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Measurement of Monotonic Biaxial 
Elastoplastic Stresses at Notch 
Roots 
Biaxial principal strains were measured at the roots of notches in aluminum specimens 
with a laser-based interferometric technique. Interference patterns from three tiny 
indentations spaced 150 or 200 micrometers apart in an orthogonal pattern were 
monitored with a microcomputer-controlled system. Elastoplastic strains up to one 
percent were measured in real time with a resolution of 25 microstrain. Procedures 
were developed for computing the two principal stresses from the incremental strain 
data using l2-flow theory. The validity of the computations was checked by com­
puting the stresses in smooth tensile specimens. Anisotropy in the thin sheet material 
leads to errors in the computed lateral stresses (which should be zero), but the 
maximum deviation of the computed effective stress from the uniaxial stress is only 
five percent. Three kinds of double-notched specimens were prepared to vary the 
amount of constraint at the notch root. These were tested under monotonic tensile 
loading and the biaxial notch-root strains recorded. There is considerable variation 
among the strains once the elastic limit is passed. This is due primarily to the local 
inhomogeneity of plastic strain, since the gage length of the measurement is only a 
few times larger than the grain size of the material. Local biaxial stresses were 
computed from the measured strains for the three cases. The nature of the material's 
stress-strain curve tends to smooth out the variations among tests, particularly when 
the effective stress is computed. It is discovered that the local stress predicted by 
the Neuber relation agrees very closely with the measured local effective stress. 

1 Introduction 
The prediction and measurement of stresses and strains at 

"stress concentrations" is an important problem in the field 
of solid mechanics. Given the long history of research into the 
elastic problem and the availability of sophisticated finite ele­
ment codes, one can expect to get good agreement between 
predicted and measured elastic stresses and/or strains. How­
ever, the situation is not so favorable when the elastic limit of 
the materials has been exceeded—theories carry restrictive as­
sumptions, computer predictions are cumbersome, and meas­
urements can no longer be made on elastic models such as 
those used in photoelasticity. Local elastoplastic response at 
a discontinuity in a component or structure is still a rich area 
for research from an experimental, theoretical, and compu­
tational viewpoint. 

The ability to predict stresses (as opposed to strains) is im­
portant from design considerations; one is much more likely 
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to know the applied loads than the applied deformations. But 
of course one does not measure stress directly; one measures 
load on a simple geometry or measures strains on a complicated 
geometry. Conversion to stress occurs through the basic def­
inition if load is measured and through the constitutive equa­
tions if strains are measured. This latter process is 
straightforward for elastic behavior, but less well developed 
for elastoplastic behavior. A major reason is the difficulty of 
measuring the elastoplastic strains in situations that are truly 
meaningful. Plasticity tends to initiate at stress concentrations, 
and in most cases these are relatively small which inhibits the 
use of the ubiquitous foil gages. Another difficulty with the 
study of elastoplastic behavior is that one cannot scale up the 
problem because the material's grain size is so important. 

This paper reports the results of a series of experiments on 
.three geometries of double-notched specimens of 2024 alu­
minum. These three cases were chosen to vary the amount of 
lateral constraint at the notch root. Longitudinal and lateral 
strains, e\ and e2> were measured at the notch roots with a 
laser-based technique having a gage length of either 150 pm 
and 200 ^m—only a bit larger than the grain size of the ma­
terial. These measured principal strains are then converted into 
stresses using the incremental version of the J2 theory of plas­
ticity. The material tested is not isotropic which the theory 
assumes, and this contributes to errors in the computed stresses; 
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however, it is very important technologically because the sheet 
material is widely used in the skins of aircraft. 

The results reported here are part of a larger study of the 
elastoplastic behavior at notch roots under cyclic loading—the 
implications are obvious, one wants to be able to predict the 
initiation of cracks under low-cycle fatigue conditions. The 
discussion here focuses only the first monotonic part of the 
loading cycle. The Neuber relation (Neuber, 1961) 

KaxK( = K* (1) 

(where Ka is the stress concentration factor, Ke is the strain 
concentration factor, and K, is the elastic stress concentration 
factor) is widely used for predicting the stresses and strains at 
notch roots. It is generally regarded as satisfactory for plane 
stress loading, but not for loadings approaching plane strain. 
Another paper (Sharpe and Wang, 1991) explores this effect 
of constraint on the validity of a modified version of the Neuber 
relation for monotonic loading; the predicted strains were com­
pared with the measured ones. The conclusion there is that a 
modification of the Neuber relation which makes it look more 
like a linear relation (Ke = Kt) is an improvement when con­
straints are present. 

The development and application of the Neuber relation is 
reviewed in the Background section of Sharpe and Wang (1991) 
and will not be repeated here. Surprisingly, there have been 
few measurements of elastoplastic stresses in complicated ge­
ometries; those are reviewed in Section 2 of this paper. The 
local biaxial strains are measured with a laser-based interfer-
ometric technique that measures the relative displacements be­
tween three tiny indentations in the specimen surface. The 
computer-controlled version for measuring uniaxial strain has 
been described elsewhere (Guillot and Sharpe, 1983) but the 
important advance reported here is the extension of the system 
to biaxial measurements of the principal strains ei and e2. The 
technique is described only briefly since this paper focuses more 
on the results than on the details of the measurement system. 

The procedure for computing the stresses from the measured 
strains, which is a straightforward inversion of the equations 
of plasticity, is then presented. These procedures are applied 
to stress-strain data from smooth specimens (both ei and e2 
were measured) to validate the computational procedure and 
examine the effect of anisotropy. 

At this point, one should have confidence in the stress meas­
urements and can move on to the geometries in question. 
Measured biaxial notch-root strains room the three cases (ten 
different specimens were tested) are then presented; these serve 
as the input for the stress calculations. The measured stresses 
are presented as principal values a^ and CT2. These are used to 
compute the effective stress ae which is compared to the stress 
predicted by the Neuber relation. Finally, conclusions are drawn 
as to the significance of the results. 

2 Background 
Theocaris (1962) wrote a paper in 1962 entitled "Experi­

mental Solution of Elastic-Plastic Plane Problems" in which 
he presented procedures for computing stresses from strains 
measured by photoelastic coatings on specimens. He presents 
the equations for computing the change in stress components 
dax, day, and drxy from the measured strain increments dex, 
dty, and dyxy. The specimen was a thin steel sheet with large 
semicircular double notches to which a thin photoelastic coat­
ing was glued. The measurement of strains required analyses 
of patterns taken at normal and at oblique incidence and was 
tedious at best; however, it did give the strain field. The in­
cremental theory of plasticity based on J2 was used, but only 
seven increments were taken between the load corresponding 
to incipient plasticity at the notch root and the load corre­
sponding to the spread of plasticity across the net section. 
McClintock (1963) praised the paper in a later discussion and 

compared the measured stress and strain concentrations to 
those predicted by the Neuber relation—showing that the pre­
dictions were accurate in the early stages of plastic deformation 
at the notch root. 

A similar work was published shortly thereafter by Durelli 
and Sciammarella (1963) who measured strains by moire tech­
niques on a thin aluminum specimen with a central hole. Six 
load increments were used which required iteration of the stress 
increments to assure that the effective stress-strain curve was 
being followed. The stress field in the neighborhood of the 
hole was measured, and the stress and strain concentrations 
were compared to those from the classic experimental work 
by Griffith in 1948. Agreement was excellent, considering the 
slight difference in specimen materials. 

Photoplastic materials with nonlinear behavior similar to 
that of metals are quite useful in gaining an understanding of 
the development of plasticity in a given geometry and in eval­
uating theories. An example of such a study is the fine work 
by Johnson (1976) in which he studied the plastic deformation 
of a circumferentially notched shaft subjected to torsion load­
ing. He used a photoplastic material that has a stress-strain 
curve similar in shape to a medium-strength aluminum and 
the scattered light technique to measure the stresses on a plane 
down the center of the shaft. The material was calibrated in 
torsion, so he determined shear stresses directly from the fringe 
patterns. The stress and strain concentrations showed good 
agreement with the Neuber prediction for early stages of yield­
ing; indeed, this geometry is the same as analyzed by Neuber. 

One wonders why foil-resistance strain gages are not used 
to measure the necessary plastic strains; the larger post-yield 
ones have the capability of measuring strains to ten percent 
or more. One paper by Keil and Benning (1979) on their use 
appears in 1979. However, they use the deformation theory 
of plasticity instead of an incremental theory which, although 
requiring additional assumptions, is easier to apply. They work 
only with principal strains and provide nomographs from which 
one can obtain the stresses for a representative selection of 
materials. Given two strain measurements, one reads out the 
two principal stresses. 

It appears that the paucity of research papers describing 
measurements of elastoplastic stresses is due more to the dif­
ficulty in measuring the strains than anything else. In fact, the 
Handbook on Experimental Mechanics (1987) presents the 
equations relating strain increments to stress increments on 
page 10, but there is no later reference to their actual use. 
Precedents have been set with the works of Theocaris and of 
Durelli and Sciammarella, and similar studies would be con­
siderably easier with modern imaging and computational ca­
pabilities. However, these earlier works did not measure at the 
point of real interest—the root of the stress concentration 
where fatigue cracks initiate. 

3 Strain Measurement Technique 
The interferometric Strain/Displacement Gage (or ISDG) is 

a laser-based system that measures in-plane relative displace­
ment between tiny reflective indentations in a specimen surface. 
The pyramidal-shaped indentations are oriented so that the 
light rays diffracted from their sides overlap to form inter­
ference patterns in space. When the distance between the in­
dents changes, the fringe patterns move; in effect, one simply 
has an optical lever with a high ratio because of the interference 
phenomenon. A microcomputer-controlled system for meas­
uring fractional fringe motion has been developed that has 
suitable resolution for elastoplastic strain measurement over 
gage lengths as short as 100 /xm (Guillot and Sharpe, 1983). 
For more details about various applications of the technique, 
see Sharpe (1982). 

Strains in two orthogonal directions can be measured if three 
indentations are placed in the specimen surface as shown in 
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Fig. 1 Three Indentations at Ihe rool 01 a notch . The spacing Is 150
micrometers, and they are placed al the rool 01 a notch with a t -mrn
radius . The black areas on either side are palnl thal was applied to reduce
slray reflections.

Fig. 1. That photomicrograph shows indentations at the root
of a notch with a l-mm radius; the spacing between them is
150 !Lm. Longitudinal strain is measured in the direct of load­
ing, and lateral strain is measured in the perpendicular direc­
tion. The black areas at the sides of Fig. 1 are flat-black paint
that was applied to limit stray reflections from the polished
specimen surface.

Four fringe patterns are generated with the biaxial ISDG,
and one must use four fringe sensors (scanning mirrors and
photomultiplier tubes) to monitor the patterns and average out
the rigid body motion of the specimen. A microcomputer sys­
tem monitors the fringe motions, converts them to strains,
stores the load and strains, and increments the load control
signal to the test machine. The sampling rate is approximately
ten points per second, and the least count of strain is approx­
imately 35 microstrain for the I50-!Lm gage length. The relative
uncertainty associated with the measurement of the relative
displacement of the indentations is approximately ± three
percent.

The effect of the indentations on the local strain field, es­
pecially in the plastic region, is a matter of concern. Unfor­
tunately, there is no other experimental technique with a
suitably short gage length, resolution, and range to permit a
direct comparison at a notch root. The best that one can do
is compare the ISDG with other techniques on smooth spec­
imens, and this is quite good for longitudinal strains as will
be seen in Fig. 3. Further, the reproducibility and reasonable
behavior of the notch strain results that are presented here
indicate that the ISDG is measuring elastoplastic strains with
good fidelity.

4 Computation of Stresses
The computation of stresses from the measured strains are

based on the incremental Jrflow theory:

eij=Sij/2G+j(ue)aeSij (2)

where «,» denotes an increment in the applied stresses and
strains. The deviator stresses and strains are defined by Sij =
uij - 1/3 UkkOij and eij = Eij - 1/3 Ekk Dij. uij and Eij are the
stress and total strain components, respectively. The effective
stress, Ue, is given by (3/2 SijSij)lI2.

The function j(ue) describes the deviation of the material's
effective stress-strain behavior from linear elasticity, and is
equal to 3/2 (1IE,-1/E)/ue• The modulus of elasticity is of
course E, and E, is the slope, des/de, of the effective-stress
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versus total-strain, E, curve of the point of interest (this stress­
strain curve is obtained in a uniaxial stress test) .

Equation (2) can be contracted with. Sij to permit one to
solve for a; by noting that 2ueae = 3SijSij. The effective stress
increment, ae, can then be re-inserted into Eq. (2) to produce
an equation relating Sij to eij.

Sij = 2Geij-FSijSklekl (3)

where
. F= 6Gj(ue)

u/G+ 2c?J( ue)·

The total strain is made up of elastic and plastic components;
i.e., Eij = E'ij + E~. By noting that E~k = 0, one can finally
write

aij= ex Eij+ {3 Ek0ij - FSklE klkSij. (4)

01 = 2G, and {3 = K - 2G/3 where G and Khave the familiar
definitions from elasticity of E/2 (1 + v) and EI3(1- 2v), re­
spectively. Equation (4) relates the increments of stress to the
increments of strain and is the constitutive expression used to
compute the stresses from the measured strains.

The stress and strain state of interest here is one of plane
stress on the surface at the root of the notch. The measurements
are in the principal directions because of the symmetry at the
center of the notch root. The principal stresses and strains are
therefore labelled u), U2, E), E2, and E3, respectively. E, and E2
are the strains that are measured, and the three unknowns can
be solved from the three equations of (4). The final version
of the equations that is used becomes:

AE] = (FS,S] - (3)AEI+ (F~2S3 - (3)AE2
01+ {3 - FS

3
(5)

AUI = (ex+{3-FSI)AE, + ({3-FS,S2)AE2+ ({3-FSIS])AE3 (6)

AU2 = ({3 - FS1S2 ) AEI

+(ex+{3-FS~)AE2+ ({3-FS2S])AE]. (7)

The principal stress, u, and U2, are the sums of the stress
increments as computed from the above three equations.

Implementation of Eqs. (5)-(7) is straightforward. One has
the experimental record of applied load, P, E), and E2 stored
as discrete points in a data file. At a given Pm the strain
increments are taken as Ell + I - Ell' The two stress increments
are then computed and added to the stress values (computed
previously) corresponding to Pll . However, there are a couple
of points to be considered.

First, Ue appears in the denominator of F in Eq, (3) so the
computations have to be started in some manner. They are
started by computing elastic stresses directly from the measured
strains. Ue is computed at every increment, and when it exceeds
a present value, the program switches to the incremental cal­
culations of Eqs. (5)-(7). This present value must be below the
proportional limit of the material, and in practice, is taken as
approximately 25 percent of the yield stress.

Second, the computation ofj(ue) involves 1/EI which equals
de/do, Two kinds of 2024 aluminum were tested-T3 and
T35I. The Ramberg-Osgood representation of the stress-strain
curve, E = uelE + (ue! M)l/ll, fits the T35I stress-strain curve
quite well, and de/do; is easily computed. However, a much
better fit to the uniaxial stress-strain curve for the T3 material
is obtained with a polynomial, o; = g(E), where E = uelE +
ER. The effective plastic strain, EP, is the sum of the plastic
strain increments defined by

AEP = '-"2/3 [(AE)- AE~)2 + (AE~ - AE))2 + (AE)- AEf)2] ' 12 . (8)

After the stress increments have been computed for load Pm
they are used to compute increments of elastic strain which
are subtracted from the measured strain increments, AE, and
AE2, and the computed strain increment, AE3, to give the three
plastic strain increments needed in Eq. (8). The effective plastic
strain increment, AEP , is added to the previously computed EP
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Fig. 2 Montage of photomicrographs of 2024 aluminum sheet—cour­
tesy of Dr. J. C. Newman, Jr. The thickness of the grains in the S direction 
is approximately 25 micrometers. Grain boundaries have been high­
lighted. 
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Fig. 3 Biaxial stress-strain curves from smooth specimens for the T3 
and T351 materials. Measurements were made with the ISDG on the 
edge and with foil gages (RSG) on the flat side of the specimens. One 
lateral strain measurement was made on an edge with a RSG. The T3 
material was tested both parallel (L) and perpendicular (T) to the rolling 
direction. 

so that the proper value of e is used for the calculation of E, 
at P„+\-

These computations are implemented in a short FORTRAN 
program on the same IBM-compatible microcomputer that was 
used for control of the experiments. Noise in the data does 
not appear to cause difficulties as will be seen in the next 
sections. 

5 Material Response and Prediction for Smooth Spec­
imens 

This section presents the stresses and biaxial strains measured 
in uniaxial stress tests on smooth specimens. The purposes of 
these tests were to generate the constitutive equations needed 
for stress computation and to obtain biaxial strain data which 
could be used to check the computational procedures. One 
should be able to take the biaxial data, run it through the stress 
computation procedures, and get the result that a} = P/A and 
a2 = 0. As will be seen, the anisotropy of the material causes 
less than perfect agreement. 

Figure 2 is a photomicrograph of 2024 sheet material show­
ing the grain structure on the flat side of a sheet and on the 
edges; one edge parallel to the rolling direction, and one edge 
perpendicular to it. The nomenclature there is from ASTM E-
399; " L " refers to the rolling direction, " T " to the width 
direction, and " S " to the edge direction. The grains have, in 

0.5 

Edge, ISDG 

Flat Side, RSG 
>o o o o o o o 

0.0 
0.000 0.002 0.004 0.006 0.008 0.010 

STRAIN - m / m 

Fig. 4 The negative ratio of lateral and longitudinal plastic strain versus 
longitudinal strain. The data presented are from two smooth specimens 
that were instrumented with the biaxial ISDG on an edge and a smooth 
specimen with a biaxial RSG on the flat side. 

general, the shape of elongated pancakes and are thinner in 
the direction perpendicular to the sheet. 

Figure 3 shows the results from tests on three smooth spec­
imens of 2024-T3 aluminum. One specimen was loaded in the 
L direction; it was instrumented with biaxial foil gages (RSGs) 
on the flat side and the biaxial ISDG on the edge. Another 
specimen was instrumented in the same way, but loaded in the 
T direction. A third specimen was loaded in the L direction, 
but used only the biaxial ISDG on the edge. In all cases, the 
agreement between the ISDG and the foil gage was excellent 
in the longitudinal direction (parallel to the load axis). But 
there is a significant difference between the lateral plastic strains 
measured on the flat side of a specimen with a foil gage and 
on the edge with the ISDG. That difference is greater when a 
specimen is loaded in the L direction than when one is loaded 
in the T direction. 

It appears that the anisotropy of the material accounts for 
these differences in the lateral strains measured on the flat 
sides and edges of the smooth specimens. One might also argue 
that the indentations of the ISDG are influencing the plastic 
flow of the smaller grains on the edge. An argument against 
that hypothesis is that the agreement between the ISDG and 
the RSG lateral strains for the T-loaded specimen is actually 
fairly good. Also, if the indentations harden the specimen 
locally, one would expect smaller strains—not larger. Another 
test was run with a 0.79-mm long foil gage on the 2.5-mm 
thick edge of an L-loaded specimen. That result (RSG edge) 
is seen in Fig. 3 to lie between the edge lateral strains measured 
with the ISDG and the flat-side lateral strains. It therefore 
appears that the lateral ISDG-measured strains are reasonably 
accurate. 

The 2024-T351 aluminum has the same general structure as 
the T3, but the grains are thicker in the S direction. The biaxial 
stress-strain curves, as measured with foil gages on the flat 
side and the edge of the smooth specimen, are nearly identical. 
One such curve is plotted in Fig. 3 and shows that this material 
is nearly elastic-perfectly plastic. 

A representation of the uniaxial material behavior (actually 
the effective stress ae versus the total strain) is needed in order 
to evaluate f(ae) in Eq. (3). The solid line through the " L " 
longitudinal strain data in Fig. 3 is a sixth-order polynomial 
fitted with the plotting package SIGMAPLOT from Jandel 
Scientific, Inc. Attempts to fit a Ramberg-Osgood equation 
to the data gave significant discrepancies either just after the 
proportional limit or at the maximum stress value and were 
abandoned. The equation describing the uniaxial stress-strain 
curve of 2024-T3 is: 

o-= -0.4569 + 7.5004 X l 0 4 e - 5.5733 Xl06e2 + 3.6417 x 10V 

1.0216 x l O ' V +1.0241 x l O ' V - 3.4879xl015e6 (9) 

where a is in MPa and e is in m/m. The solid line fitted to the 
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Fig. 5 Computed stresses for a smooth specimen versus the applied 
stress. The two principal stresses are computed from biaxial strains 
measured with foil gages on the flat side and the ISDG on the edge of 
the same specimen. The effective stress is computed only for the ISDG-
measured stresses. 

2024-T351 data is the Ramberg-Osgood equation with M = 
414 MPa and n = 0.0094. This equation is much better at 
fitting a curve that has a sharper transition to plasticity. 

The anisotropy considerations are important because /2-flow 
theory assumes isotropy and that the plastic Poisson's ratio is 
0.5. The anisotropy of the material is further illustrated in Fig. 
4 which is a plot of the negative ratio of lateral to longitudinal 
plastic strain for the two specimens loaded in the L direction. 
The plastic strain was obtained by subtracting the computed 
elastic strain using E = 71.8 x 103 MPa and v = 0.325. This 
subtraction and division generates noisy results at smaller 
strains, so the values are only plotted for longitudinal strains 
greater than 0.004 which corresponds roughly to the propor­
tional limit of the material. The Poisson's ratio on the flat 
side of the specimen generally adheres to the assumption of 
the theory, but the edge results do not until later in the plastic 
yielding. Therefore, one cannot expect the computed stresses 
on the edge of the specimen to be accurate. However, the 
inaccuracy can be evaluated by using the biaxial strains meas­
ured on the smooth specimens—the data in Fig. 3—to compute 
the stresses ax and a2. The result should of course be o2 = P/ 
A and a2 = 0. 

The stresses computed using the data from the T3 specimen 
that was tested in the L direction and instrumented with both 
the foil gages and the ISDG are plotted in Fig. 5. The agreement 
is nearly perfect for the strains measured on the flat side of 
the specimen where the behavior is more isotropic; <j\ is almost 
exactly equal to P/A, and a2 is nearly 0. Stresses computed 
from the edge data are noisier because of the coarser resolution 
of the ISDG, and a2 shows significant negative stresses. These 
clearly do not represent the physical situation; there are no 
compressive lateral forces in these long specimens to generate 
such a stress. The error in the computation comes from the 
deviation from isotropy in a direction perpendicular to the 
sheet material. Note that the computed edge stresses tend back 
toward perfect agreement at the higher stresses—the corre­
sponding plastic Poisson's ratio of Fig. 4 tends toward 0.5 
also. 

In other words, the stresses computed from strains on the 
edge of the specimen (which are of greatest interest here) are 
simply incorrect. But, what is the effect of this error? The 
effective stress in this two-dimensional stress field is given by 
(at - o\o2 + (f2)

ul which means that an error in a2 is sup­
pressed. The effective stress computed from the edge stresses 
is plotted in Fig. 5 and agrees reasonably well with P/A; the 
maximum error is about five percent. 

Based on these results, one can go ahead with the measure­
ment of stresses at notch roots in this material with the un­
derstanding that the lateral stresses will be inaccurate, but the 
computed longitudinal stresses and the effective stresses will 
be accurate within ± five percent. 

18.16—•< 90° 

U-notch V-notch 

Dimensions in millimeters 

Fig. 6 Dimensions of the two types of notches 
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Fig. 7 Measured biaxial strains at the notch roots—longitudinal on the 
right and lateral on the left—for the three cases tested. The ordinate is 
the net stress applied to the specimen. 

Notch Thickness 
Shape 

U-notch 2.5 mm 
V-notch 2.5 mm 
U-notch 25.4 mm 

SCF 
Peterson 

1.92 
3.50 
1.92 

Table 1 
SCF SCF 
FEM Measured 

2.02 1.97 
3.64 3.52 
2.09 1.85 

(-ejAx)e/ 

0.30 
0.21 
0.16 

Number 
of Tests 

5 
3 
2 

6 Biaxial Strain Results for Notched Specimens 
Double-notched specimens were prepared with three differ­

ent constraints at the notch root; i.e., three ratios of thickness 
to root radius. Two notch radii were used, and their dimensions 
are given in Fig. 6. Table 1 lists the three cases and their elastic 
stress concentration and constraint factors. 

The "SCF Peterson" is a two-dimensional value from his 
handbook (Peterson, 1974). The "SCF FEM" are the results 
of a three-dimensional finite element analysis of the three ge­
ometries. The initial linear regions of the load versus longi­
tudinal strain at the notch root were used to compute the "SCF 
Measured" value. Five tests were run for the thin U-notch 
geometry, and the variation of their initial slopes from the 
mean value was -2.4 percent + 5.7 percent which is an in­
dicator of the fidelity of the ISDG measurement system. 

The value ( - ex/ey)e/ in Table 1 is the negative ratio of lateral 
to longitudinal elastic strain as calculated at the notch root in 
the finite element analysis. It should be the elastic Poisson's 
ratio of 0.325 for plane stress, and one sees that it is close to 
that value for the thin U-notch specimens. The sharper the 
stress concentration and the thicker the specimen, the smaller 
this value. It would be 0.0 for plane strain, but that would be 
very difficult to achieve without biaxial loading. 

Figure 7 shows the results from ten different specimens for 
the three cases of Table 1. Each test was loaded in tension, 
and the testing program was set up so that when the longi-
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tudinal strain reached a value of 0.01, the loading reversed. 
This value was chosen because cyclic loading over a range of 
± 0.01 will produce microcracking at the notch root in a few 
hundred cycles. As mentioned earlier, the strain data used here 
is the monotonic part of a cyclic load sequence. The data sets 
ranged from 500 to 1000 points, but were reduced to around 
150 for ease in plotting. 

A notable feature of the data of Fig. 7 is the variation among 
the measured strains for a given case once the elastic limit has 
been passed. This is not at all surprising in view of the fact 
that the gage length is the same order of magnitude as the 
grain size of the aluminum. There is more variation among 
plastic strains for the V-notch specimens; the gage length there 
is 150 /jm as opposed to 200 /im for the U-notch specimens. 
Part of this variation may come from local rotation of an 
indentation in a single grain or from plastic deformation of 
one of the faces of an indent. No matter what technique is 
used, measurement of plastic deformation over a few grains 
is likely to be inhomogeneous. 

Figure 7 is the complete data set upon which the following 
stress computations are based. The variation among the plastic 
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strains measured for supposedly identical specimens will of 
course show up in the computed stresses. 

7 Computed Notch-Root Stresses 
Given the measured biaxial strains of Fig. 7 and Eqs. (5)-

(7), the computation of the stresses is straightforward. The 
following three figures present the computed stresses for the 
three cases; they are plotted on the same scales. The abscissa 
is the measured longitudinal strain, e^ its upper limit of .01 
was the same in all tests. 

Figure 8 shows the stresses for the five U-thin specimens. 
The variation among the computed, o\ and a2 is similar to the 
variation among the measured ei and measured e2, respectively. 
After all, et is the major contributor in the calculation of <j\. 
The lateral stresses, a2, should be nearly zero in this thin spec­
imen with a moderate stress concentration. They are negative— 
following the same pattern as the computed lateral stresses in 
the smooth specimens (see Fig. 5). This arises from the ani-
sotropy of the material and again illustrates the point that the 
computed stresses are not completely correct. 

The computed stresses for the V-thin specimens are shown 
in Fig. 9. The lateral stresses are approximately zero through­
out the loading, but one can speculate that they should be a 
bit positive. That would be consistent with the increased level 
of constraint for this geometry as shown in Table 1. 

The lateral stresses for the thick 2024-T351 specimens, as 
shown in Fig. 10, are always positive at the center of the notch 
root because of the greater constraint of the surrounding elastic 
material. The differences in the notch-root stresses for in­
creasing constraint are clearly demonstrated in Figs. 8-10. 

8 Comparison With the Neuber Prediction 
The Neuber relation was derived using the deformation the­

ory of plasticity for shear loading. Over the years, it has come 
to be used for cyclic loading of specimens or components 
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subjected to tensile or compressive loading. Certainly its sim­
plicity has contributed to its popularity, but it is generally 
regarded to give accurate predictions of local stresses and strains 
only for plane-stress loading. The overall objective of the larger 
cyclic testing program (of which these monotonic results are 
a part) is to evaluate the Neuber relation for notched specimens 
with various amounts of constraint. 

The computed stresses for the specimen with most constraint 
show significant positive lateral stresses at the notch root and 
lead one to use the effective stress, ae, as a measure of yielding. 
The Neuber relation does not recognize this; it predicts a single 
stress, ai, based on a uniaxial stress-strain curve (of course, 
this is ae if the stress at the notch root is truly uniaxial). It is 
therefore more appropriate to compare the measured effective 
stress with the Neuber-predicted stress, and this is done in Fig. 
11. 

Figure 11 is a plot of the local effective stress versus the 
product of the elastic stress concentration factor and the net 
stress; this latter quantity would be known by a designer seeking 
to predict the notch-root stresses. The Neuber prediction is a 
straightforward application of Eq. (1) and the appropriate 
constitutive equation. The experimental results shown were 
obtained by computing ae for each test at discrete values of 
K, x amt. Mean values were computed and are plotted as 
circles. The error bars represent the maximum and minimum 
values; not a statistical parameter. Where error bars are not 
visible, they were smaller than the size of the circle. 

Figure 11(a) shows near-perfect agreement between the pre­
dicted and measured effective stresses. This is for a moderate 
stress concentration factor and a thin specimen—nearly a purely 
plane-stress situation as shown in Table 1. Note that the agree­
ment would not be as good if one used the measured <j\. The 
average maximum value of a{ is 345 MPa (see Fig. 8), whereas 
the average maximum ae is 373 MPa—an eight percent dif­
ference. But, referring back to Fig. 5, ae is a better measure 
of the stress state in a smooth specimen. This result is nothing 
new; it was stated in the Introduction that the Neuber relation 
was generally valid for plane stress. 

Figures 11(b) and 11 (c) show a greater discrepancy as one 
moves toward more constraint, but in each case the peak ae 
agree very closely. It is also interesting to note that the scatter 
among the peak values of ae is very small for all three cases— 
in spite of the scatter in the measured strains and the computed 
stresses. The stress-strain curves flatten beyond the yield point, 
and therefore large strain errors produce only small stress 
errors. 

9 Conclusions 
There are three main conclusions from this work: 
• Biaxial elastoplastic strain measurements are feasible over 

short gage lengths in materials and geometries that have prac­
tical significance. When applied to geometries that dictate the 
principal strains and materials that meet the assumptions of 
the theory, the addition of a second strain component enables 
one to compute stresses. Although the ISDG measurement 
system is somewhat sophisticated, once it is set up, testing 
becomes routine. The strain measurements demonstrate the 
needed for replication when plastic strains are measured over 
gage lengths on the order of the grain size. However, the 
variability among the strains is suppressed when they are used 
to compute effective stresses. 

• Computation of elastoplastic stresses from measured 
strains is easy—given modern microcomputer-based measure­
ment systems. The lack of accuracy lies more in the represen­

tation of the material's constitutive behavior than in the strain 
measurements and the computational procedures. Anisotropy 
of the material is important and leads to moderate errors in 
the longitudinal stress, au but large errors in the lateral stress, 
u2. That is not a fatal flaw because one is really more interested 
in the effective stress which suppresses the error in a2. 

9 The results show that the predicted peak stress from the 
Neuber relation agrees with the measured peak effective stress 
within the startling range of ± two percent! The Neuber re­
lation is a good predictor of the effective stress at a notch root 
for monotonic loading regardless of the amount of constraint. 
This is important because a stress-based plasticity criterion 
should use the effective stress. However, it does not follow 
that the Neuber relation gives a good prediction of the strains; 
the shape of the upper portion of the stress-strain curve tends 
to dampen the variation of stresses. Low-cycle fatigue predic­
tions are based on strain-life curves, so this point is important. 
However, for static design and monotonic loading, these results 
give one considerable confidence in the Neuber relation. 

It is hoped that this presentation of the measured biaxial 
strains and the resulting computed stresses will contribute to 
a better understanding of the basic mechanics of notch-root 
behavior. The longer term goal is to gain a better understanding 
of the initiation phase of fatigue crack growth in order to 
improve life predictions. 
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