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An Optimal Multiedge Detector
for SAR Image Segmentation

Roger Fjgrtoft, Armand Logs, Philippe MarthonAssociate Member, IEEEaNd Eliane Cubero-Castan

Abstract—Edge detection is a fundamental issue in image differential operators are sensitive to noise. The smoothing
analysis. Due to the presence of speckle, which can be modelechnd differentiation operations are merged and implemented by
as a strong, multiplicative noise, edge detection in synthetic v, gimensional (2-D) filters. Gradient-based edge detection

aperture radar (SAR) images is extremely difficult, and edge . . . .
detectors developed for optical images are inefficient. Several basically consists of calculating theifferenceof the local

robust operators have been developed for the detection of isolated radiometric means on opposite sides of the central pixel. This
step edges in speckled images. We propose a new step-edgis done for every pixel position in the vertical and horizontal

detector for SAR images, which is optimal in the minimum mean djrection, and the magnitude of the components is computed.

square error (MSSE_) sense_underastochastic mu_ltiedge model. It Finally, local maxima of the gradient magnitude image are
computes a normalized ratio of exponentially weighted averages extract,ed

(ROEWA) on opposite sides of the central pixel. This is done in . o
the horizontal and vertical direction, and the magnitude of the =~ Owing to the multiplicative nature of speckle, edge detec-
two components yields an edge strength map. Thresholding of tors, based on the difference of average pixel values, detect

the edge strength map by a modified version of the watershed more false edges in areas of high reflectivity than in areas
algorithm and region merging to eliminate false edges complete f |6y reflectivity in synthetic aperture radar (SAR) images
an efficient segmentation scheme. Experimental results obtained 11. Certainl th than the diff b d
from simulated SAR images as well as ERS-1 data are presented.[ ]', er f’;un y, other mea.s.ures an the diiierence can be u_se
_ ] ; to identify abrupt transitions. Several edge detectors with
_ Index Terms—Edge detection, multiedge model, region merg- ¢,ngiant false alarm rates (CFAR'’s) have been developed
|ng,hsedgm|entat|;on, speckle, synthetic aperture radar (SAR), wa- specifically for SAR images, e.g., based on a ratio of averages
tershed algorithm. or S jes, e.g.,
[1], [2] or a likelihood ratio [3], [4]. However, these operators
use the arithmetic mean for the estimation of local mean
: values, which is optimal only in the monoedge case. Segmen-
I. INTRODUCTION [ hich ptimal only in th dg Seg

GMENTATION is the decomposition of an image intation schemes based on region growing [5], [6], histogram
egions, i.e., spatially connected, nonoverlapping sets tfesholding [7], and simulated annealing [8] have also been
pixels sharing a certain property. A region may, for examplgroposed for SAR images.
be characterized by constant reflectivity or texture. Region-In this article, we concentrate on the spatial aspect of
based segmentation schemes, such as histogram threshol@f@g detection, based on a multiedge model. We incorporate
and split-and-merge algorithms, try to define regions directi{)e specific properties of SAR images and develop a linear
by their content, whereas edge-based methods try to idenfijnimum mean square error (MMSE) filter for the estimation
the transitions between different regions. of local mean values. In this way, we obtain a new edge
In images with no texture, an edge can be defined as @gfector with improved noise suppression and edge detection
abrupt change in reflectivity. In the case of optical images, &foperties. Section Il explains the principle of monoedge de-
edge is usually defined as a local maximum of the gradieiction in SAR imagery. In Section IIl, we develop an optimal
magnitude in the gradient direction, or equivalently, as @ultiedge detector and propose a thresholding method that
zero-crossing of the second derivative in the direction @ktracts closed, skeleton boundaries. The use of region merg-
the gradient. Smoothing is necessary prior to derivation, & to eliminate false edges is also described. Experimental
results obtained from simulated SAR images and ERS-1 data
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Fig. 1. One-dimensional monoedge model. Fig. 2. One-dimensional multiedge model.
radar reflectivity R [9] The unbiased maximum likelihood (ML) estimator of the
mean value of a Gamma distributsthtionaryprocess is the
I(z) = R(z) - n(x). @) yp

arithmetic mean [4]. The ROA and LR operators both use this

The transfer function of the SAR system is designed to vary astimator. It is optimal under the monoedge model, i.e., as
little as possible over the bandwidth of interest. It is known tong as the width of each half window does not exceed the
have negligible influence on the spectrum of the ideal imag®jnimum distance between significant edges. In SAR images,
but to limit the bandwidth of the noise spectrum. This effedhe SNR is very low, typically 0 dB for single-look images. To
is incorporated here in the term. Fully developed speckle sufficiently reduce the influence of the speckle, an important
is Gamma distributed with mean valyg, = 1 and variance number of pixels must be averaged in each half window. Thus,
0% =1/L, whereL is the equivalent number of independenthere is a conflict between strong speckle reduction and high
looks (ENIL) of the image [9]. spatial resolution, and the chosen window size constitutes a

Several CFAR edge detectors have been developed for Sédtmpromise between these two requirements. This illustrates
images based on the monoedge model, which supposes thatlimitations of the monoedge model.
only one step edge is present in the analyzing window (Fig. 1).
For example, Touzét al. showed that edge detectors based on III. M ULTIEDGE DETECTION IN SAR IMAGES
the ratio of averages (ROA) have CFAR because the standar
deviationo; is proportional to the mean intensity; [1]. The
ratio is normalized to lie between zero and one

(Ij—'or most scene types, the large windows that we use to
detect edges in SAR images are likely to contain several
R edges simultaneously. In fact, we need to estimateldbal
Fin = MiN {& &} (2) Meanvalueg/., } of a signal that undergoes abrupt transitions
with random intervals. The monoedge hypothesis is generally
where ji; and /i, are the arithmetic mean intensities of théot verified, and the arithmetic mean is no longer optimal.
two halves of a window of fixed size. The normalized rati&Stimators with nonuniform weighting should therefore be
is calculated in four (or more) directions by splitting th&onsidered. The filter coefficients decide the weighting of the
analyzing window along the horizontal, vertical, and diagon&IX€ls as a function of the distance to the central pixel. For
axes. The minimum of the four values thus obtained RUr application, they should optimize the tradeoff between
finally compared to an edge detection threshold, which is diise suppression and spatial resolution, baseca giori
according to the accepted probability of false alarm (PFalnowledge of image and noise statistics.
i.e., the probability of detecting an edge in a zone of constant
reflectivity. The principle of the likelihood ratio (LR) detectorA. Multiedge Model

is to estimate the ratio of the probability that the analyzing we restrict ourselves to a separable image model. In the
window covers two regions separated by a given axis to th@rizontal as well as in the vertical direction, we suppose
probability that the entire window belongs to one single regiothat the reflectivity image (ideal imagel} is a stationary
Transforming the LR for edge detection in SAR images intesndom process composed of piecewise constant segments of
a log-likelihood difference yields [4] reflectivity {r;}, with mean valuey, and standard deviation
— A .- s o-. The localization of the reflectivity jumpéz;} follows a

gedge— V(=N log iy = Ny log fiz + No log fro) - (3) Poisson distribution with parameter corresf)roiding to the
where v is the order parameter of the Gamma distributiomean jump frequency, i.e., the probability bfjumps in the
of the SAR image,N;, No, fi1, and ji; are the number interval Az is given by
of pixels and the arithmetic mean values of the two half
windows, andN, and jio are the corresponding parameters pr(Az) = 1
for the entire window. Oliveeet al. recently showed that the k!
ROA operator coincides with the LR operator if only théhe reflectivities{r;} and the jump localizationgz;} are
averages are estimated on equally sized halves of the slidsupposed to be independent. Hepge = p, ando% = o2.
window [4]. Fig. 2 illustrates the multiedge model in the one-dimensional

()\Ax)k AT
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(1-D) case. Although it is idealized, this model is a good f)h
approximation for important scene types, such as agricultural
fields.

It can easily be shown that the autocovariance function of
the reflectivity is [10]

Crr(Az) = 0'72,6_)\le|. $X

The ideal image is thus a separable first-order Markov process
with parameter\. The power spectral density, which we heré&ig. 3. Impulse response of the infinite symmetric exponential filter (ISEF).
define as the Fourier transform of the autocovariance function,

is then X from the spectrum of a speckle-reduced image (4) obtained
2\o2 by adaptive filtering [11].
Srr(w) = A2 4?2 (4) We normalizef with respect to the mean value, i.€, =
«/2, to obtain an unbiased estimator. With this normalization,
B. Linear MMSE Filter f(z)* pr = py and (5) simplifies to

Let us now develop the linear MMSE filter for the es- R(z) = f(z) + I(x)
timation of the local mean under the stochastic multiedge AREAS e

model and 'the multipligative noise model. It shquld not bie can thus apply the filter directly to the measured intensity
confused with an adaptive speckle filter [11], which restor(?,'snage I

the reflectivity of a pixel based on the local statistics. The 1,4 impulse response gf(z) is shown in Fig. 3. As we
MMSE filter will be split along the vertical and horizontalgee the filter is of infinite extent, which for the 2-D filter
axes, .and the _weighted means estimateq in the d.if.fere]nzt_D(x’ y) = f(z)f(y) means that the analyzing window
half ,W'ndOWS W',” be used for edge d_etecuon. To faC'I'tat?;entered on the pixel to be filtered covers the entire image.
the implementation, we suppose the filter to have separaligs \eight of the surrounding pixels decreases exponentially
impulse responsg_p(«, y) = f(z)f(y) and first consider i distance. The further a pixel is from the center, the more
the 1-D case. The best unbiased linear estimator of g,y it is to belong to another region and the less influence
reflectivity is of the form [12] it has on the estimated local mean. We note thatp is not

Rl — % Y strictly isotropic.

Rl@) =+ )« (1) = ur) G The filter f is known as the infinite symmetric exponential
Minimizing the mean square errdz[|R(x) — R(x)|?] yields filter (ISEF). The ISEF is the basis of the edge detector of
the transfer function [12] Shen and Castan [13], which computes the difference of the
JnSrR(W) exponentially weighted means qf each half window. This is an
=3 S 2 g 75 . (6) optimal multiedge detector for images degraded by additive

rR(W) # Snn (W) + 1S (W) + 17 SRR(W) white noise. It is claimed to have better edge localization

The autocovariance function of the speckle decreases vergcision than other edge detectors proposed for optical images
rapidly [9]. As an approximationp will be considered as [13]. We have now shown that the same type of smoothing

F(w)

white noise here filter is optimal in the case of multiplicative noise. However, as
) explained in Section |, edge detectors based on the difference
Crn(Az) =07,6(Ax) of averages are not suited for SAR images.
Spn(w) =02 =1/L. We also note the analogy between the ISEF and the Frost

o - speckle filter [11]. Froset al. assumed théocal variations,
By substituting the power spectral densities and mean Va'%ﬁhin stationary regions of the image, to be a first-order

into (6) and taking the inverse Fourier transform, we obtajjarkov process and developed an adaptive restoration filter

the optimal impulse response in which local statistics control the slope of the exponential
fla) = Ce—elel weighting function. We use the first-order Markov process as
a global image model for the optimization of a nonadaptive
where filter.
) 2L\ ) In the discrete casef, can be implemented very efficiently
T infon ) +A (7) by a pair of recursive filters [13], [14]. We define two discrete

filters f1(n) and f2(n), realizing the normalized causal and
andC'is a normalizing constant. From the multiplicative noisanticausal part off(n), respectively

model (1), we haveig = uy and
2 2 fi(n) =a-b"u(n) (8)
LUI - li[ —n
T fa(n) =a-b""u(—n) 9)

which can be estimated from the speckled image. The averagtere 0 < b = ¢ * < 1, a = 1 — b and u(n) is the
region width1/X can be evaluated visually, or we can estimataiscrete Heaviside function. The smoothing function can now

(
(

o} =
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be rewritten as ratio rx max(2, ¥) is found by substitutingi.x; (x — 1, ) and
in] 1 b fix2(x+1, y) into (12). The vertical edge strength component
f(n) =c- b = 1t bfl (n) + 140 fa2(n —1) is obtained in the same manner, except that the directions are
interchanged
wherec = (1 — b)/(1 + b).
By taking thex-transform of (8) and (9), we obtain fyi(z, v) = fily) » (f(z) * I(z, y))
Fl(Z): a ﬂY?(xv y):fg(y)*(f(a:)*f(x, y))
1—0271
Fo(z) = a Finally, with analogy to gradient-based edge detectors for
T by optical images, we take the magnitude of the two components
In terms of the spatial index, convolution with f;(n) and ] e 5
f2(n) corresponds to the following simple recursions: [r2-D max(, y)| = \/7X max(T U) 7Y pax(@, 1)
s1(n) =ae1(n) In the edge strength map thus obtained, a high pixel value
Y bsi(n—1), n=1,-,N (10) indicates the presence qf an edge. For each pixel, th_is_ implies
a total of 14 multiplications, an average of three divisions,
s2(n) =acy(n) and one square root operation.

+ bsa(n+ 1), n=N, -, 1. (11)

Heree;(n) andex(n) are the inputs and; (n) andsz(n) are D. Edge Exiraction

the outputs off; and f,, respectively. To minimize the number By thresholding the edge strength map, we obtain pixels

of multiplications, we may rewrite (10) and (11) as that, with a certain PFA, belong to edges. If the threshold
is set too high, we miss important edges, and if it is set

si(n) =alex(n) = s1(n — 1)) too low, we detect a lot of false edges. Plain thresholding

+s1(n —1), n=1--, N will in general produce several pixels wide, isolated edge

s2(n) =alez(n) — s2(n + 1)) segments. The edges can be thinned to unity width by using
+oso(n+ 1), n=Nn, - 1. morphological closing [1]. The problem of forming closed

boundaries from spatially separated edge segments is quite
The computational cost fgf; and for f5 is thus one multiplica- complicated. If the edges are not closed, they do not define a
tion per pixel. Due to the normalizing factorg,necessitates segmentation of the image.

four multiplications per pixel. The watershed algorithm[15] is a simple and efficient
edge detection method that gives closed, skeleton boundaries.
C. ROEWA Operator The edge strength map is considered as a surface, and the

Based on the linear MMSE filters described above, V\relgorlthm detects local maxima by immersion simulation.

propose a new ratio-based edge detector: rét® of expo- its original form, the watershed algorithm retains all of

nentially weighted average€ROEWA) operator. The expo- Lh;elr?n?l brga.xn'maltOfnth?t er:j;(;lsttree:gthtgwag dWE(IECf:nzep_a ree}te
nentially weighted average®, and /i> are normalized to be ' sins. 1L u u Y S 10 produ SsIvely

unbiased, and we show in the Appendix that their variance gersggmented IMages. we haye chosen to introduce an edge
proportional to the variance of the raw image. The standa gtectlon threshold in the algorithm [16]. Only edge strength

deviation remains proportional to the mean value, so tr[;réagnltudes over the chosen threshold are considered. Local

ROEWA operator has CFAR [1]. As opposed to Toetial. nmoa"xzamG:N\',:;Ithtr:(')wrenror;?ggtltgge?hzrealSg?fhor:egeizc?e (tj#?] to
(2), we normalize the ratio to be superior to one Is€. Wi IS cation, gon S, Tins,

and closes significant edges in one operation. The modified
fn iz (12) watershed algorithm is illustrated in Fig. 4.
' We do not have any analytical expression for the distribution

The two approaches are of course equivalent. Our choiceolfsthe exponentially weighted means. When the slope of the

motivated by the particular algorithm that we use in the ed@(pongntlallfur}cthn 'S moder{;\te, however, we may Suppose a
extraction step aussian distribution, according to the central limit theorem.

To compute the horizontal edge strength component, tﬁ]ge variance of the distribution as a function of the variance of

. - : e raw image, the speckle correlation, and the filter parameter
Image(z, ) is first smoothed column by column using the 1(3 is given in the Appendix. The relation between detection
D smoothing filterf. Next, the causal and anticausal filteks 9 PP X

. . . threshold and PFA can be established theoretically for the
and f, are employed line by line on the result of the smoothin . ;
. o R OEWA operator, based on the Gaussian hypothesis. In fact,
operation to obtaini; (x) and fiz(x)

as the Gamma distribution fits a Gaussian distribution very
fxi(x, y) = fi(z) = (f(y) I (z, v)) closely when the ENIL is a few tenths or higher, the PFA
ol ) = folz) % * I(z, y)). computed for the ROA operator [1] can also be used for the
fxa(,y) = Fola) « (Fy) Iz, ) ROEWA for typical values ob. The ENIL of the exponentially

Here x denotes convolution in the horizontal direction and weighted mean is equal to the ENIL of the raw image

denotes convolution in the vertical direction. The normalizeaultiplied by the equivalent number of independent pixels in
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It should be noted, however, that we in many applications
seek a thematic segmentation, so that weak textures within the
regions can be accepted. In practice, negative thresholds are
used. The more irregularities we accept within the regions, the
further the threshold can be from zero. Again, the threshold
can be related to the PFA [4].

Geometrical considerations, such as region size [14] and
edge regularity [6], may also be taken into account in the
merging process, based anpriori knowledge about the size
and shape of the regions. The order in which the regions are
merged has a strong influence on the final result. Finding the
globally optimal merging order requires much time-consuming
sorting. Theiterative pairwise mutually best merge criterion
[17] is a locally optimal approach that is much quicker. First,
all regions are compared with their neighbors in terms of the
merging criterion and the results are stored in a dynamic array.
The array is then traversed sequentially, and a regiors
merged with an adjacent regidhif and only if 5 is the closest
neighbor of A, according to the merging criterion, andAf is
also the closest neighbor #f When two regions are merged,
the local statistics of the resulting region must be updated and
the comparison with all its neighbors must be redone before
continuing. The array is traversed repeatedly until no adjacent
regions satisfy the merging criterion.

=T

ol
g4

(b)

IV. EXPERIMENTAL RESULTS
Fig. 4. (a) Initial state of the modified watershed algorithm shown on a . . . .
cross section of an edge strength map. (b) Skeleton boundaries detected aftdrh€ novelty of our detector is that it relies on weighted

complete immersion. means rather than on the arithmetic means used by other CFAR
detectors. To study the influence of the nonuniform weighting,
the half window, which is given in the Appendix. The PFAVE compare the ROEWA operator with the ROA operator.
applies to the vertical or horizontal edge strength componefier Poth detectors, the normalized ratig..x is computed
but only as an approximation to their magnitude. MoreoveYertically and horizontally and the magnitude of the two com-
watershed thresholding reduces the PFA, as compared to pRARENtS constitutes the edge strength map. We use the modified
thresholding, as also false edges are thinned to unity wid{atershed algorithm for thresholding because it directly yields
The effect of this nonlinear operation is difficult to quantifySkeleton boundaries localized on local maxima of the edge
With our approach, the theoretical PFA for a given threshofiréngth map. This property facilitates the subsequent tests.
can therefore only serve as a rough indication. A quantitative comparison of edge detectors can only be
A particularity of watershed thresholding is that the wholgffectuated on simulated images, as we need to know the
edge is eroded if the edge strength magnitude of one sin§iaCt position of the edges in advance. Let us first consider
edge pixel is below the detection threshold. Consequentfy, cartoon image,” composed of vertical bands of increasing
the threshold must be set relatively low for the algorithm t4idth, from 2 to 18 pixels. The ratio between the reflectivities
form meaningful boundaries, but then we are bound to det&ithe bright and the dark lines is 12 dB. This reference image

numerous false edges as well. was multiplied with a simulated single-look speckle image.
The correlation coefficients of the speckle 46l) = 0.42,
E. Postprocessing p(2) =0.03, andp(m) = 0, m > 2, in azimuth as well as in

] o . _range. The ideal image and its single-look speckled counterpart
Spurious edges can be eliminated by merging adjacefit shown in amplitude in Fig. 5(a) and (b), respectively. Edge
regions whose reflectivities are not significantly differentyength maps were calculated on the speckled image with both
Several merging criteria have been proposed, including tBgerators. Single-look images are extremely noisy, so strong

Student’st-test [6] and the unequal variance Studeritigst smoothing is necessary. The ROEWA operator Witk 0.9
[14]. The LR of Oliveret al. [4] can also be used to decide

) i . Froduced a very regular edge strength map, giving rise to few
whether two regions should be merged and again constitUfgge edges. To obtain the same reduction of speckle variance
an optimal criterion. In factYmerge= —{edge(3)

with a half window for both operators and thus the same false
(13) alarm rate for a given detection threshold, the window size for

the ROA operator was set to 39 39 (see the Appendix). A
Thus, merge< 0, and a value close to zero suggests thétreshold of 1.85 provided the best compromise between the
the two regions together form a Gamma-homogeneous regidetection of real edges and the suppression of false ones.

fmerge= v(N1 log i1 + N log iz — Ng log jio).
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Fig. 5. (a) Ideal image consisting of vertical lines of width 2-18 pixels. (b) The simulated single-look speckled image. (c) The segmentatidrwéhtaine
the ROA edge detector and watershed thresholding. (d) The segmentation obtained with the ROEWA edge detector and watershed thresholding.

The resulting segmentations are shown in Fig. 5(c) and (édge pixel never is far away, we sgt= 2 for a stronger
The ROEWA operator gives a systematic detection of edgpsnalization of misplaced edge pixels. We accept the closest
for bands of width eight or higher, whereas the ROA operatpixel on each side of a transition as an ideal edge pixel, i.e.,
detects systematically only from a width of 13. Some spuriogs = 0 for every pixel having at least one pixel belonging
edges are present near the edges in the case of the R@Another region in its four-neighborhood. The distaiceo
operator. The experiment indicates that the ROEWA operatgf ideal edge for the remaining pixels is obtained as follows:
has better spatial resolution than the ROA operator for a givgh— 1 is attributed to all remaining pixels having one or more
speckle reduction capacity. However, we have chosen a Veji¥els with d; = 0 in their four-neighborhood. Among the
strong smoothing to place ourselves in a multiedge situatigflxels not yet attributedd; = 2 is set for every pixel having
We could of course use a smaller window and detect edggSieast one pixel withl; = 1 in its four-neighborhood, and
at finer scales with the ROA operator, at the risk of a highgg orth.

false alarm rate. . . Edge strength maps were computed by the ROA operator
Let us now examine a more realistic case. We synthesu@ﬂh window sizes from 3x 3 to 19 x 19 and by the

the cartoon image shown in amplitude in Fig. 6(a) by a ﬁrshOEWA operator with the parametewarying over the range

order Markov random field with four classes. The reflectivity 1 4 o £or each edge strength map, the detection threshold

ratio between subsequent classes is 6 dB. This image b imizi s fi f . d ned. Fi
roximately corresponds to the multiedge model presented IaX|m|2|ng Pratt's figure of merit was determined. Fig. 7
b slqows the result. The unit along the horizontal axis is the

Section IlI-A. The mean region width /A = 13.4 pixels. . : . .
Fig. 6(b) shows the same image multiplied with single-looﬁqu'valem number of independent pixels in each half of the
lyzing window, in terms of the speckle reduction obtained

speckle. The correlation properties of the speckle are the sﬁg hi h di his all
as in the previous example. To compare the performance fsmoothing (see the Appendix). This allows us to compare

the edge detectors, we use Pratt’s figure of merit [18] the results obtained with the ROA operator with different
window sizes, with those obtained by the ROEWA operator
1 Noe 1 using exponential weighting functions of varying slope. From
P = max {Npg, Nipt Z 1+ Bd? Fig. 7, we see that the ROEWA operator yields a better
’ =1 ‘ score than the ROA operator over most of the parameter
where A7 p is the number of ideal edge pixel8/px is the range. However, the difference is relatively small near the
number of detected pixels, amg is the distance between themaximum of the graphs, and for one window size X77),
ith detected edge pixel and the closest true edge pikéd. the ROA operator performs even better than the ROEWA
a calibration constant that is usually set to one. However, agerator. The difference in favor of the ROEWA operator
the edges are dense in our test image so that the nearest igeabases with stronger smoothing. This reflects the fact that
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(@ (b)

Fig. 6. (a) Ideal image synthesized by a first-order Markov random field. (b) The corresponding single-look speckled image.

065 . : : . : , . ( i A multitemporal series of three-look ERS-1 images of an
agricultural scene near Bourges, France, was used to test
edge detectors and postprocessing. An extract of a color
composition of three dates acquired with monthly intervals
is shown in Fig. 8. Note the close resemblance between this
scene and the simulated image in Fig. 6. The edge strength
maps of the different dates were averaged, supposing that no
geometrical changes took place between the acquisitions and
~ | that the images are perfectly registered. Our strategy is to
S allow a strong oversegmentation in the edge detection step
~~_ ROA and then rely on subsequent merging to eliminate false edges.
045} T~ 1 The best results were obtained with axt33 window for the
S~ ROA operator and witth = 0.73 for the ROEWA operator.
Given the speckle correlation, the two detectors have about
04 s 10 15 20 25 a0 3 a0 5 s  the same speckle reduction capacity with these parameters.
Eauivalent number of independent pixels in each half window Visual inspection of the segmentations revealed only slight
Fig. 7. Pratt's figure of merit for the ROA edge detector with varyingdifferences in favor of the ROEWA operator. We shall use
ﬁ"lﬂgvliﬁ'éi’. Iﬁgﬂ L%efzeﬁohfmf‘:gﬁdiﬁeggé ‘f’n'qtgg‘g’f’y'”g slope, app"iﬁis image to illustrate how complementary postprocessing can
improve the final result. Fig. 9 shows the initial segmentation,
obtained with the ROEWA operator with parameter 0.73
the multiedge model is more relevant the larger the analyziggq the modified watershed algorithm with threshold 1.53.
window. The ROA operator is optimal in the monoedgehe threshold was deliberately set very low to make sure
case, which is more frequently encountered when using smat practically all significant edges are detected, resulting in
windows. The localization of the maxima of the graph shoulg massively oversegmented image. All three merging criteria
not be taken too literally. Such a weak smoothing generalfentioned in Section Ill-E were compared. The LR measure
implies an important number of false edges due to speck{e3) gave the result that agreed best with our conception of
A stronger smoothing gives more meaningful boundaries. Tkige regions. The unequal variance Studettsst gave similar
theoretical optimum for the ROEWA operator, according teesults, whereas the classic Studemitest performed poorly.
(7), is b =0.74, which corresponds to about 30 independem the final segmentation shown in Fig. 10, the number of
pixels in each half window. regions has been reduced from over 5000 to about 600. Adja-
Results on real-world data are a useful supplement ¢ent regions for which the log-likelihoofinerge> —1.85 for
simulations, but here only a visual appreciation can be giveall three dates were merged. The threshold indicates that we

0.6
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ot
@0
T
’
/

Pratt's figure of merit
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Fig. 8. Extract of a color composition of three SAR images of an agriculturfig- 9. Oversegmented image obtained by the ROEWA operator and water-
scene near Bourges, Fran@®ESA—ERS-1 data—1993, Distribution SPOTshed thresholding.
Image.

accepted some irregularities within the regions. In additio
regions containing only one pixel were supposed to be due
speckle and thus eliminated. The merging order was defir
by the iterative pairwise mutually best merge criterion. Almo:
all regions that we can distinguish by eye have been detect
Some regions still seem to be split in several parts, the ed(
are sometimes irregular due to speckle, and the corners
slightly rounded due to the strong smoothing used by the ec
detector. It is, nevertheless, a remarkably good SAR ima
segmentation.

V. DISCUSSION

The estimator of local means used by the ROEWA operal
is optimized for a stochastic multiedge model. We have sho
that an exponentially weighted mean with a correctly adjust:
slope gives the optimal tradeoff between localization precisit
and speckle suppression when the reflectivity jumps follo
a Poisson distribution. This multiedge model is primaril
adapted to describe scenes composed of distinct regions
relatively uniform reflectivity, but of strongly varying size.
Exponential weighting is strictly optimal only for scene typesig. 10. Segmentation obtained by the ROEWA operator, watershed thresh-
that correspond exactly to the stochastic image model. Mogiding, and region merging.
over, we supposed uncorrelated speckle. Equivalent estimators
for other scene models and for correlated speckle can &dalf window. If the regions are generally big, as compared
developed by substituting the appropriate spectral density the window size that is necessary to obtain a sufficient
functions into (6), but the impulse response will in general ngpeckle suppression, the ROA operator is bound to perform
be any simple, analytic function like the one that we founbetter than the ROEWA operator.
here. To decide whether the ROEWA operator can bring an

The arithmetic mean, used by the ROA operator, is the Mmprovement, as compared to the ROA operator for a given
estimator of the mean value for a stationary process. The R@Aage, several factors must be considered: the average region
operator is hence spatially optimal in a monoedge context, i.size and the variations in region size, the contrast between
when the distance between edges is larger than the widthdifferent regions, the ENIL, and the speckle correlation. The
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ROEWA should theoretically perform better than the ROAdvanced edge extraction methods, based on the powerful
operator when the reflectivity approximately corresponds tmncepts of basin dynamics [20] and edge dynamics [21].
the multiedge model, the mean region width is small, and theThe ROEWA operator is a simple, nonadaptive edge de-
ENIL is low. With increasing ENIL or mean region width,tector. There are several other approaches to edge detection
the monoedge model becomes more appropriate and the R&@#A segmentation in a multiedge context. Multiresolution ROA
operator can be expected to perform better. operators [22] combine the ratios computed with different
The experimental results confirm the theoretical discussi@nndow sizes according to their statistical significance. The
above. Edge detection on a single-look image composedidéal solution would be a spatially adaptive LR operator,
vertical bands of gradually increasing width indicate that thehich varies the window size, the window form, and the way
ROEWA detector permits a strong speckle reduction withoiitis split, so that the local arithmetic means are estimated
degrading the spatial resolution as much as the ROA operatam. complete, uniform regions. However, these perfectly ho-
Here we have deliberately placed ourselves in a rather extremegeneous zones are unknown and difficult to identify in
multiedge situation. the presence of speckle. The practical solution is to try to
On another simulated single-look image, where the refleiterate toward the best segmentation. The RWSEG algorithm
tivity closely approximates the proposed multiedge model, tiig], for example, combines edge detection and region growing
ROA and ROEWA detectors were compared over a wide ranigeratively. Stochastic methods based on Markov random fields
of window sizes and corresponding slopes of the exponentiaid simulated annealing [8] iterate toward a segmentation that
weighting function, in terms of Pratt’'s figure of merit. Forminimizes a global cost function. Such methods may give even
the smallest windows, the monoedge hypothesis is generdiigtter results, at the cost of a higher computational complexity.
verified and the superiority of the ROA operator is con-
firmed, even though the scores are very close. With stronger
smoothing corresponding to larger windows, the multiedge
model becomes more relevant and the performance differencé€t us suppose the intensityto be a wide-sense station-
in favor of the ROEWA operator increases steadily. Strorgfy process. Taking the block-average &t pixels fiy, =
smoothing is necessary here to avoid numerous false eddedy > a; I reduces the variance with a factor if the
due to speckle, the low ENIL, and the high speckle correlatiopixels are uncorrelated
A hybrid segmentation scheme, which combines the pro-

APPENDIX

2

posed edge detection method with LR region merging, was 0%, = 1

shown to give excellent results on multitemporal ERS-1 im- N

ages of an agricultural scene. The difference between thqf the pixels are correlated

results obtained by the ROA and ROEWA operators was small.

This reflects the fact that typical regions are so large that o2 L X

the monoedge model is just as appropriate as the multiedge OFhe = N—IQ ZZP(W =10 (14)
model for the window size used. Such segmentations can be k=11=1

used to improve thematic classifications [19]. It should be . -
o . " Bherep(m) andm = 0, are the autocorrelation coefficients.
stressed that this is a very rapid segmentation method.

a Silicon Graphics INDY workstation with a MIPS R4400|nsin rﬁﬁcz;{n%%ejisigiCsepsecslﬂee(;g:etlgtlgnotygCa:yelzec&r:rees
200-MHz CPU and 64 MB of memory, the ROEWA operator. >3 P PIXELS.

the watershed thresholding, and the LR region merging neeogee&era"y’ we may suppos_;ﬁm) =0,m>M, andM < N,
only 12 s to process three channels of 532512 pixels, S0 that (14) can be rewritten as

producing the result in Fig. 10. This makes our method more 9 M

than an order of magnitude faster than another sophisticated 0. = 0_12 N+2 Z (N —E)p(k)|. (15)
SAR segmentation scheme, the RWSEG algorithm [5], which N k=1

is implemented in the CAESAR module of the ERDAS

IMAGINE software package. The quality of the results aréhe factor with which the variance is reduced gives us the
comparable. equivalent number of independent pixels in the analyzing

window. Let us now consider the speckle reduction obtained
by one half window of the ROEWA operator. We first employ
the ISEF f in one direction

VI. CONCLUSION o oo
In this article, we propose a new CFAR edge detector for o—%fc =07 Z Z FRYf(Dp(k =1

SAR images, which is optimal under a stochastic multiedge k=—o0 l=—00

model. It has been shown to perform better than the ROA oper- 1-p\2 & M

ator for images that closely approximate the multiedge model, =07 <1—+b> Z Z plklF IR )
especially when the average region width is small and the k=—ocom=—M

ENIL is low. The ROEWA operator, watershed thresholding, ,(1=b 2 M 42

and LR region merging constitute a very efficient segmentation =07 <F) Z [| |+ — bQ} blmlp(|m|)-

scheme. The watershed thresholding can be replaced by more m=—M
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The normalized causal filtef; in the perpendicular direction [19] F. Sery, A. Logs, D. Ducrot-Gambart, R. Fjgrtoft, E. Cubero-Castan,
gives and P. Marthon, “Multisource classification of SAR images with the

use of segmentation, polarimetry, texture and multitemporal data,” in

) ) o0 00 Proc. EurOpto Image Signal Processing Remote Senshagrmina,
= — Italy, Sept. 1996, vol. SPIE 2955, pp. 186-197.
O1fic =OIfe Z Z fl(k)fl (l)p(k l) [20] M. )é;rimgud “A new measure of cgr?trast: Dynamics,”Rmoc. Image
k=0 1=0 Algebra Morphol. ProcessingSan Diego, CA, July 1992, vol. SPIE
(1—1b)? M 1769, pp. 292-305. o
= O—%fc 142 b?’mp(m) . [21] L. Najman and M. Schmitt, “Geodesic saliency of watershed contours
1-02 = and hierarchical segmentationlEEE Trans. Pattern Anal. Machine

Intell., vol. 18, pp. 1163-1173, Dec. 1996.

The equivalent number of independent pixels in a half windolg2] R. Fjgrtoft, A. Loges, P. Marthon, and E. Cubero-Castan, “Different

approaches to multiedge detection in SAR image®idc. IGARSS,

of the ROEWA operator is thus?/oF, ., which can be Singapore, Aug. 1997.
compared to the corresponding number for a half window of

the ROA operator obtained by employing (15) in the horizontal

and vertical direction.
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