
CHI 2 0 0 0 • 1 -6 APRIL 2 0 0 0 I n t e r a c t i v e Posters

Achieving Usability Through Software Architectural Styles
Len Bass and Bonnie E. John
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pa 14213

{ ljb,bej } @ sei.cmu.edu

ABSTRACT
Design decisions at the architecture level can have far-
reaching effects on the qualities of a computer system.
Recent developments in software engineering link
architectural styles to quality attribute analysis techniques
to predict the effects of architectural design decisions on the
eventual manifestation of quality. An Attribute-Based
Architecture Style (ABAS) is a structured description of a
particular software quality attribute, a particular
architectural style, and the relevant qualitative and
quantitative analysis techniques. Thus, it is a description
that is meaningful to software engineers as they design or
analyze proposed software architectures. We are producing
a collection of ABASs that speak to the usability quality
attribute. These ABASs will enable software engineers
make early architectural design decisions that achieve
specific usability functions.

Keywords
Software design, architectural styles, usability evaluation

INTRODUCTION
Despite almost two decades of research exploring usability
and usability design methods, barely usable computer
systems are still appearing on our desktops and elsewhere in
our lives. The CHI community advocates design processes
that bring usability considerations to early design decisions,
but most of these processes stop short of explicitly mapping
usability quality to specific software design patterns. This
leaves the mapping to a software engineer who may not
know much about usability, to a usability specialist who
may not know much about software engineering, or to a
multi-disciplinary team whose members have difficulty
communicating. In other words, the mapping may often
remain incomplete, or implicit in architectural decisions and
thereby unexamined. We propose to explicitly map
usability considerations to design constructs in language
familiar to software engineers and, thus, bridge this
communication gap.

Recent developments in software engineering explicitly link

architectural styles [5] to software quality attributes like
performance, reliability, and modifiability. The link is
established through analysis techniques that predict the
effects of architectural design decisions on the eventual
manifestation of quality. An Attribute-Based Architectural
Style (ABAS) is a structured description of a measurable
quality attribute, a particular architectural style, and the
relevant qualitative and quantitative analysis techniques [3].
Some aspects of usability fit well into this framework.
Therefore, we are producing a collection of ABASs that
address these usability aspects of computer systems.
Usability ABASs can fill several rolls in an analysis or
design process. They provide an enumeration of specific
usability features, serving as a checklist for consideration
by a design team. They present implementation solutions
for those features. Finally, they include methods for
performing a cost/benefit analysis for particular usability
features. Thus, an ABAS speaks to software engineers
about measurable aspects of usability in terms that allow the
information to be inserted into the architectural design
process. In the remainder of this paper, we propose some
aspects of usability that are candidates for ABASs and
summarize one particular ABAS.

CHARACTERIZATION OF THE USABILITY QUALITY
A'I-FRIBUTE
To generate ABASs, we must first characterize the usability
quality attribute into stimuli (typically what users want to
do) and responses (measurable behavior of a computer
system). To do this, we are distilling the definitions and
characteristics of usability presented by many authors over
the past two decades. From Nielsen's heuristics (e.g.
provide "clearly marked exits") [4] to the properties
enumerated by IFIP's Working Group 2.7 [2], these sources
have suggested many stimuli and responses that are specific
enough to be written as operational requirements for
software engineers and are likely to have architectural-level
solutions. Thus, we are not proposing new aspects of
usability, rather, we are compiling the collective wisdom of
the field, choosing those usability aspects with architectural
implications, and putting them in the language of
operational requirements.

© Copyright on this material is held by
the author(s).

This work supported by the U.S. Department of Defense

~ F u T u ~ zS ~ C ~ 1 71

I n t e r a c t i v e P o s t e r s CHI 2000 • i - 6 APRIL 2000

For example, we have identified several types of users who
should be considered when architectural decisions are being
made, including end-users, system maintainers, and
developers. Each user type may have similar needs (e.g., to
be able to undo actions) and each may have some special
needs. Some stimuli we have identified are: users will
sometimes want to cancel their last operation at some point
prior to the operation's completion, users will sometimes
want to undo prior operations, and users will need to do
repetitive commands on groups of items. Typical responses
include: the ability to fulfill these user needs, the time to
provide feedback to user about the status of their
commands, and the accuracy and salience of feedback.

SUMMARY OF A USABILITY ABAS
The Cancel ABAS is used to reason about whether a
proposed software architecture will facilitate users being
able to cancel their last operation. The ABAS itself is over
eight pages long, so we have only space here to capture the
main ideas. There are four parts in an ABAS.
Problem Statement. The problem statement includes a brief
statement of the problem, in this case, that a user wants to
stop an operation he or she has requested before it is
complete. It also includes a description of when it is
appropriate to consider this ABAS in architectural
decisions. In this case, people will always make mistakes
and/or change their mind, so as long as the system includes
any operations that take longer than one second to
complete, the design team should use the Cancel ABAS in
their deliberations.
Stimulus~Response measures. The stimulus is the user
issuing the "cancel" command. The response has five
measurable elements: 1) the amount of time it takes to
acknowledge the "cancel" command, 2) the amount of time
to complete the cancellation, 3) the extent to which the
system state prior to the issuance of the cancelled command
is restored, 4) the accuracy of the feedback to the user about
the restored state, and 5) accuracy and salience of feedback
to the user on the progress of the cancellation (if the
cancellation will take more than one second).
Architecture Style. The architectural style we present in the
Cancel ABAS assumes that it is not always possible for the
process being cancelled to recognize that a cancel
command has been issued. The process may be blocked or
in an infinite loop. The style, instead, relies on having a
separate cancel process. This process listens for the user to
issue the cancel command, cancels the active command and
informs collaborating processes of the cancellation so that
they can, in turn, take appropriate action. The cancel
process is responsible for generating the appropriate
feedback to the user. The process being cancelled must save
enough of its initial system state so that it can be restored
on cancellation. The process being cancelled must also
inform the cancellation process of any non-preemptable
resources it acquires. These resources must be freed on
cancellation.

Analysis. The analysis section describes how to reason
about a solution in terms of the five measurable responses.
The first two responses involve performance (immediate
feedback acknowledging the cancel command and the time
to perform the cancellation. The Cancel ABAS points to a
performance ABAS for details of quantitative analysis
techniques for calculating latency. The remaining three
responses can be analyzed in a more qualitative manner,
using scenarios. Several different scenarios that provide
different aspects of system usage must be exmnined to
verify that the system is returned to its original state, that
resources are returned and that collaborating processes are
informed, as well as whether accurate and appropriately
salient feedback is given to the user.

FUTURE WORK
We are working with other software engineers to develop a
handbook of ABASs, including those pertaining to the
usability quality attribute. These ABASs draw from a full
range of analysis techniques. The example given here used
quantitative analyses of performance and qualitative
analysis via scenarios, but other ABASs use models such as
the Keystroke-Level Model [1] to determine the human-
performance benefit of providing a particular function. This
can be traded off against the cost to the developing
organization of providing that function.
In order for software engineers to include usability features
in the systems they develop, they must know what these
features are, they must know how to implement the features,
and they must know how to perform cost/benefit trade-off
analysis to determine the utility of the features.
Furthermore, all of this must be explained to them in their
language. These are the goals we hope to achieve via
usability ABASs. We also need to fit the use of ABASs
into processes of architectural design and analysis that mesh
with existing software development processes. All these
goals are being addressed in the Architectural Tradeoff
Analysis Initiative at the Software engineering Institute
(URL: http://www.sei.cmu.edu/ata/ata_init.html).

REFERENCES
1. Card. S. K., Moran, T P., & Newell, A. (1983) The

Psychology of Human-Computer Interaction. Lawrence
Erlbaum Associates, Hillsdale, NJ.

2. Gram, C. & Cockton, G. (1996) Design Principles for
Interactive Software. Chapman & Hall, London.

3. Klein, M., Kazman, R., Bass, L., Carriere, J., Barbacci,
M., and Lipson, H. "Attribute-Based Architecture
Styles", Software Architecture pp. 225-243. Proceedings
of the First Working IFIP Conference on Software
Architecture, San Antonio, TX, Feb, 1999.

4. Nielsen, J. (1993). Usability Engineering. Morgan
Kaufman Publishers, Inc., San Francisco.

5. Shaw, M. & Garlan, D. (1996). Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall,
Upper Saddle River, NJ.

1 7 2 c ~ z e o o o

