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Abstract

The problems of optimal control are met in many fields of physics,
techniques and mechanics, where functional minimization of solutions
of non-linear differential equations with non-local boundary conditions
is considered. At this paper problems of optimal control with integral
boundary conditions are considered. It is known, that mathematically
boundary value problems can be given by different ways:Problems with
bounded boundary conditions or with conditions in liner points, and
also boundary problems with integral conditions, and etc.
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1 Introduction

The problem of optimal control for non-linear system with integral conditions
is considered in the given paper i.e. it is considered minimization of the func-
tional:

Minimize J(u) =
N∑

i=1

ϕ(x(ti)) (1)

On solutions of the system

ẋ = f(t, x, u); t ∈ [t0, T ] (2)

Under Non-liner conditions

∫ T

t0
n(t)x(t)dt = A (3)



2386 H. Molaei

where
u = u(0) ∈ U = {u(t) ∈ Lr

2[t0, T ] : u(t) ∈ V ⊂ Rr}
a.e. t ∈ [t0, T ].

(4)

Assumed, that t0 ≤ t1 < t2 < · · · < tN−1 < tN ≤ T are fixed moments of time,
x ∈ Rn is a phase variable, u ∈ Rr are controls, ((n(t) − n) × n)−dimensional
matrix function,n(t) ∈ Ln×n

∞ [t0, T ], ñ(T ) =
∫ t
0 n(τ)dτ , detñ(T ) �= 0, A is the

given n- dimensional vector.
Denote a norm in Rn (or Rr) by, |.| i.e. |x| = (x2

1 + x2
2 + · · ·+ x2

n)
1
2 , and scalar

derivative product by 〈, 〉, i.e. 〈x, y〉 = x1y1 + · · · + xnyn.
Let’s denote the norm and scalar space Lr

2[t0, T ] by ‖.‖ and (., .) respectively,

i.e. ‖u‖ = (
∫ T
t0
|u(t)|2dt) 1

2 , (u, v) =
∫ T
t0
〈u(t), v(t)〉dt.

Suppose that elements of matrix n(t) are piece wise continuous and det
∫ T
t0
n(t)dt

�= 0. Note, that if the condition ‖det
∫ T
t0
n(t)dt‖ < 1 holds, then matrix∫ T

t0
n(t)dt is reversible.

2 Main assumptions

Condition 1 Let the function f(t, x, u) be continuous by t, x, u for x ∈ Rn,
u ∈ V , t0 ≤ t ≤ T and derivatives f(t, x, u) with respect to x exist, continuous
and bounded i.e. |∇xf(t, x, u)y| ≤ k1|y| Here ∇xf(t, x, u)y is a matrix of

(n × n) with elements ∂fi(t,x,u)
∂xj

(used below notation ∇xϕ ), y is an arbitrary

vector from Rn. It is easy to see, that at the made assumptions the solutions
of problems (2), (3) are equivalent to solution of integral equation

x(t) = ñ−1(T )A− ∫ T
t f(τ, x(τ), u(τ))dτ

−ñ−1(T )
∫ T
t0

∫ t
t0
n(τ)dτf(t, x(t), u(t))dt,

(5)

we can show with the help of sequential approximations method, that at

k1(T − t0)
1 + ñ1(T )|ñ−1(T )|� < 1, (6)

the integral equation (5) has a unique solution at each fixed u ∈ U , where
ñ1(T ) = max[0,T ] | ∫ t

0 n(τ)dτ |. Sequential approximations are constructed by
formulae:

xn+1(t) = ñ−1(T )A− ∫ T
t f(τ, xn(τ), u(τ))dτ

−ñ−1(T )
∫ T
t0

∫ t
t0
n(τ)dτf(t, xn(t), u(t))dt; n = 0, 1, 2, . . . , x0 = ñ−1(T )A.

In the future well’s suppose, that the condition(6) is always fulfilled. Let’s
denote, that at made above assumptions any x(t) solution of (1)-(2) is also
bounded

|x(t)| ≤ |ñ−1(T )A|+k1(T−t0)�|ñ−1(T )|ñ1(T )+1�
1−k1(T−t0)(1+|ñ−1(T )|ñ1(T ))

,

where |f(t, 0, u)| ≤ k.
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Condition 2 The function ϕ(x) is differentiable and |∇xϕ(x)| ≤ k2.

Condition 3 The derivatives f(t, x, u) with respect to u are bounded:

|∇uf(t, x, u)u| ≤ k3(u).

Condition 4 The derivatives ∇xϕ(x) satisfy the Lipcshits condition:

|ϕ(x+ x) − ϕ(x) − 〈∇xϕ(x), x〉| ≤ k4|x|2.
Condition 5 The derivatives f(t, x, u) with respect to x and u satisfy the
lipcshits conditions, i.e. (x(t), u(t)) and (x(t) + x(t), u(t) + u(t))

s.t : |f(t, x+ x, u+ u) − f(t, x, u) −∇xf(t, x, u)x−∇xf(t, x, u)u| ≤ k5|x|2 + k6|u|2.
Condition 6 The set V is close and convex.

3 Main Theorem

Theorem 3.1 Let the conditions 1, 2, 5 and (6) be fulfilled and u(t), x(t)
and u(t) + ū(t), x(t) + x̄(t), be two solutions of system (2), (3). Then

|x̄(t)| ≤ c1‖ū‖,
where c1 = k3�1+|ñ−1(T )|ñ1(T )�(T−t0)

1−k1(T−t0)(1+|ñ−1(T )|ñ1(T ))
.

Proof. Clearly, from (5) we get

x̄(t) = − ∫ T
t [f(τ, x(τ), u(τ) + ū(τ)) − f(τ, x(τ), u(τ))]dt

−ñ−1(T )
∫ T
t0

∫ t
t0
n(τ)dτ [f(τ, x(t) + x̄(t), u(t) + ū(t)) − f(t, x(t), u(t))]dt.

Using the conditions 3 and the elements of matrix n(t) are continuous on [t0, T ]
and detñ(T ) �= 0, where ñ(T ) =

∫ T
0 n(t)dt, we get

|x̄(t)| ≤ k1

∫ T
t0
|x̄(τ)|dτ + k3

∫ T
t |ū(τ)|dτ

+|ñ−1(T )|ñ1(T ) × (k1

∫ T
t0
|x̄(τ)|dτ + k3

∫ T
t0
|ū(τ)|dτ).

Taking into account (6) we have

∫ T

t0
|x̄(t)|dt ≤ k3(T − t0)
1 + |ñ−1(T )|ñ1(T )�

1 − k1(T − t0)(1 + |ñ−1(T )|ñ1(T ))
×

∫ T

t0
|ū(t)|dt. (7)

From (6) and (7) it follows the statement of theorem (3.2).
Let’s introduce the system of equations in variations:

ẏ = ∇xf(t, x(t), u(t))y − f(t, x(t), u(t))ū(t)∫ T

t0
n(t)y(t)dt = 0. (8)
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Theorem 3.2 Let the conditions 1− 6 be fulfilled. Then the functional (1)
at restrictions (2)-(4) is differentiable and its gradient has the form

J′(u) = (∇xf(t, x(t), u(t)))′ψ(t) ∈ L2[t0, T ],

where ψ(t) is solution of the adjoint system

ψ(t) = − ∫ t
t0
∇xH(τ, x(τ), u(τ), ψ(τ))dτ

+(ñ−1(T )
∫ t
t0
n(τ)dτ)′

∫ T
t0
∇xH(t, x(t), u(t), ψ(t))dt

+
∑N

i=1[Ex(t− ti) − ñ−1(T )
∫ t
t0
n(τ)dτ ]′ ×∇xψ(x(ti)).

Proof. Let (x(t), u(t)) and u(t)+u(t), x(t)+x(t) be two solutions of system
(2), (3). At this solutions increment of functional (1) is of the form :

J(u+ u) − J(u) =
N∑

i=1

(ϕ(x(ti) + x(ti)) − ϕ(x(ti))) =
N∑

i=1

〈∇xϕ(x(ti)), y(ti)〉 + τ,

where

τ =
N∑

i=1

[ϕ(x(ti)+x(ti))−ϕ(x(ti))−〈∇xϕ(xi), x(ti)〉]+
N∑

i=1

〈∇xϕ(x(ti), x(ti))−y(ti)〉,

then
J(u+ u) − J(u) = − ∫ T

t0
〈∇xH(t, x(t), u(t), ψ(t)), y(t)〉dt

− ∫ T
t0
〈∇uH(t, x(t), u(t), ψ(t)), y(t)〉dt

− ∫ T
t0
〈∇uH(t, x(t), u(t), ψ(t)), u〉dt

+
∑N

i=1〈∇xϕ(x(ti)), y(ti)〉 +
∫ T
t0
〈ψ(t), ẏ(t)〉dt+ τ

(9)

where
ẏ = ∇x(t, x(t), u(t))y − f(t, x(t), u(t))u(t),∫ T

t0
n(t)y(t)dt = 0.

(10)

Then, using the second equality (10) we have:

y(t) = ñ−1(T )
∫ T

t0

∫ t

t0
n(τ)dτ ẏ(t)dt, (11)

y(ti) =
∫ T

t0
[ñ−1(T )

∫ t

t0
n(τ)dτ −Ex(t− ti)]ẏ(t)dt, (12)

where E is n× n-dimensional unique matrix and x(t− ti) =

{
0 t ≤ ti,
1 t > ti.

Carry out the following equivalent transformation:

∫ T
t0
〈∇xH(t, x(t), u(t), ψ(t)), y(t)〉dt =

〈∫ T
t0
∇xH(t, x(t), u(t), ψ(t))dt, y(T )〉

− ∫ T
t0
〈∫ t

t0
∇xH(τ, x(τ), u(τ), ϕ(τ))dτ, ẏ(t)〉dt,

(13)
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where H(t, x(t), u(t), . . .) = 〈ψ(t), f(t, x(t), u(t)〉.
Taking into account (11)-(13) in (9) for increment of functional (1), we get the
following expression:

J(u+ u) − J(u) =
∫ T
t0
〈∫ t

t0
∇xH(τ, x(τ), ψ(τ))dτ, ẏ(t)〉dt

−〈∫ T
t0
∇xH(t, x(t), u(t), ψ(t))dt, ñ−1(T )

∫ T
t0

∫ t
t0
n(τ)dτ, ẏ(t)dt〉

+
∑N

i=1〈∇xϕ(x(ti)),
∫ T
t0

[ñ−1(T )
∫ t
t0
n(τ)dτ −Ex(t− ti)]ẏ(t)〉dt

+
∫ T
t0
〈ψ(t), ẏ(t)〉dt− ∫ T

t0
〈∇uH(t, x(t), ϕ(t)), ū(t)〉dt+ τ

(14)

J(u+ u) − J(u) =
∫ T

t0
〈∇uH(t, x(t), u(t), ψ(t), u(t)〉dt+ τ

It is easy to show, that there exists a finite member c > 0

|τ | ≤ c‖u2‖.

This means, the theorem is proved i.e., that the functional (1) at restrictions
(2)-(4) is differentiable.

Theorem 3.3 Let all conditions of theorem 3.2 be fulfilled. For optimality
of the control u� = u�(t) ∈ U it is necessary the fulfillment of the equality

∫ T

t0
〈∇uH(t, x(t, u), u�(t), ψ(t, u�)), u(t) − u�(t)〉dt ≤ 0, (15)

at all u(t) ∈ V . If u� = u�(t) is an inner point of the set V , then condition (15)
is equivalent to the condition ∇uH(t, x(t, u�), u�(t), ψ(t, u�)) = 0; t0 ≤ t ≤ T.
Here x(t, u�) and ψ(t, u�) are solutions of problem (2)-(3) and adjoint problem
corresponding to the control u� ∈ V . The proof of this theorem is carried with
the help of the method from [1], (see pp. 524)

ACKNOWLEDGEMENTS. In this paper, we studied the problems of
optimal control with integral boundary conditions. It is known, that mathe-
matically boundary value problems can be given by different ways:Problems
with bounded boundary conditions or with conditions in liner points, and also
boundary problems with integral conditions.

References

[1] Vasilyev F.P optimization methods, Factorial press, Moscow, 2002.



2390 H. Molaei

[2] H. Molaei, Gradient in optimal contral problem with non-local boundary
conditions, Az, Vol. XXVI,7 (2006), 171 - 177.

[3] R.E. Kalman, on the general theory of control systems, proc, Moscow,
1960.

[4] H. Frankowska. Value function in optimal control, Lecture notes, summer
school on mathematical control theory, Trieste, 2001.

[5] S.P. Sethi and G.L Thompson, optimal control theory, applications to
managements science and economics, Kluwer publishers, boston, 2000.

[6] V. Azhmyakov, on optimal control of mechanical systems, tech. Rep. 22,
EMA university of greifswald, greifswald, Germany, 2003.

[7] H. Molaei, On the approximate of optimal control problem Non-local sys-
tems with integral conditions, PHD thesis, Baku State University, 2009.

Received: July, 2011


