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An Optimal Multiedge Detector
for SAR Image Segmentation
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Abstract—Edge detection is a fundamental issue in image
analysis. Due to the presence of speckle, which can be modeled
as a strong, multiplicative noise, edge detection in synthetic
aperture radar (SAR) images is extremely difficult, and edge
detectors developed for optical images are inefficient. Several
robust operators have been developed for the detection of isolated
step edges in speckled images. We propose a new step-edge
detector for SAR images, which is optimal in the minimum mean
square error (MSSE) sense under a stochastic multiedge model. It
computes a normalized ratio of exponentially weighted averages
(ROEWA) on opposite sides of the central pixel. This is done in
the horizontal and vertical direction, and the magnitude of the
two components yields an edge strength map. Thresholding of
the edge strength map by a modified version of the watershed
algorithm and region merging to eliminate false edges complete
an efficient segmentation scheme. Experimental results obtained
from simulated SAR images as well as ERS-1 data are presented.

Index Terms—Edge detection, multiedge model, region merg-
ing, segmentation, speckle, synthetic aperture radar (SAR), wa-
tershed algorithm.

I. INTRODUCTION

SEGMENTATION is the decomposition of an image in
regions, i.e., spatially connected, nonoverlapping sets of

pixels sharing a certain property. A region may, for example,
be characterized by constant reflectivity or texture. Region-
based segmentation schemes, such as histogram thresholding
and split-and-merge algorithms, try to define regions directly
by their content, whereas edge-based methods try to identify
the transitions between different regions.

In images with no texture, an edge can be defined as an
abrupt change in reflectivity. In the case of optical images, an
edge is usually defined as a local maximum of the gradient
magnitude in the gradient direction, or equivalently, as a
zero-crossing of the second derivative in the direction of
the gradient. Smoothing is necessary prior to derivation, as

Manuscript received December 30, 1996; revised August 13, 1997. This
work was supported by the French Space Agency (CNES) under Contract
833/CNES/94/1022/00.

R. Fjørtoft and A. Lop̀es are with the Centre d’Etudes Spatiales de la
Biosp̀ere (CESBIO), UMR 5639 CNES/CNRS/UPS, 31401 Toulouse, France
(e-mail: Roger.Fjortoft@cesbio.cnes.fr; Armand.Lopes@cesbio.cnes.fr).

P. Marthon is with the Laboratoire d’Informatique et de Math´ematiques
Appliquées (LIMA), Ecole Nationale Supérieure d’Electrotechnique,
d’Electronique, d’Informatique et d’Hydraulique de Toulouse (ENSEEIHT),
Institut de Recherche en Informatique de Toulouse (IRIT), UMR 5505
UPS/INP/CNRS, 31071 Toulouse, France (e-mail: Philippe.Marthon@
enseeiht.fr).

E. Cubero-Castan is with the French Space Agency (CNES),
DGA/T/SH/QTIS, 31401 Toulouse, France (e-mail: Eliane.Cubero-
Castan@cnes.fr).

Publisher Item Identifier S 0196-2892(98)01195-4.

differential operators are sensitive to noise. The smoothing
and differentiation operations are merged and implemented by
two-dimensional (2-D) filters. Gradient-based edge detection
basically consists of calculating thedifferenceof the local
radiometric means on opposite sides of the central pixel. This
is done for every pixel position in the vertical and horizontal
direction, and the magnitude of the components is computed.
Finally, local maxima of the gradient magnitude image are
extracted.

Owing to the multiplicative nature of speckle, edge detec-
tors, based on the difference of average pixel values, detect
more false edges in areas of high reflectivity than in areas
of low reflectivity in synthetic aperture radar (SAR) images
[1]. Certainly, other measures than the difference can be used
to identify abrupt transitions. Several edge detectors with
constant false alarm rates (CFAR’s) have been developed
specifically for SAR images, e.g., based on a ratio of averages
[1], [2] or a likelihood ratio [3], [4]. However, these operators
use the arithmetic mean for the estimation of local mean
values, which is optimal only in the monoedge case. Segmen-
tation schemes based on region growing [5], [6], histogram
thresholding [7], and simulated annealing [8] have also been
proposed for SAR images.

In this article, we concentrate on the spatial aspect of
edge detection, based on a multiedge model. We incorporate
the specific properties of SAR images and develop a linear
minimum mean square error (MMSE) filter for the estimation
of local mean values. In this way, we obtain a new edge
detector with improved noise suppression and edge detection
properties. Section II explains the principle of monoedge de-
tection in SAR imagery. In Section III, we develop an optimal
multiedge detector and propose a thresholding method that
extracts closed, skeleton boundaries. The use of region merg-
ing to eliminate false edges is also described. Experimental
results obtained from simulated SAR images and ERS-1 data
are presented in Section IV. We discuss theoretical aspects
and experimental results in Section V and end with some
concluding remarks in Section VI.

II. M ONOEDGE DETECTION IN SAR IMAGES

Speckle is a deterministic effect common to all imaging
systems relying on coherent illumination. It is due to the
constructive and destructive interference of the responses of
the different elementary scatterers of a resolution cell. In the
measured intensity image, speckle is well modeled as a
multiplicative random noise , which is independent of the
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Fig. 1. One-dimensional monoedge model.

radar reflectivity [9]

(1)

The transfer function of the SAR system is designed to vary as
little as possible over the bandwidth of interest. It is known to
have negligible influence on the spectrum of the ideal image,
but to limit the bandwidth of the noise spectrum. This effect
is incorporated here in the term. Fully developed speckle
is Gamma distributed with mean value 1 and variance

, where is the equivalent number of independent
looks (ENIL) of the image [9].

Several CFAR edge detectors have been developed for SAR
images based on the monoedge model, which supposes that
only one step edge is present in the analyzing window (Fig. 1).
For example, Touziet al. showed that edge detectors based on
the ratio of averages (ROA) have CFAR because the standard
deviation is proportional to the mean intensity [1]. The
ratio is normalized to lie between zero and one

(2)

where and are the arithmetic mean intensities of the
two halves of a window of fixed size. The normalized ratio
is calculated in four (or more) directions by splitting the
analyzing window along the horizontal, vertical, and diagonal
axes. The minimum of the four values thus obtained is
finally compared to an edge detection threshold, which is set
according to the accepted probability of false alarm (PFA),
i.e., the probability of detecting an edge in a zone of constant
reflectivity. The principle of the likelihood ratio (LR) detector
is to estimate the ratio of the probability that the analyzing
window covers two regions separated by a given axis to the
probability that the entire window belongs to one single region.
Transforming the LR for edge detection in SAR images into
a log-likelihood difference yields [4]

edge (3)

where is the order parameter of the Gamma distribution
of the SAR image, , , , and are the number
of pixels and the arithmetic mean values of the two half
windows, and and are the corresponding parameters
for the entire window. Oliveret al. recently showed that the
ROA operator coincides with the LR operator if only the
averages are estimated on equally sized halves of the sliding
window [4].

Fig. 2. One-dimensional multiedge model.

The unbiased maximum likelihood (ML) estimator of the
mean value of a Gamma distributedstationaryprocess is the
arithmetic mean [4]. The ROA and LR operators both use this
estimator. It is optimal under the monoedge model, i.e., as
long as the width of each half window does not exceed the
minimum distance between significant edges. In SAR images,
the SNR is very low, typically 0 dB for single-look images. To
sufficiently reduce the influence of the speckle, an important
number of pixels must be averaged in each half window. Thus,
there is a conflict between strong speckle reduction and high
spatial resolution, and the chosen window size constitutes a
compromise between these two requirements. This illustrates
the limitations of the monoedge model.

III. M ULTIEDGE DETECTION IN SAR IMAGES

For most scene types, the large windows that we use to
detect edges in SAR images are likely to contain several
edges simultaneously. In fact, we need to estimate thelocal
mean values of a signal that undergoes abrupt transitions
with random intervals. The monoedge hypothesis is generally
not verified, and the arithmetic mean is no longer optimal.
Estimators with nonuniform weighting should therefore be
considered. The filter coefficients decide the weighting of the
pixels as a function of the distance to the central pixel. For
our application, they should optimize the tradeoff between
noise suppression and spatial resolution, based ona priori
knowledge of image and noise statistics.

A. Multiedge Model

We restrict ourselves to a separable image model. In the
horizontal as well as in the vertical direction, we suppose
that the reflectivity image (ideal image) is a stationary
random process composed of piecewise constant segments of
reflectivity , with mean value and standard deviation

. The localization of the reflectivity jumps follows a
Poisson distribution with parameter corresponding to the
mean jump frequency, i.e., the probability ofjumps in the
interval is given by

The reflectivities and the jump localizations are
supposed to be independent. Hence and .
Fig. 2 illustrates the multiedge model in the one-dimensional
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(1-D) case. Although it is idealized, this model is a good
approximation for important scene types, such as agricultural
fields.

It can easily be shown that the autocovariance function of
the reflectivity is [10]

The ideal image is thus a separable first-order Markov process
with parameter . The power spectral density, which we here
define as the Fourier transform of the autocovariance function,
is then

(4)

B. Linear MMSE Filter

Let us now develop the linear MMSE filter for the es-
timation of the local mean under the stochastic multiedge
model and the multiplicative noise model. It should not be
confused with an adaptive speckle filter [11], which restores
the reflectivity of a pixel based on the local statistics. The
MMSE filter will be split along the vertical and horizontal
axes, and the weighted means estimated in the different
half windows will be used for edge detection. To facilitate
the implementation, we suppose the filter to have separable
impulse response and first consider
the 1-D case. The best unbiased linear estimator of the
reflectivity is of the form [12]

(5)

Minimizing the mean square error yields
the transfer function [12]

(6)

The autocovariance function of the speckle decreases very
rapidly [9]. As an approximation, will be considered as
white noise here

By substituting the power spectral densities and mean values
into (6) and taking the inverse Fourier transform, we obtain
the optimal impulse response

where

(7)

and is a normalizing constant. From the multiplicative noise
model (1), we have and

which can be estimated from the speckled image. The average
region width can be evaluated visually, or we can estimate

Fig. 3. Impulse response of the infinite symmetric exponential filter (ISEF).

from the spectrum of a speckle-reduced image (4) obtained
by adaptive filtering [11].

We normalize with respect to the mean value, i.e.,
, to obtain an unbiased estimator. With this normalization,

and (5) simplifies to

We can thus apply the filter directly to the measured intensity
image .

The impulse response of is shown in Fig. 3. As we
see, the filter is of infinite extent, which for the 2-D filter

means that the analyzing window
centered on the pixel to be filtered covers the entire image.
The weight of the surrounding pixels decreases exponentially
with distance. The further a pixel is from the center, the more
likely it is to belong to another region and the less influence
it has on the estimated local mean. We note that is not
strictly isotropic.

The filter is known as the infinite symmetric exponential
filter (ISEF). The ISEF is the basis of the edge detector of
Shen and Castan [13], which computes the difference of the
exponentially weighted means of each half window. This is an
optimal multiedge detector for images degraded by additive
white noise. It is claimed to have better edge localization
precision than other edge detectors proposed for optical images
[13]. We have now shown that the same type of smoothing
filter is optimal in the case of multiplicative noise. However, as
explained in Section I, edge detectors based on the difference
of averages are not suited for SAR images.

We also note the analogy between the ISEF and the Frost
speckle filter [11]. Frostet al. assumed thelocal variations,
within stationary regions of the image, to be a first-order
Markov process and developed an adaptive restoration filter
in which local statistics control the slope of the exponential
weighting function. We use the first-order Markov process as
a global image model for the optimization of a nonadaptive
filter.

In the discrete case, can be implemented very efficiently
by a pair of recursive filters [13], [14]. We define two discrete
filters and , realizing the normalized causal and
anticausal part of , respectively

(8)

(9)

where 0 1, 1 and is the
discrete Heaviside function. The smoothing function can now
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be rewritten as

where .
By taking the -transform of (8) and (9), we obtain

In terms of the spatial index, convolution with and
corresponds to the following simple recursions:

(10)

(11)

Here and are the inputs and and are
the outputs of and , respectively. To minimize the number
of multiplications, we may rewrite (10) and (11) as

The computational cost for and for is thus one multiplica-
tion per pixel. Due to the normalizing factors,necessitates
four multiplications per pixel.

C. ROEWA Operator

Based on the linear MMSE filters described above, we
propose a new ratio-based edge detector: theratio of expo-
nentially weighted averages(ROEWA) operator. The expo-
nentially weighted averages and are normalized to be
unbiased, and we show in the Appendix that their variance is
proportional to the variance of the raw image. The standard
deviation remains proportional to the mean value, so the
ROEWA operator has CFAR [1]. As opposed to Touziet al.
(2), we normalize the ratio to be superior to one

(12)

The two approaches are of course equivalent. Our choice is
motivated by the particular algorithm that we use in the edge
extraction step.

To compute the horizontal edge strength component, the
image is first smoothed column by column using the 1-
D smoothing filter . Next, the causal and anticausal filters
and are employed line by line on the result of the smoothing
operation to obtain and

Here denotes convolution in the horizontal direction and
denotes convolution in the vertical direction. The normalized

ratio is found by substituting and
into (12). The vertical edge strength component

is obtained in the same manner, except that the directions are
interchanged

Finally, with analogy to gradient-based edge detectors for
optical images, we take the magnitude of the two components

In the edge strength map thus obtained, a high pixel value
indicates the presence of an edge. For each pixel, this implies
a total of 14 multiplications, an average of three divisions,
and one square root operation.

D. Edge Extraction

By thresholding the edge strength map, we obtain pixels
that, with a certain PFA, belong to edges. If the threshold
is set too high, we miss important edges, and if it is set
too low, we detect a lot of false edges. Plain thresholding
will in general produce several pixels wide, isolated edge
segments. The edges can be thinned to unity width by using
morphological closing [1]. The problem of forming closed
boundaries from spatially separated edge segments is quite
complicated. If the edges are not closed, they do not define a
segmentation of the image.

The watershed algorithm[15] is a simple and efficient
edge detection method that gives closed, skeleton boundaries.
The edge strength map is considered as a surface, and the
algorithm detects local maxima by immersion simulation.
In its original form, the watershed algorithm retains all of
the local maxima of the edge strength map, which separate
different basins. It unfortunately tends to produce massively
oversegmented images. We have chosen to introduce an edge
detection threshold in the algorithm [16]. Only edge strength
magnitudes over the chosen threshold are considered. Local
maxima with lower magnitudes are supposed to be due to
noise. With this modification, the algorithm detects, thins,
and closes significant edges in one operation. The modified
watershed algorithm is illustrated in Fig. 4.

We do not have any analytical expression for the distribution
of the exponentially weighted means. When the slope of the
exponential function is moderate, however, we may suppose a
Gaussian distribution, according to the central limit theorem.
The variance of the distribution as a function of the variance of
the raw image, the speckle correlation, and the filter parameter

is given in the Appendix. The relation between detection
threshold and PFA can be established theoretically for the
ROEWA operator, based on the Gaussian hypothesis. In fact,
as the Gamma distribution fits a Gaussian distribution very
closely when the ENIL is a few tenths or higher, the PFA
computed for the ROA operator [1] can also be used for the
ROEWA for typical values of. The ENIL of the exponentially
weighted mean is equal to the ENIL of the raw image
multiplied by the equivalent number of independent pixels in
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(a)

(b)

Fig. 4. (a) Initial state of the modified watershed algorithm shown on a
cross section of an edge strength map. (b) Skeleton boundaries detected after
complete immersion.

the half window, which is given in the Appendix. The PFA
applies to the vertical or horizontal edge strength component,
but only as an approximation to their magnitude. Moreover,
watershed thresholding reduces the PFA, as compared to plain
thresholding, as also false edges are thinned to unity width.
The effect of this nonlinear operation is difficult to quantify.
With our approach, the theoretical PFA for a given threshold
can therefore only serve as a rough indication.

A particularity of watershed thresholding is that the whole
edge is eroded if the edge strength magnitude of one single
edge pixel is below the detection threshold. Consequently,
the threshold must be set relatively low for the algorithm to
form meaningful boundaries, but then we are bound to detect
numerous false edges as well.

E. Postprocessing

Spurious edges can be eliminated by merging adjacent
regions whose reflectivities are not significantly different.
Several merging criteria have been proposed, including the
Student’s -test [6] and the unequal variance Student’s-test
[14]. The LR of Oliveret al. [4] can also be used to decide
whether two regions should be merged and again constitutes
an optimal criterion. In fact,merge edge(3)

merge (13)

Thus, merge ≤ 0, and a value close to zero suggests that
the two regions together form a Gamma-homogeneous region.

It should be noted, however, that we in many applications
seek a thematic segmentation, so that weak textures within the
regions can be accepted. In practice, negative thresholds are
used. The more irregularities we accept within the regions, the
further the threshold can be from zero. Again, the threshold
can be related to the PFA [4].

Geometrical considerations, such as region size [14] and
edge regularity [6], may also be taken into account in the
merging process, based ona priori knowledge about the size
and shape of the regions. The order in which the regions are
merged has a strong influence on the final result. Finding the
globally optimal merging order requires much time-consuming
sorting. Theiterative pairwise mutually best merge criterion
[17] is a locally optimal approach that is much quicker. First,
all regions are compared with their neighbors in terms of the
merging criterion and the results are stored in a dynamic array.
The array is then traversed sequentially, and a regionis
merged with an adjacent regionif and only if is the closest
neighbor of , according to the merging criterion, and if is
also the closest neighbor of. When two regions are merged,
the local statistics of the resulting region must be updated and
the comparison with all its neighbors must be redone before
continuing. The array is traversed repeatedly until no adjacent
regions satisfy the merging criterion.

IV. EXPERIMENTAL RESULTS

The novelty of our detector is that it relies on weighted
means rather than on the arithmetic means used by other CFAR
detectors. To study the influence of the nonuniform weighting,
we compare the ROEWA operator with the ROA operator.
For both detectors, the normalized ratio is computed
vertically and horizontally and the magnitude of the two com-
ponents constitutes the edge strength map. We use the modified
watershed algorithm for thresholding because it directly yields
skeleton boundaries localized on local maxima of the edge
strength map. This property facilitates the subsequent tests.

A quantitative comparison of edge detectors can only be
effectuated on simulated images, as we need to know the
exact position of the edges in advance. Let us first consider
a “cartoon image,” composed of vertical bands of increasing
width, from 2 to 18 pixels. The ratio between the reflectivities
of the bright and the dark lines is 12 dB. This reference image
was multiplied with a simulated single-look speckle image.
The correlation coefficients of the speckle is 0.42,

0.03, and 0, , in azimuth as well as in
range. The ideal image and its single-look speckled counterpart
are shown in amplitude in Fig. 5(a) and (b), respectively. Edge
strength maps were calculated on the speckled image with both
operators. Single-look images are extremely noisy, so strong
smoothing is necessary. The ROEWA operator with 0.9
produced a very regular edge strength map, giving rise to few
false edges. To obtain the same reduction of speckle variance
with a half window for both operators and thus the same false
alarm rate for a given detection threshold, the window size for
the ROA operator was set to 39 39 (see the Appendix). A
threshold of 1.85 provided the best compromise between the
detection of real edges and the suppression of false ones.
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(a) (b)

(c) (d)

Fig. 5. (a) Ideal image consisting of vertical lines of width 2–18 pixels. (b) The simulated single-look speckled image. (c) The segmentation obtained with
the ROA edge detector and watershed thresholding. (d) The segmentation obtained with the ROEWA edge detector and watershed thresholding.

The resulting segmentations are shown in Fig. 5(c) and (d).
The ROEWA operator gives a systematic detection of edges
for bands of width eight or higher, whereas the ROA operator
detects systematically only from a width of 13. Some spurious
edges are present near the edges in the case of the ROA
operator. The experiment indicates that the ROEWA operator
has better spatial resolution than the ROA operator for a given
speckle reduction capacity. However, we have chosen a very
strong smoothing to place ourselves in a multiedge situation.
We could of course use a smaller window and detect edges
at finer scales with the ROA operator, at the risk of a higher
false alarm rate.

Let us now examine a more realistic case. We synthesized
the cartoon image shown in amplitude in Fig. 6(a) by a first-
order Markov random field with four classes. The reflectivity
ratio between subsequent classes is 6 dB. This image ap-
proximately corresponds to the multiedge model presented in
Section III-A. The mean region width 13.4 pixels.
Fig. 6(b) shows the same image multiplied with single-look
speckle. The correlation properties of the speckle are the same
as in the previous example. To compare the performance of
the edge detectors, we use Pratt’s figure of merit [18]

where is the number of ideal edge pixels, is the
number of detected pixels, and is the distance between the
th detected edge pixel and the closest true edge pixel.is

a calibration constant that is usually set to one. However, as
the edges are dense in our test image so that the nearest ideal

edge pixel never is far away, we set 2 for a stronger
penalization of misplaced edge pixels. We accept the closest
pixel on each side of a transition as an ideal edge pixel, i.e.,

0 for every pixel having at least one pixel belonging
to another region in its four-neighborhood. The distanceto
an ideal edge for the remaining pixels is obtained as follows:

1 is attributed to all remaining pixels having one or more
pixels with 0 in their four-neighborhood. Among the
pixels not yet attributed, 2 is set for every pixel having
at least one pixel with 1 in its four-neighborhood, and
so forth.

Edge strength maps were computed by the ROA operator
with window sizes from 3 3 to 19 19 and by the
ROEWA operator with the parametervarying over the range
0.1–0.8. For each edge strength map, the detection threshold
maximizing Pratt’s figure of merit was determined. Fig. 7
shows the result. The unit along the horizontal axis is the
equivalent number of independent pixels in each half of the
analyzing window, in terms of the speckle reduction obtained
by smoothing (see the Appendix). This allows us to compare
the results obtained with the ROA operator with different
window sizes, with those obtained by the ROEWA operator
using exponential weighting functions of varying slope. From
Fig. 7, we see that the ROEWA operator yields a better
score than the ROA operator over most of the parameter
range. However, the difference is relatively small near the
maximum of the graphs, and for one window size (77),
the ROA operator performs even better than the ROEWA
operator. The difference in favor of the ROEWA operator
increases with stronger smoothing. This reflects the fact that
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(a) (b)

Fig. 6. (a) Ideal image synthesized by a first-order Markov random field. (b) The corresponding single-look speckled image.

Fig. 7. Pratt’s figure of merit for the ROA edge detector with varying
window size, and for the ROEWA edge detector with varying slope, applied
to the single-look speckled Markov random field image.

the multiedge model is more relevant the larger the analyzing
window. The ROA operator is optimal in the monoedge
case, which is more frequently encountered when using small
windows. The localization of the maxima of the graph should
not be taken too literally. Such a weak smoothing generally
implies an important number of false edges due to speckle.
A stronger smoothing gives more meaningful boundaries. The
theoretical optimum for the ROEWA operator, according to
(7), is 0.74, which corresponds to about 30 independent
pixels in each half window.

Results on real-world data are a useful supplement to
simulations, but here only a visual appreciation can be given.

A multitemporal series of three-look ERS-1 images of an
agricultural scene near Bourges, France, was used to test
edge detectors and postprocessing. An extract of a color
composition of three dates acquired with monthly intervals
is shown in Fig. 8. Note the close resemblance between this
scene and the simulated image in Fig. 6. The edge strength
maps of the different dates were averaged, supposing that no
geometrical changes took place between the acquisitions and
that the images are perfectly registered. Our strategy is to
allow a strong oversegmentation in the edge detection step
and then rely on subsequent merging to eliminate false edges.
The best results were obtained with a 1313 window for the
ROA operator and with 0.73 for the ROEWA operator.
Given the speckle correlation, the two detectors have about
the same speckle reduction capacity with these parameters.
Visual inspection of the segmentations revealed only slight
differences in favor of the ROEWA operator. We shall use
this image to illustrate how complementary postprocessing can
improve the final result. Fig. 9 shows the initial segmentation,
obtained with the ROEWA operator with parameter 0.73
and the modified watershed algorithm with threshold 1.53.
The threshold was deliberately set very low to make sure
that practically all significant edges are detected, resulting in
a massively oversegmented image. All three merging criteria
mentioned in Section III-E were compared. The LR measure
(13) gave the result that agreed best with our conception of
the regions. The unequal variance Student’s-test gave similar
results, whereas the classic Student’s-test performed poorly.
In the final segmentation shown in Fig. 10, the number of
regions has been reduced from over 5000 to about 600. Adja-
cent regions for which the log-likelihoodmerge for
all three dates were merged. The threshold indicates that we
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Fig. 8. Extract of a color composition of three SAR images of an agricultural
scene near Bourges, France,c
ESA—ERS-1 data—1993, Distribution SPOT
Image.

accepted some irregularities within the regions. In addition,
regions containing only one pixel were supposed to be due to
speckle and thus eliminated. The merging order was defined
by the iterative pairwise mutually best merge criterion. Almost
all regions that we can distinguish by eye have been detected.
Some regions still seem to be split in several parts, the edges
are sometimes irregular due to speckle, and the corners are
slightly rounded due to the strong smoothing used by the edge
detector. It is, nevertheless, a remarkably good SAR image
segmentation.

V. DISCUSSION

The estimator of local means used by the ROEWA operator
is optimized for a stochastic multiedge model. We have shown
that an exponentially weighted mean with a correctly adjusted
slope gives the optimal tradeoff between localization precision
and speckle suppression when the reflectivity jumps follow
a Poisson distribution. This multiedge model is primarily
adapted to describe scenes composed of distinct regions of
relatively uniform reflectivity, but of strongly varying size.
Exponential weighting is strictly optimal only for scene types
that correspond exactly to the stochastic image model. More-
over, we supposed uncorrelated speckle. Equivalent estimators
for other scene models and for correlated speckle can be
developed by substituting the appropriate spectral density
functions into (6), but the impulse response will in general not
be any simple, analytic function like the one that we found
here.

The arithmetic mean, used by the ROA operator, is the ML
estimator of the mean value for a stationary process. The ROA
operator is hence spatially optimal in a monoedge context, i.e.,
when the distance between edges is larger than the width of

Fig. 9. Oversegmented image obtained by the ROEWA operator and water-
shed thresholding.

Fig. 10. Segmentation obtained by the ROEWA operator, watershed thresh-
olding, and region merging.

a half window. If the regions are generally big, as compared
to the window size that is necessary to obtain a sufficient
speckle suppression, the ROA operator is bound to perform
better than the ROEWA operator.

To decide whether the ROEWA operator can bring an
improvement, as compared to the ROA operator for a given
image, several factors must be considered: the average region
size and the variations in region size, the contrast between
different regions, the ENIL, and the speckle correlation. The
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ROEWA should theoretically perform better than the ROA
operator when the reflectivity approximately corresponds to
the multiedge model, the mean region width is small, and the
ENIL is low. With increasing ENIL or mean region width,
the monoedge model becomes more appropriate and the ROA
operator can be expected to perform better.

The experimental results confirm the theoretical discussion
above. Edge detection on a single-look image composed of
vertical bands of gradually increasing width indicate that the
ROEWA detector permits a strong speckle reduction without
degrading the spatial resolution as much as the ROA operator.
Here we have deliberately placed ourselves in a rather extreme
multiedge situation.

On another simulated single-look image, where the reflec-
tivity closely approximates the proposed multiedge model, the
ROA and ROEWA detectors were compared over a wide range
of window sizes and corresponding slopes of the exponential
weighting function, in terms of Pratt’s figure of merit. For
the smallest windows, the monoedge hypothesis is generally
verified and the superiority of the ROA operator is con-
firmed, even though the scores are very close. With stronger
smoothing corresponding to larger windows, the multiedge
model becomes more relevant and the performance difference
in favor of the ROEWA operator increases steadily. Strong
smoothing is necessary here to avoid numerous false edges,
due to speckle, the low ENIL, and the high speckle correlation.

A hybrid segmentation scheme, which combines the pro-
posed edge detection method with LR region merging, was
shown to give excellent results on multitemporal ERS-1 im-
ages of an agricultural scene. The difference between the
results obtained by the ROA and ROEWA operators was small.
This reflects the fact that typical regions are so large that
the monoedge model is just as appropriate as the multiedge
model for the window size used. Such segmentations can be
used to improve thematic classifications [19]. It should be
stressed that this is a very rapid segmentation method. On
a Silicon Graphics INDY workstation with a MIPS R4400
200-MHz CPU and 64 MB of memory, the ROEWA operator,
the watershed thresholding, and the LR region merging needed
only 12 s to process three channels of 512512 pixels,
producing the result in Fig. 10. This makes our method more
than an order of magnitude faster than another sophisticated
SAR segmentation scheme, the RWSEG algorithm [5], which
is implemented in the CAESAR module of the ERDAS
IMAGINE software package. The quality of the results are
comparable.

VI. CONCLUSION

In this article, we propose a new CFAR edge detector for
SAR images, which is optimal under a stochastic multiedge
model. It has been shown to perform better than the ROA oper-
ator for images that closely approximate the multiedge model,
especially when the average region width is small and the
ENIL is low. The ROEWA operator, watershed thresholding,
and LR region merging constitute a very efficient segmentation
scheme. The watershed thresholding can be replaced by more

advanced edge extraction methods, based on the powerful
concepts of basin dynamics [20] and edge dynamics [21].

The ROEWA operator is a simple, nonadaptive edge de-
tector. There are several other approaches to edge detection
and segmentation in a multiedge context. Multiresolution ROA
operators [22] combine the ratios computed with different
window sizes according to their statistical significance. The
ideal solution would be a spatially adaptive LR operator,
which varies the window size, the window form, and the way
it is split, so that the local arithmetic means are estimated
on complete, uniform regions. However, these perfectly ho-
mogeneous zones are unknown and difficult to identify in
the presence of speckle. The practical solution is to try to
iterate toward the best segmentation. The RWSEG algorithm
[5], for example, combines edge detection and region growing
iteratively. Stochastic methods based on Markov random fields
and simulated annealing [8] iterate toward a segmentation that
minimizes a global cost function. Such methods may give even
better results, at the cost of a higher computational complexity.

APPENDIX

Let us suppose the intensity to be a wide-sense station-
ary process. Taking the block-average of pixels

reduces the variance with a factor if the
pixels are uncorrelated

If the pixels are correlated

(14)

where and ≥ 0, are the autocorrelation coefficients.
In SAR images, the speckle correlation typically becomes

insignificant for distances superior to 2 or 3 pixels. More
generally, we may suppose 0, , and ,
so that (14) can be rewritten as

(15)

The factor with which the variance is reduced gives us the
equivalent number of independent pixels in the analyzing
window. Let us now consider the speckle reduction obtained
by one half window of the ROEWA operator. We first employ
the ISEF in one direction
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The normalized causal filter in the perpendicular direction
gives

The equivalent number of independent pixels in a half window
of the ROEWA operator is thus , which can be
compared to the corresponding number for a half window of
the ROA operator obtained by employing (15) in the horizontal
and vertical direction.
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France, and the Ph.D. degree from the Université
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