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ABSTRACT

In many situations, interdependency between motion estima-
tion and other estimation tasks is observable. This is for in-
stance true in the area of Super-Resolution (SR) [1]. In or-
der to successfully reconstruct a SR image, accurate motion
vector fields are needed. On the other hand, one can only
get accurate (subpixel) motion vectors, if there exist highly
accurate higher-resolution reference images. Neglecting this
interdependencymay lead to poor estimation results - for mo-
tion estimation as well as for the SR image. To address this
problem, a new motion estimation scheme is presented that
jointly optimises the motion vector field and a SR reference
image. For this purpose and in order to attenuate aliasing and
noise, which deteriorate the motion estimation, an observa-
tion model for the image acquisition process is applied and a
MaximumA Posteriori (MAP) optimisation is performed, us-
ing Markov Random Field image models for regularisation.
Results show that the new motion estimator provides more
accurate motion vector fields than classical block motion es-
timation techniques. The joint optimisation scheme yields an
estimate of the motion vector field as well as a SR image.

Index Terms— Motion estimation, Image Reconstruc-
tion, Stochastic fields, MAP estimation

1. INTRODUCTION

Motion estimation is an important research topic in image
and video processing as well as in computer vision. Under-
standing how objects move is a field of high practical inter-
est, covering a broad range of applications in many engineer-
ing fields such as video object tracking [2], Super-Resolution
image reconstruction [1], video compression [3] and medical
engineering [4] to name a few. An accurate estimate of the
motion vector field is the first and crucial step for successful
results in the aforementioned applications.
One popular approach to motion vector field estimation is
blockmatching [3]. In blockmatching, images of interest are
divided into blocks. Matching blocks (i.e. those that represent
the same physical feature) are searched for in a reference im-
age. The spatial displacement between two matching blocks

is said to correspond to the motion of the physical region they
represent, i.e. the motion vector. Assuming a short time dis-
tance between two images of a video sequence, a translational
motion model for small image blocks is sufficient to describe
the spatial displacement.
Let b1,k be a vectorised image block taken from a grayscale
image of interest. Its elements are in lexicographic notation.
Further, let b0,l be a vectorised image block in a reference im-
age. The aim of block matching is to find the block b

0,l̃ that
corresponds to the same physical region as b1,k. Making the
assumption of intensity conservation, i.e. pixel intensities are
assumed to be constant within a tracking period, motivates the
use of the Sum of Absolute Differences (SAD) as a measure
of similarity between a block b1,k and a reference block b0,l.
Besides the SAD there are a number of other distance mea-
sures such as the SSD (Sum of Squared Differences), SATD
(Sum of Absolute Transform Differences) and SSTD (Sum of
Squared Transform Differences). We restrict ourselves to the
SAD as we found the remaining measures having compara-
ble performance. The SAD block matcher with full search
works as follows: b1,k is compared to all possible (overlap-
ping) blocks b0,l in a search area of the reference image. The
matching block b

0,l̃ is then calculated as the one which leads
to the lowest SAD. For high-precisionmotion estimation frac-
tional pixel accuracy is needed.
In order to increase the motion resolution to 1

p
pixels, it is

common to increase the image size by a factor of p by using
an interpolation scheme and to perform the block matching
on the interpolated images. The quality of motion estimates
with subpel resolution is highly dependent on the accuracy of
the interpolated, higher-resolution reference image. If an in-
put image is a downsampled, aliased and noisy observation of
an unknown image of higher resolution a simple interpolation
scheme results in an unsatisfactory approximation.
In general, the principle of intensity conservation is well mo-
tivated, however it may be violated due to aliasing effects and
noise which occur at the image acquisition step. Especially
when small block sizes are used, motion estimation based
on the assumption of block similarity will consequently fail
when aliasing and noise are present. Furthermore, classical
blockmatching schemes neglect interdependency between the
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motion estimation itself and other estimation tasks. This may
also lead to poor performance. In this paper we explicitly
deal with this interdependencywith a joint motion and Super-
Resolution estimation scheme.
The rest of the paper is organised as follows: Section 2
presents the the data model for the image acquisition pro-
cess which is used throughout this paper. Section 3 gives a
short review of the stochastic regularisation approach for SR
image reconstruction. In section 4 the new motion estima-
tion scheme based on SR is presented, simulation results are
shown in section 5. Finally, section 6 provides conclusions.

2. DATAMODEL

The following data model will be used throughout this paper:

yi = DBiMix + ηi, i = 0, ..., L− 1 (1)

with yi being the vectorised ith input block, D being the
downsampling matrix, Bi being the blurring matrix for the
ith input block, Mi being the motion matrix describing the
spatial displacement of the input images, x being the true un-
derlying High Resolution (HR) block which is assumed to be
sampled from a continuous scene at or above the Nyquist rate
and ηi being the ith noise vector.
Equation (1) states that the observation signals yi are low
dimension projections from a common underlying (and un-
known) signal x of high dimension. The projection is de-
scribed in terms of the matrixDBiMi. Furthermore, noise is
added to the observations.

3. STOCHASTIC REGULARISATION

Here we will assume the blurring to be time invariant, i.e.
Bi = B ∀ i, and be described by a space invariant averag-
ing point spread function. As D is fixed and determined by
the downscaling ratio, the only unknowns are Mi, x and ηi,
i.e. the information how the two blocks are aligned, the true
underlying block of higher resolution and the noise. Let us
for the time being assume Mi to be fixed (e.g. one possi-
ble motion which we wish to test). Then the problem nar-
rows down to a SR problem, estimating the common High
Resolution (HR) image from a set of displaced Low Resolu-
tion (LR) images. Making the assumption of ηi to be i.i.d.
zero mean Gaussian distributed and making use of a Markov
Random Field (MRF) [5] describing the relationship between
neighbouring pixels, a maximum a posteriori approach max-
imising P (x|y0, ..., yL−1) can be made, resulting in a least
squares solution with a regularisation term [1]:

x̂ = argmin
x

{
L−1∑
i=0

(yi −DBMix)T (yi −DBMix)

+ c
∑
s∈S

φs(x−Nx)

} (2)

with c being the regularisation parameter, φs(x−Nx) being a
penalty function depending on the pixel values within a local
group of pixels s and S denoting the set of local groups. N is
a neighbourhoodmatrix replacing each sample with the mean
value of its 4-neighbourhood. Thus x−Nx is a simple activity
measure which has a high absolute value if discontinuities in
the image are present and a small absolute value if the values
of neighbouring samples are close.
Taking the derivative of the argument in Equation (2) with
respect to x and setting it to zero leads to:

L−1∑
i=0

(DBMi)
T (yi −DBMix) =

c

2

∑
s∈S

∂φs(x −Nx)

∂x
(3)

which can be solved by, for example, the Conjugate Gradient
(CG) algorithm [6]. We will treat three MRF image models,
namely the Gaussian, Huber and Double-Exponential MRF,
resulting in different penalty functions for regularisation:
Gaussian Markov Random Field (GMRF):

φs,G(x) = x2 (4)

Huber Markov Random Field (HMRF):

φs,H,α(x) =

{
x2 for |x| ≤ α

2α|x| − α2 for |x| > α
(5)

Double-Exponential Markov Random Field (DEMRF):

φs,D(x) = |x| (6)

Note that when using the HMRF or DEMRF image model
Equation (3) turns into a nonlinear equation system which re-
quires a far more complex nonlinear optimisation.

4. THE MOTION ESTIMATOR

We will now derive a novel scheme for motion estimation
based on the above solution of the observation model for im-
age acquisition. We state that two image blocks under test
describe the same physical region if they originate with high-
est probability from a common underlying block of a higher
resolution. By choosing an appropriate set of possible motion
matricesM j , j = 1, ..., J and solving Equation (1) for x as in
Equation (2) (with L = 2) - i.e. constructing J different SR
blocks, one for each possible motion - one may calculate the
costs associated with two blocks b1,k and b0,l given a testing
motion matrixM j as:

CMAP (b1,k, b0,l, M
j) = (b1,k −DBx)T (b1,k −DBx)+

(b0,l −DBM jx)T (b0,l −DBM jx) + c
∑
s∈S

φs(x−Nx)

(7)

In the first term the motion matrix is an identity matrix and
can be dropped as we consider motion with respect to b1,k
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(and the motion from b1,k to itself is (0, 0)). The match-
ing block in the reference image can now be determined as
the block b

0,l̃ which together with the motion matrixM j̃ ful-
fils (l̃, j̃) = argminl,j(CMAP ). Note that b

0,l̃ describes a
large-scale motion and M j̃ describes a small-scale motion.
Fractional pixel accuracy is automatically obtained by choos-
ing appropriate dimensions for the matricesD, B, M j and the
unknown signal vector x.
As a byproduct to motion estimation an estimate x̂ for the
Super-Resolution image is obtained. Thus, the proposed
method can be seen as a combined estimation of motion and
a SR image.
In order to illustrate the concept of this novel method a small
example will be shown. In Figure (1), two 8 × 8 blocks are

(a) b1,k (b) b0,l
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M6
M7

M8

M9

(c) Nine possible motion vectors

Fig. 1. Motion between two blocks

shown having a simulated displacement of (0,−0.5), i.e. half
a pixel upwards. Restricting ourselves to halfpel accuracy
there are nine possible motions in the direct neighbourhood
which are depicted in Figure (1) (c). Note that in this exam-
pleM7 is the true motion.
In Figure (2) the cost function CMAP forK = 5 iterations of
the CG algorithm is displayed using the HMRF image model
with c = 0.01 and α = 1 for regularisation. It can be seen
that the cost functionCMAP under the assumption of the true
motion matrixM7 returns the lowest costs, matrices close to
M7, i.eM6 andM8 return acceptable costs whereas matrices
far away fromM7 return high costs.
In Figure (3) the nine SR blocks which result as a byproduct
to motion estimation and the original image block are shown.
It can be seen that under the assumption of the true motion
matrix M7 a very accurate estimate of the original block is
obtained. These results support the formulation of a new
motion estimation algorithm for fractional pixel accuracy as
follows:

1. Choose a penalty function φs(x) and a regularisation
parameter c

2. Choose a set of possible motion matricesM j with j =
1, ..., J

3. For all blocks b0,l, l = 0, ..., L− 1 in the search area

• For all motion matricesM j with j = 1, ..., J
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Fig. 2. Simulation result: CMAP vs. Iterations

M1 M2 M3 M4 M5

M6 M7 M8 M9 Original

Fig. 3. Simulation result: Nine resulting SR blocks

– Minimise CMAP (b1,k, b0,l, M
j) with re-

spect to x as in (7) using K iterations of the
CG algorithm

4. Set (l̃, j̃) = argminl,j

{
CMAPH

(b1,k, b0,l, M
j)

}
5. Let b

0,l̃ together withM j̃ describe the motion vector.

The new motion estimator does not rely on principles such as
intensity conservation or block similarity. Images are mod-
eled as being blurred, aliased and noisy versions of an un-
known image of higher resolution. Consequently, block dis-
similarity which occurs due to the aforementioned disturbing
factors is part of the observation model and can be dealt with
by using SR techniques.

5. SIMULATION RESULTS

In Tables 1 and 2, simulation results of our motion estimator
comparedwith the classical blockmatcher using the SAD dis-
tance measure for different noise levels are shown. The first
frames of the ’Mobile’ and ’Foreman’ sequence (CIF format)
have been chosen for the simulation setup. They have been
shifted, blurred and downsampled, modelling the point spread
function of the camera as an averaging function to create two
images of lower resolution having a spatial displacement of
(0.5, 0.5). Furthermore i.i.d. zero-mean Gaussian noise with

II - 499



variance σ2

η has been added to model the CCD sensor noise.
The vector field shall be estimated with halfpel accuracy. The
block size has been chosen as 4×4, the search range equals 4
which results in 1596 blocks with 81 motion vector possibil-
ities for each block. For halfpel accuracy the classical block
matcher needs an interpolated image, consequently we have
chosen a 6 tap FIR interpolation filter [7] approaching an ideal
interpolation filter. Its weights are 1

32
[1,−5, 20, 20,−5, 1]

which results in more accurate motion estimates compared
to classical schemes such as the bilinear or bicubic interpola-
tion. Our motion estimator uses c = 0.01 and α = 1 which
we found gave good performance. Optimisation is done by
using the CG algorithm (GMRF) or the nonlinear CG algo-
rithm (HMRF and DEMRF) with 3 iterations. 100 Monte-
Carlo simulations were conducted. The percentage of cor-
rectly detected motion vectors has been chosen as a quality
measure. It can be seen that our method outperforms the clas-

ση 0 1 2 3 4 5
SAD 46.3 45.2 44.0 43.2 41.9 40.4
GMRF 67.8 67.4 65.9 64.9 63.8 62.1
DEMRF 70.5 68.9 67.3 65.8 64.4 62.6
HMRF 69.3 68.7 67.1 65.9 64.4 63.1

Table 1. % of correct detections, ’Mobile’ sequence

ση 0 1 2 3 4 5
SAD 56.4 44.1 31.3 23.2 18.0 14.6
GMRF 70.5 65.1 55.0 46.3 39.9 34.5
DEMRF 77.5 67.6 56.1 46.9 40.0 34.7
HMRF 75.9 67.6 56.3 47.2 40.5 35.2

Table 2. % of correct detections, ’Foreman’ sequence

sical block matcher providing a more precise estimated vector
field. Furthermore the usage of a more accurate image model
(HMRF or DEMRF instead of GMRF) also has a positive ef-
fect on the quality of the vector field. However due to the
nonlinear optimisation, using the HMRF or DEMRF model is
very computationally expensive. Our motion estimator using
the GMRF is about 10 times more complex compared to the
very simple SAD block matcher, whereas it is about 25 times
more complex when using the HMRF or DEMRF model.
Although this work has mainly been focused on motion esti-
mation, the fact that a SR image is obtained simultaneously
is of high importance as it overcomes the interdependency
problem in SR image reconstruction [1]. In Figure (4) (a) a
part of the Super-Resolution image of the ’Mobile’ sequence
which was obtained as a byproduct to motion estimation is
shown. In comparison, Figure (4) (b) shows the same part
of the image obtained by using the 6 tap FIR interpolation
filter. An improvement in image quality is visible, the Super-
Resolution image provides more details than the one obtained
by using a classical interpolation scheme. We expect the pro-

posedmethod to be of interest in the area of Super-Resolution,
especially when no a priori motion estimates are available.
This will be a topic of future research.

(a) Super-Resolution image (b) 6 tap filter interpolation

Fig. 4. SR image obtained as a byproduct

6. CONCLUSIONS

A new motion estimation scheme is presented that jointly op-
timises the motion vector field and a high-resolution reference
image. For this purpose and in order to attenuate aliasing and
noise, an observation model for the image acquisition process
is applied and a Maximum A Posteriori (MAP) optimisation
is performed, using Markov Random Field image models for
regularising the optimisation problem. The new motion esti-
mation scheme provides superior results compared to classi-
cal block matching schemes. A super-resolution image can
be obtained as a byproduct to motion estimation. Further
improvements are expected when choosing the regularisation
parameter and penalty functions adaptively with respect to
noise and parameters of the image model.

7. REFERENCES

[1] S.C. Park, M.K. Park, and M.G. Kang, “Super-resolution image
reconstruction: A technical overview,” IEEE Signal Processing
Magazine, vol. 20, no. 3, pp. 21–36, May 2003.

[2] G.L. Foresti, “Object recognition and tracking for remote video
surveillance,” IEEE Trans. Circuits and Systems for Video Tech-
nology, vol. 9, no. 7, pp. 1045–1062, 1999.

[3] B. Furht, J. Greenberg, and R. Westwater, Motion Estimation al-
gorithms for Video Compression, Kluwer Academic Publishers,
1997.

[4] M. Hemmendorff, Motion Estimation and Compensation in
Medical Imaging, Ph.D. thesis, Department of Biomedical En-
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