT [7] (minisat), we
also include in our comparison the latest version of MiniSAT from git-hub, which
essentially has not changed since 2011. For all these considered MiniSAT deriva-
tives, we use the default configuration with the internal MiniSAT version of
SatELite style preprocessing [38] enabled.

The experiments were performed on our benchmark cluster, consisting of 30
nodes with Intel Q9550 Core 2 Quad CPUs running at 2.83GHz and 8 GB of
main memory. Each job, e.g., pair of solver (configuration) and benchmark, had

exclusive access to one node and CPU, respectively. The time limit was set to
1000 seconds, which is substantially smaller than the original competition time-
out of 5000 seconds (competition hardware was further roughly 1.2 times faster).
As memory limit, we used 7GB.

In this paper, we focus on the 300 instances of the SAT+UNSAT application
track of the SAT competition 2014, but exclude 25 instances, which were solved
by the new Lingeling base line version evsids, without producing any conflicts.
Among those excluded, there are 13 satisfiable “argumentation” instances [39]
submitted 2014, with name prefix “complete. . .”. These excluded 13 instances
have a simple solution, with all variables set to false. In contrast, if this is not
detected and a more sophisticated phase initialization heuristic like Jeroslow-
Wang [20] is triggered before switching to phase saving [22], they become very
hard. The old SAT competition 2014 version of Lingeling sc14ayv fails to solve
7 within 1000 seconds in our set-up.

The other excluded 12 instances are unsatisfiable combinational hardware
equivalence checking “miter” benchmarks [40] submitted 2013. They are solved
by our base line version evsids, and all other considered new variants of Lingeling,
during the first preprocessing phase, without any search. Within 1000 seconds,
the three MiniSAT/Glucose variants easily solve the 13 excluded satisfiable “ar-
gumentation” instances, due to initializing the saved phase to false, but need
more effort than Lingeling to solve the unsatisfiable “miters”. Both glucose-2.3
and swdia5bya26 fail on benchmark 6s151, and minisat even fails on 11 “miters”
(but does solve 6s165-non). Note that, altogether, there were 30 “miters” in the
competition. Thus, 17 “miters” remained in our subset of 275 actually compared
instances, as well as 7 out of the 20 original “argumentation” benchmarks.

We describe additional specifics of the configurations used in our experiments
on top of what has been explained in detail in previous sections and further
summarize conclusions which can be drawn from the data provided in the tables
and cactus plots. All experimental data including source code is available at
http://fmv.jku.at/evalvsids/evalvsids.7z (27MB).

The main result of the paper is documented in Fig. 1. The cactus plot shows,
that EVSIDS, VMTF, as well as our new ACIDS scheme, perform equally well.
This is supported by the data in the upper part of Tab. 2, which corresponds
to the same experiment. In the last three rows, we see that our generic priority
queue is still somewhat optimized for EVSIDS and VMTF. For instance, ACIDS
needs more time during bumping, which applies even more to INC and SUM.

In Fig. 2 and the lower part of Tab. 2, we compare against two variants of
the new Lingeling, one using a dedicated optimized binary heap implementation
for EVSIDS on one side, and the other one using a dedicated optimized queue
implementation for VMTF. Both are slightly faster. Decision plus bumping time
decreases. Otherwise, they show very similar behavior. We also compare against
the state-of-the-art on these benchmarks, which for this small time-out of 1000
seconds, consists of SWDiA5BY A26 and also to some extent its “parent” Glu-
cose 2.3. We also include MiniSAT 2.2, e.g., the “grandparent” of SWDiA5BY
A26, and version ayv of Lingeling of the SAT Competition 2004 (sc14ayv).

●●●●●●●
●●●●

●
●●

●●●●
●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●

●●●
●●

●●●●●●●●●
●●

●●●
●●●●●

●●
●●

●●
●●●●

●
●
●
●●

●
●●

●
●●

●●●
●

●●
●●

●●
●●●

●●●●
●
●●

●
●●

●●
●

●
●●

●
●
●●●●

●●
●

0 50 100 150

0
20

0
40

0
60

0
80

0
10

00

solved SAT competition 2014 application track instances (ordered by time)

tim
e

(s
ec

)

●●●●●●●
●●●●

●
●●

●●●●
●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●

●●●
●●

●●●●●●●●●
●●

●●●
●●●●●

●●
●●

●●
●●●●

●
●
●
●●

●
●●

●
●●

●●●
●

●●
●●

●●
●●●

●●●●
●
●●

●
●●

●●
●

●
●●

●
●
●●●●

●●
●

●

static
inc
sum
vsids
acids
vmtf
evsids

Fig. 1. Lingeling with variable scoring schemes of Sect. 2 on SAT competition 2014 ap-
plication track benchmarks using the generic priority queue implementation of Sect. 3.

●●●●●●●
●●●●

●
●●

●●●●
●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●

●●●
●●

●●●●●●●●●
●●

●●●
●●●●●

●●
●●

●●
●●●●

●
●
●
●●

●
●●

●
●●

●●●
●

●●
●●

●●
●●●

●●●●
●
●●

●
●●

●●
●

●
●●

●
●
●●●●

●●
●

0 50 100 150

0
20

0
40

0
60

0
80

0
10

00

solved SAT competition 2014 application track instances (ordered by time)

tim
e

(s
ec

)

●●●●●●●
●●●●

●
●●

●●●●
●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●

●●●
●●

●●●●●●●●●
●●

●●●
●●●●●

●●
●●

●●
●●●●

●
●
●
●●

●
●●

●
●●

●●●
●

●●
●●

●●
●●●

●●●●
●
●●

●
●●

●●
●

●
●●

●
●
●●●●

●●
●

●●●●●●●●
●
●●●●

●●●●●
●●●●●●●

●●●
●●●

●●●●●
●●

●●
●
●●●

●●

●

●
●●

●●

●●●●

●●●
●●

●●●

●●

●●
●

●●
●●●

●
●
●
●●●

●●
●
●●

●●
●
●

●
●

●
●●

●●
●

●
●

●●
●

●●●●●●●
●●●

●●●
●●●●●

●●●●●●●
●●●●●●

●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●
●●●●

●●●●●●●●
●●

●●
●●●●

●●●●●
●●●●

●●●
●●●●

●●●
●●

●●●
●●●

●●●
●
●●

●●●
●●

●
●
●

●
●●

●●
●
●●

●
●●

●
●●●

●●
●●

●●●

●

●

●
●
●●

●●
●●

●

●
●

●

static
inc
sum
vsids
acids
vmtf
evsids

●

●

minisat
sc14ayv
glucose.2.3
swdia5bya26
queue
heap

Fig. 2. Additional variants of Lingeling on SAT competition 2014 application track
benchmarks as well as other state-of-the-art SAT solvers for this set-up.

evsids vmtf acids vsids sum inc static

solved 157 152 151 114 58 47 26
unsatisfiable 87 85 82 51 22 17 9

satisfiable 70 67 69 63 36 30 17

reductions (1e3 #) 8 8 8 10 8 8 8
restarts (1e3 #) 5826 6000 5678 4491 2612 2387 5593
rescored (1e3 #) 253 0 0 2338 0 0 0

conflicts (1e6 #) 488 476 444 604 527 540 463
decisions (1e6 #) 3691 3581 3889 4263 2603 2567 21503

simp (1e3 sec) 29.7 30.0 29.4 32.6 34.5 34.1 31.2
search (1e3 sec) 143.1 146.4 147.9 174.9 203.9 209.7 226.7

bump (1e3 sec) 7.8 6.2 16.0 16.9 34.6 37.2 0.0
decide (1e3 sec) 2.3 2.5 2.6 2.8 1.7 1.7 12.9

rescore (1e3 sec) 0.2 0.0 0.0 2.6 0.0 0.0 0.0

heap queue

swd
ia5by
a26

glu
cose
2.3

sc14
ayv

mini
sat

solved 161 156 153 144 119 101
unsatisfiable 90 86 81 79 60 41

satisfiable 71 70 72 65 59 60

reductions (1e3 #) 8 8 59 10 30 —
restarts (1e3 #) 5870 6003 3210 3846 7948 1782
rescored (1e3 #) 241 0 — — 393 —

conflicts (1e6 #) 463 474 650 728 760 1090
decisions (1e6 #) 3874 3566 5868 6818 5002 8388

simp (1e3 sec) 29.2 29.7 0.8 0.8 32.4 2.2
search (1e3 sec) 141.8 144.6 165.4 172.5 164.4 206.5

bump (1e3 sec) 3.8 4.9 — — 3.3 —
decide (1e3 sec) 4.9 2.5 — — 6.4 —

rescore (1e3 sec) 0.1 0.0 — — 0.0 —

Table 2. Additional statistics for runs in Fig. 1 (top) and Fig. 2 (bottom). Columns
correspond to the various considered configurations as discussed in the main text. Each
of the two tables consists of three parts. In the first three rows, below the configuration
names, the number of solved instances (out of 275) are listed, then split into unsat-
isfiable and satisfiable instances. The next 5 rows sum up statistics over all 275 runs.
First, there is the overall number of reductions (learned clause deletions), number of
restarts, number of times variables were rescored, followed by the number of conflicts
and decisions. In the last 5 rows, the table shows the total time spent in pre- and inpro-
cessing (simp), the CDCL loop (search), for bumping, searching for the next decision
(decide), and rescoring (again over all 275 benchmarks). To give a concrete example,
consider the “evsids” column. For all the considered 275 benchmarks, this configuration
restarted 5.8 million times and used 3.7 billion decisions. In total, it used roughly 143.1
thousand seconds in search, among which it spent 2.3 thousand seconds selecting the
next decision variable, and 7.8 thousand seconds for bumping. Altogether, it solved
157 instances (out of 275), from which 87 were unsatisfiable and 70 satisfiable.

5 Conclusion

In this paper, we evaluated several important CDCL decision schemes, including
VSIDS [5] and the related EVSIDS [6] heuristic, which are considered to be one
of the major reasons for good performance of modern SAT solvers on application
benchmarks. While some reasons for the efficiency of VSIDS have been conjec-
tured before [6], there is still a lot of ongoing research on finding good expla-
nations for its performance, particularly related to problem structure [14,15,16].
Understanding VSIDS and related decision heuristics in a better way would help
us to further improve performance of SAT solvers from a practical point of view,
as well as open up possibilities for formal analysis in a theoretical sense.

To take a major step into that direction, we gave a detailed evaluation, com-
paring VSIDS and EVSIDS to several other heuristics, including static decision
heuristics, a non-smoothing version of VSIDS and approximations of smoothing
versions. We also proposed ACIDS, a new decision heuristic with similar proper-
ties as VSIDS, and revisited the VMTF scheme [8], which is easy to implement
and also offers an alternative perspective on the meaning of the decision order of
variables. We further provided a formalization of the score update as a function
for each heuristic to capture its effect in a clear way.

In our experiments, it turned out that EVSIDS, VMTF, and ACIDS perform
very similarly. Since efficient implementation is crucial and non-trivial for all
those heuristics, we pointed out differences in underlying data structures and
discussed important aspects of implementation in detail. We further provided
detailed results, allowing us to analyze the effect variations in heuristics and
implementations cause on the time spent in the individual steps of a search.

In addition, our results also shed new light on the performance of decision
heuristics from an algorithmic point of view, as well as on many beliefs about
decision heuristics that have been held previously. For instance, EVSIDS, VMTF,
and ACIDS have in common that they put a very strong focus on variables
that participated in the most recent conflicts. This is in contrast to heuristics,
such as INC and SUM, where the occurrence in earlier conflicts also contributes
significantly to the score of a decision variable throughout the whole progress of
the search. While VSIDS, EVSIDS, and ACIDS implement explicit smoothing
schemes to realize this kind of focus, the good performance of VMTF in our
experiments shows that this is not necessarily required when directly using a
more aggressive bumping strategy for recent conflict variables.

For future work, it will be interesting to analyze the contribution of the indi-
vidual components in detail. Having provided a formal way of describing general
scoring schemes and given several implementations of flexible data structures
in a simpler way, the next steps could be motivated by theory as well as prac-
tice. For instance, combining aggressive bumping strategies in combination with
particularly adapted smoothing schemes could yield even more efficient deci-
sion heuristics. Similarly, more refined functions for updating the variable scores
could be beneficial as well. On the other hand, simple but yet efficient heuris-
tics, such as VMTF, might allow us to analyze CDCL more formally, e.g., in the
context of proof complexity.

References

1. Balint, A., Belov, A., Heule, M.J.H., Järvisalo, M., eds.: Proceedings of SAT
Competition 2013. Volume B-2013-1 of Department of Computer Science Series of
Publications B. University of Helsinki (2013)

2. Belov, A., Heule, M.J.H., Järvisalo, M., eds.: Proceedings of SAT Competition
2014. Volume B-2014-2 of Department of Computer Science Series of Publications
B. University of Helsinki (2014)

3. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT
solvers. [41] 131–153

4. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers 48(5) (1999) 506–521

5. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, ACM (2001) 530–
535

6. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In Büning,
H.K., Zhao, X., eds.: Theory and Applications of Satisfiability Testing - SAT 2008,
11th International Conference, SAT 2008, Guangzhou, China, May 12-15, 2008.
Proceedings. Volume 4996 of Lecture Notes in Computer Science., Springer (2008)
28–33

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia, E., Tacchella,
A., eds.: Theory and Applications of Satisfiability Testing, 6th International Con-
ference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers. Volume 2919 of Lecture Notes in Computer Science., Springer (2004) 502–
518

8. Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University (2004)

9. Goldberg, E.I., Novikov, Y.: Berkmin: A fast and robust sat-solver. In: 2002
Design, Automation and Test in Europe Conference and Exposition (DATE 2002),
4-8 March 2002, Paris, France, IEEE Computer Society (2002) 142–149

10. Gershman, R., Strichman, O.: Haifasat: A new robust SAT solver. In Ur, S.,
Bin, E., Wolfsthal, Y., eds.: Hardware and Software Verification and Testing, First
International Haifa Verification Conference, Haifa, Israel, November 13-16, 2005,
Revised Selected Papers. Volume 3875 of Lecture Notes in Computer Science.,
Springer (2006) 76–89

11. Biere, A.: P{re,i}coSAT@SC’09. In: SAT 2009 Competitive Event Booklet. (2009)
42–43

12. Heule, M., Kullmann, O., Wieringa, S., Biere, A.: Cube and Conquer: Guiding
CDCL SAT solvers by lookaheads. In Eder, K., Lourenço, J., Shehory, O., eds.:
Hardware and Software: Verification and Testing - 7th International Haifa Verifi-
cation Conference, HVC 2011, Haifa, Israel, December 6-8, 2011, Revised Selected
Papers. Volume 7261 of Lecture Notes in Computer Science., Springer (2012) 50–65

13. Heule, M., van Maaren, H.: Look-ahead based SAT solvers. [41] 155–184

14. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formu-
las. In Cimatti, A., Sebastiani, R., eds.: Theory and Applications of Satisfiability
Testing - SAT 2012 - 15th International Conference, Trento, Italy, June 17-20,
2012. Proceedings. Volume 7317 of Lecture Notes in Computer Science., Springer
(2012) 410–423

15. Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact
of community structure on SAT solver performance. In Sinz, C., Egly, U., eds.:
Theory and Applications of Satisfiability Testing - SAT 2014 - 17th International
Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 14-17, 2014. Proceedings. Volume 8561 of Lecture Notes in Computer
Science., Springer (2014) 252–268

16. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J.: The fractal dimension of
SAT formulas. In Demri, S., Kapur, D., Weidenbach, C., eds.: Automated Reason-
ing - 7th International Joint Conference, IJCAR 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings. Vol-
ume 8562 of Lecture Notes in Computer Science., Springer (2014) 107–121

17. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7) (1962) 394–397

18. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8) (1986) 677–691

19. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
bdds. In Cleaveland, R., ed.: Tools and Algorithms for Construction and Analysis of
Systems, 5th International Conference, TACAS ’99, Held as Part of the European
Joint Conferences on the Theory and Practice of Software, ETAPS’99, Amsterdam,
The Netherlands, March 22-28, 1999, Proceedings. Volume 1579 of Lecture Notes
in Computer Science., Springer (1999) 193–207

20. Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems. Annals of
Mathematics and Artificial Intelligence 1(1-4) (1990) 167–187

21. Marques-Silva, J.P.: The impact of branching heuristics in propositional satisfi-
ability algorithms. In Barahona, P., Alferes, J.J., eds.: Progress in Artificial In-
telligence, 9th Portuguese Conference on Artificial Intelligence, EPIA ’99, Évora,
Portugal, September 21-24, 1999, Proceedings. Volume 1695 of Lecture Notes in
Computer Science., Springer (1999) 62–74

22. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for
satisfiability solvers. In Marques-Silva, J., Sakallah, K.A., eds.: Theory and Appli-
cations of Satisfiability Testing - SAT 2007, 10th International Conference, Lisbon,
Portugal, May 28-31, 2007, Proceedings. Volume 4501 of Lecture Notes in Com-
puter Science., Springer (2007) 294–299

23. Zhang, H.: SATO: an efficient propositional prover. In McCune, W., ed.: Auto-
mated Deduction - CADE-14, 14th International Conference on Automated De-
duction, Townsville, North Queensland, Australia, July 13-17, 1997, Proceedings.
Volume 1249 of Lecture Notes in Computer Science., Springer (1997) 272–275

24. Biere, A.: PicoSAT essentials. JSAT 4(2-4) (2008) 75–97
25. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing

the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22 (2004) 319–351
26. Han, H., Somenzi, F.: On-the-fly clause improvement. In Kullmann, O., ed.:

Theory and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings. Volume
5584 of Lecture Notes in Computer Science., Springer (2009) 209–222

27. Hamadi, Y., Jabbour, S., Sais, L.: Learning for dynamic subsumption. In: ICTAI
2009, 21st IEEE International Conference on Tools with Artificial Intelligence,
Newark, New Jersey, USA, 2-4 November 2009, IEEE Computer Society (2009)
328–335

28. van der Tak, P., Ramos, A., Heule, M.J.H.: Reusing the assignment trail in CDCL
solvers. JSAT 7(4) (2011) 133–138

29. Nadel, A.: Backtrack search algorithms for propositional logic satisfiability : Review
and innovations. Master’s thesis, Hebrew University (2002)

30. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2) (1985) 202–208

31. Biere, A.: Lingeling and friends entering the SAT Challenge 2012. In Balint,
A., Belov, A., Diepold, D., Gerber, S., Järvisalo, M., Sinz, C., eds.: Proceedings
SAT Challenge 2012: Solver and Benchmark Descriptions. Volume B-2012-2 of
Department of Computer Science Series of Publications B., University of Helsinki
(2012) 33–34

32. Biere, A.: Yet another local search solver and Lingeling and friends entering the
SAT Competition 2014. [2] 39–40

33. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In Boutilier, C., ed.: IJCAI 2009, Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009.
(2009) 399–404

34. Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 Competition. [1] 42–43
35. Oh, C.: MiniSat HACK 999ED, MiniSat HACK 1430ED and SWDiA5BY. [2]

46–47
36. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In Gramlich, B., Miller,

D., Sattler, U., eds.: Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings. Volume 7364 of
Lecture Notes in Computer Science., Springer (2012) 355–370

37. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In
Milano, M., ed.: Principles and Practice of Constraint Programming - 18th In-
ternational Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012.
Proceedings. Volume 7514 of Lecture Notes in Computer Science., Springer (2012)
118–126

38. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In Bacchus, F., Walsh, T., eds.: Theory and Applications of Satisfi-
ability Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June
19-23, 2005, Proceedings. Volume 3569 of Lecture Notes in Computer Science.,
Springer (2005) 61–75

39. Wallner, J.P.: Benchmark for complete and stable semantics for argumentation
frameworks. [2] 84–85

40. Biere, A., Heule, M.J.H., Järvisalo, M., Manthey, N.: Equivalence checking of
HWMCC 2012 circuits. [1] 104

41. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T., eds.: Handbook of Satisfi-
ability. Volume 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press (2009)

