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Purrosk. To determine the molecular basis and the pathologic consequences of a chemically
induced mutation in the translational vision research models 89 (fvrm89) mouse model with
ERG defects.

MEerHoDs. Mice from a G3 N-ethyl-N-nitrosourea mutagenesis program were screened for
behavioral abnormalities and defects in retinal function by ERGs. The chromosomal position
for the recessive tvrm89 mutation was determined in a genome-wide linkage analysis. The
critical region was refined, and candidate genes were screened by direct sequencing. The
tvrm89 phenotype was characterized by circling behavior, in vivo ocular imaging, detailed
ERG-based studies of the retina and RPE, and histological analysis of these structures.

Resucrs. The torm89 mutation was localized to a region on chromosome 9 containing Myo6.
Sequencing identified a T—C point mutation in the codon for amino acid 480 in Myo6 that
converts a leucine to a proline. This mutation does not confer a loss of protein expression
levels; however, mice homozygous for the Myo6""”"S° mutation display an abnormal iris
shape and attenuation of both strobe-flash ERGs and direct-current ERGs by 4 age weeks,
neither of which is associated with photoreceptor loss.

Concrusions. The tvrm89 phenotype mimics that reported for Myosin6-null mice, suggesting
that the mutation confers a loss of myosin 6 protein function. The observation that
homozygous Myo6'""*8% mice display reduced ERG a-wave and b-wave components, as well
as components of the ERG attributed to RPE function, indicates that myosin 6 is necessary for
the generation of proper responses of the outer retina to light.
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yosins are actin-based motor proteins, coupling adenosine

triphosphate (ATP) hydrolysis to mechanical motion along
actin filaments. To date, more than 30 myosin proteins have
been identified in species ranging from Drosophbila to human,
and they are known to contribute to essential cellular
functions, including secretion, cell division, differentiation,
and migration.! Myosin 6 is an unconventional myosin motor
protein and is the only myosin that moves toward the minus
end of the actin filament.?

In mice, only one functionally unique isoform of myosin 6
is expressed. The gene was first identified in the Snell’s
waltzer mouse (sv), which is characterized by circling
behavior and head tossing secondary to vestibular dysfunc-
tion.>4 The presence of cochlear dysfunction in Myo6” mice
identified Myo6 as a deafness gene.*"® MYO6 mutations have
subsequently been identified in autosomal recessive non-
syndromic deafness (DFNB37)7-® and autosomal dominant
nonsyndromic hearing loss (DFNA22) in humans.®%1° Myosin
6 has also been found in the retina and is highly expressed in
photoreceptors and RPE cells!'!~!3 and throughout the inner
retina. Notably, two of nine patients documented with
DFNB37 displayed retinal abnormalities.” In photoreceptors,
myosins are present in the actin-containing domain within the
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connecting cilium of the inner segment, where the initiation
and regulation of disc membrane morphogenesis occurs.'# In
the mouse photoreceptor, myosin 6 is localized exclusively to
the inner segment. Myo6°” and two allelic mutants (Myo6°*-%/
and Myo6*#¥), which are all effective Myo6-null mutants,
display reductions in a-wave and b-wave amplitudes as early as
age 6 weeks,!> with no evidence of photoreceptor degener-
ation or disruption in disc morphogenesis.'? In the RPE,
myosin 6 is localized to the periphery of the cell and
colocalizes with LysoTracker!? corroborating its role in vesicle
trafficking!®~1° and providing a potential explanation for the
functional abnormalities found despite the absence of
anatomical changes to the retina.

A large number of new mouse models that demonstrate
irregular structural and/or functional eye phenotypes have
been developed in a mutagenesis program conducted at The
Jackson Laboratory.?? The translational vision research
models (TVRM) program uses N-ethyl-N-nitrosourea (ENU)
to induce random mutations, and neurological and ocular
screens are used to identify mutants of interest. As described
herein, the fvrm89 mutant was identified by its circling
behavior, and the mutation involved was subsequently
identified as a leucine to proline substitution in myosin 6.
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Myo6™"S? mutants phenocopy, in many respects, the
sensory abnormalities identified in Myo6%, Myo6**%/, and
Myo65¥ mice. Unlike these well-studied mutants, myosin 6
protein expression is retained in the Myo6™"8%-mutant
retina. The Myo6'"8° mouse provides a novel mutant for
Myo6 that confers a loss of function but does not affect
expression of the protein.

METHODS
Mice: Mutagenesis, Mapping, and Genotyping

All animal procedures were approved by the institutional
animal care and use committees of the institutions involved
and are in agreement with the ARVO Statement for the Use
of Animals in Ophthalmic and Vision Research. Homozygous
tvrm89 mice were identified from a mutagenesis program?°
in which male C57BL/6] (B6) mice were mutagenized with
ENU administered in intraperitoneal injections of 80 mg/kg
for 3 weeks.2! The G3 offspring, generated using a three-
generation backcross mating scheme to identify recessive
mutations,??> were screened by a series of neurological
protocols. The tvrm89 mutant was identified based on its
circling behavior and head bobbing, indicative of inner ear
dysfunction.

To map the gene involved, which is inherited as an
autosomal recessive trait, B6 tvrm89 homozygous female
mice were mated to male DBA/2]J mice to generate F1
progeny, which were subsequently intercrossed. The F2
progeny were assessed at age 12 weeks, and DNA was
isolated from tail snips using a modified version of published
methods.?> A genome-wide scan to determine the chromo-
somal location of tvrm89 was performed with simple
sequence-length polymorphic markers. Products of PCR
were separated by electrophoresis on a 4% agarose gel
(MetaPhor; FMC, Rockland, ME), stained with ethidium
bromide, and visualized by UV light.

For sequencing of candidate genes, RNA and cDNA were
prepared from three mutant mice and three control B6 mice.
The RNA was isolated from snap-frozen eyes (TRIzol;
Invitrogen, Carlsbad, CA) according to the manufacturer’s
instructions. The c¢DNA was generated with a reverse
transcription kit (Retroscript; Ambion, Austin, TX). The
Myo6 coding region was amplified from cDNA using PCR
amplification, and purified products were sequenced.

The tvrm89 mouse colony at The Jackson Laboratory is
maintained by heterozygous matings. Mice were shipped to
the Cleveland Clinic to establish a satellite colony that is
maintained on a 14-hour light-10-hour dark cycle.

An allele-specific PCR assay for Myo6'"""S? was estab-
lished, and PCR amplification of the region was carried out
as follows: (1) 94°C for 2 minutes, (2) 94°C for 20 seconds,
(3) annealing temperature of 60°C for 10 seconds, and (4)
65°C for 50 seconds; steps two through four were repeated
for 40 cycles, followed by one cycle at 65°C for 7 minutes.
The following oligonucleotides were used for PCR amplifi-
cation:

F1: 5"-AGCCCAGACTATTAACGTACATT-3’
R1: 5-CCTTTCATTAAAAAACTGTTGTG-3’
R2: 5-CCTTCAGGATGGTTTCATTAAAAAACTGTAGGA-3’

Scanning Laser Ophthalmoscopy and Spectral-
Domain Optical Coherence Tomography

Mice were anesthetized with 64 mg/kg of sodium pentobar-
bital. Mydriasis was induced by administration of 1 pL of
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0.5% Mydrin-P (tropicamide-phenylephrine combination)
drops (Santen Pharmaceutical Co., Ltd., Osaka, Japan). The
drops were gently massaged into the eye by artificially
blinking the eyelids. Eyes were then immediately covered
with Systane Ultra artificial tears (Alcon Laboratories, Inc., Ft.
Worth, TX). Mice were then placed in a warmed, humidified,
oxygenated acrylic plastic sheet chamber for a minimum of 5
minutes to permit time for pupil dilation. Mice were then
removed for imaging by scanning laser ophthalmoscopy
(SLO) (model HRA2; Heidelberg Engineering, Inc., Vista, CA)
and spectral-domain optical coherence tomography (SDOCT)
(model Envisu SDOIS; Bioptigen, Inc., Research Triangle
Park, NC). The SLO imaging involved collection of different
imaging modalities, including dark-field reflectance and
autofluorescent images with both blue (488 nm) and infrared
(795 nm and 830 nm) illumination wavelengths. Using a
wide-field objective lens with a 55° field of view (FOV),
retinal images were collected with the optic nerve centrally
positioned. Additional views of the peripheral regions were
obtained to further investigate the nasal, temporal, superior,
and inferior quadrants. Eyes were occasionally rehydrated
with balanced salt solution or Systane Ultra artificial ears
(Alcon Laboratories) and mechanically massaged to simulate
blinking as needed. After SLO imaging, the mouse was
transferred to the Envisu SDOIS system (Bioptigen, Inc.) for
SDOCT imaging. The SDOCT volumetric scans (250 a-scans
per b-scan X 250 b-scans per volume) were obtained with
the optic nerve centrally located within the FOV. Using a 50°
objective lens, the SDOIS system afforded a retinal FOV of
approximately 1.5 mm, with an axial, in-depth resolution of
approximately 6 pm. After imaging, both eyes received
bacitracin zinc and polymyxin B sulfate ophthalmic ointment
(Bausch & Lomb, Inc., Tampa, FL) to prevent corneal
dehydration. During recovery, mice were placed in a
bottom-warmed (33-36°C), oxygenated (21%-60%) acrylic
plastic sheet chamber until they fully recovered from general
anesthesia.

Electroretinography

After overnight dark adaptation, mice were anesthetized (80
mg/kg of ketamine and 16 mg/kg of xylazine), the cornea was
anesthetized (1% proparacaine hydrochloride), and the pupils
were dilated (1% tropicamide, 2.5% phenylephrine hydrochlo-
ride, and 1% cyclopentolate). Mice were placed on a
temperature-regulated heating pad throughout each recording
session.

The protocols used to record ERG components generated
by the outer neural retina or the RPE have been described.?* In
brief, responses of the outer retina were recorded with a
stainless steel electrode referenced to a needle electrode
placed in the cheek in response to strobe-flash stimuli
presented in the dark or superimposed on a steady 20 candela
(cd)/m? rod-desensitizing adapting field. The amplitude of the
a-wave was measured 8 milliseconds after flash onset from the
prestimulus baseline. The amplitude of the b-wave was
measured from the a-wave to the peak of the b-wave or, if no
a-wave was present, from the prestimulus baseline. Implicit
times were measured from the time of flash onset to the a-wave
trough or the b-wave peak.

Components of the direct-current coupled (dc)-ERG
generated by the RPE were recorded with a silver/silver
chloride electrode bridged to the corneal surface with Hanks’
balanced salt solution in response to stimuli presented for 7
minutes. The amplitude of the c-wave was measured from the
prestimulus baseline to the peak of the c-wave. The amplitude
of the fast oscillation (FO) was measured from the c-wave peak
to the trough of the FO. The amplitude of the light peak (LP)
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Ficure 1. The fvrm89 mutants bear a point mutation in Myosin6 but retain myosin 6 protein levels. (A) Positional cloning and direct sequencing
demonstrate a T—C transition mutation found in homozygous fvrm89 mutants. (B) Allele-specific genotyping was accomplished using PCR
amplification of DNA extracted from tail snips. (C) Western blot analysis of retinal (/eft) and RPE (right) protein lysates demonstrates myosin 6
protein levels in wild-type (+/4), heterozygous (tvrm89/4), and homozygous (tvrm89/tvrm89) mice. Actin serves as a loading control. (D)
Cryosections of eyecups from +/4, torm89/+, and tvrm89/tvrm89 mice were immunostained with Myosin-VI antibody (red) and counterstained
with 4',6-diamidino-2-phenylindole (blue). Myosin 6 is present in all three genotypes and is highest in rod inner segments and the inner retina. At
the right is the no primary antibody control. Low levels of autofluorescence are found in the rod outer segments; however, no specific
immunostaining was apparent. Scale bar: 20 pm.

was measured from the FO trough to the asymptotic value. The
amplitude of the offresponse was measured from the LP
asymptote to the peak of the off-response.

fixed in 0.1 M sodium phosphate buffer (pH 7.4) containing 4%
paraformaldehyde for 4 hours. The posterior pole was then
immersed through a graded series of sucrose solutions as
follows: 10% for 1 hour, 20% for 1 hour, and 30% overnight.

Histology and Immunohistochemistry

After mice were killed, the superior cornea was marked before
enucleation. After removal of the cornea and lens, eyes were

A
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INL |

Eyes were embedded in optimum temperature cutting
compound freezing medium, flash frozen on dry ice, and
immediately transferred to —80°C. Tissue was sectioned at 10-

tvrm89/+ C I tvrm89/tvrm89

Ficure 2. Normal retinal anatomy in Myo6™"”*8% mutants. Retinal cross sections obtained from control Myo6* (A), Myo6'*8%+ (B), and mutant
Myo6vr89/term89 (C) mice. Retinal histology was normal in all genotypes. Top: Representative light micrographs of the retina from ultrathin
sections of adult eyecups. Scale bar: 20 pm. Bottom: Representative light micrographs displaying RPE morphology from semithin sections of adult
eyecups. Scale bar: 10 pm. INL, inner nuclear layer; ONL, outer nuclear layer; RIS, rod inner segment; ROS, rod outer segment.
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Iris but not fundus abnormalities in homozygous Myo6™"89 mice. Myo6™"89 mutants display iris abnormalities (synechiae) that resolve

with age. Left, middle: Low-magnification photomicrographs obtained by SLO displaying scalloped pupil shape in both left and right eyes at 4 weeks
(top), 8 weeks (middle), and 1 year or older (bottom). Right: Infrared (dark field) SLO images of the retina taken at 4 weeks (top), 8 weeks (middle),
and 1 year (bottom). No abnormalities were observed in the retina or the RPE at any age.

um thickness with a cryostat (Leica, Wetzlar, Germany) at
—30°C, mounted on Superfrost slides (Fisherbrand, Pittsburgh,
PA), and stored at —80°C until processed. Sections were
incubated in 0.1% Triton X-100 and 10% normal goat serum in
PBS for 1 hour (PBS-T) at room temperature and then washed
three times with PBS for 5 minutes each. The sections were
incubated overnight at 4°C with the primary antibody. Sections
were rinsed with PBS-T three times for 10 minutes each and
incubated with secondary antibody (AlexaFluor 594, 1:500;
Molecular Probes, Eugene, OR) for 1 hour at RT. After rinsing
sections three times for 5 minutes each with PBS-T, sections
were mounted with 4’,6-diamidino-2-phenylindole (Vecta-
shield; Vector Laboratories, Burlingame, CA) and coverslipped.
Primary antibody was rabbit anti-Myosin-VI (1:200; Proteus
BioSciences, Inc., Ramona, CA).

For light microscopy, eyes were fixed in 0.1 M sodium
cacodylate buffer (pH 7.4) containing 2% formaldehyde and
2.5% glutaraldehyde. The tissues were then osmicated,
dehydrated though a graded ethanol series, and embedded in
epoxy resin (Epon/Araldite; Polysciences, Inc., Washington,
PA). Semithin sections (1 pm) were cut approximately along
the horizontal meridian and through the optic nerve and
stained with toluidine blue O for evaluation.

Downloaded from iovs.arvojournals.org on 06/28/2019

Western Blot

Retinal and RPE tissues were dissected from enucleated eyes and
frozen in lysis buffer (50 mM Tris [pH 8.0], 150 mM sodium
chloride, 10% glycerol, 0.5% Triton X-100, and 0.1% NP40)
supplemented with protease inhibitors (Roche Applied Science,
Indianapolis, IN). Lysates were homogenized by manual grinding
with a disposable pestle within a microcentrifuge tube three
times, followed by five brief sonication pulses. Lysates were
digested at 4°C for 1 hour, followed by centrifugation at 6600g
for 10 minutes at 4°C. The supernatants were collected, and the
total protein in each sample was determined by bicinchronic
acid assay (Thermo Scientific, Rockford, IL) according to the
manufacturer’s instructions. Samples containing 25 g of total
protein for retina or 10 pg of protein for RPE with Lane Marker
Reducing Sample Buffer (Thermo Scientific) were heated to
95°C for 5 minutes to denature the samples. Proteins were
separated on 4% to 20% Tris-glycine SDS-PAGE gels and
transferred to polyvinylidene difluoride membranes using 1X
running buffer and transfer buffer (Bio-Rad Laboratories,
Hercules, CA). Membranes were blocked for 1 hour in a 5%
milk solution in Tris-buffered saline containing 0.1% Tween-20
(TBS-T). The primary antibodies were applied in blocking
solution overnight at 4°C. After washes with TBS-T, the
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FiGure 4. Abnormal iris shape and anterior segment morphology in homozygous Myo6™"8% mice. The SDOCT imaging of homozygous
Myo6'""89 mice found with bilateral synechiae revealed abnormal anterior segment morphology in approximately 50% (4/7) of animals. The
horizontal line through the en face fundus image (left) indicates the location of a single SDOCT B-scan frame (right). Asterisks denote anterior
chamber. Arrowbead at the top marks the lenticular opacity. Arrowbead at the bottom marks the corneal ulceration. Arrows indicate

keratolenticular adhesions.

peroxidase-conjugated secondary antibodies (Jackson Immuno-
Research Laboratories, Inc., West Grove, PA) were applied at
1:5000 in blocking buffer for 1 hour at room temperature, and
proteins were detected by enhanced chemiluminescence
(Western Lightning kit; Perkin-Elmer, Waltham, MA). Primary
antibodies used were Myosin VI (1:200; Proteus BioSciences,
Inc.) and P-actin (1:1000; Abcam, Cambridge, MA).

RESULTS

A Myo6 Missense Mutation Confers Pathology in
tvrm89 Homozygous Mice

Linkage analysis localized the gene mutated in fvrm89 mice to
a region of chromosome 9 containing Myo6. Because the
phenotype of affected tvrm89 homozygotes matched that of
Myo6*/** mice,® including elevated auditory brainstem re-
sponse threshold (data not shown), the coding region of Myo6
was sequenced. We detected a T—C nucleotide transition that
converts a leucine (CTC) to a proline (CCC) at amino acid 480
(Fig. 1A). The first 759 amino acids of mouse myosin 6
represent the head-motor region of the protein containing both
the ATP-binding domain and the actin-binding sites Chttp://
www.uniprot.org/uniprot/Q9UM54 [in the public domain]).
Conversion of amino acid 480 from leucine to proline is likely
to affect actin and/or ATP binding and to destabilize protein
structure because of the substitution of proline’s unique 5-
membered ring into the main-chain conformation.

The PCR analysis of ¢cDNA encompassing the tvrm89
mutation confirmed the change in both the F2 intercross and
tvrm89 maintenance colony and was used for genotyping
Myo6 mutants because the products demonstrate a size
difference (wild type is 135 base pair [bp] and mutant is 108
bp) (Fig. 1B). From this point forward, the fvrm89 allele will
be referred to as MyoG™"S?.
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Western blot analyses of lysates generated from retina or
RPE were probed with an antibody that recognizes an epitope
containing amino acids 1049 through 1254 within the tail
region of myosin 6. The immunoblot (Fig. 1C) demonstrated
that myosin 6 is retained in homozygous Myo6'""8? mutants.
Localization of myosin 6 was investigated by fluorescent
immunohistochemistry on frozen cryosections from adult
mice. No differences in myosin 6 expression or localization
were apparent between homozygous Myo6™"™8 mutants and
control littermates (Fig. 1D). General histological analysis of
mutant mice was further performed using semithin epoxy
resin sections of adult eyecups, and no overt changes were
identified in any retinal layer (Fig. 2, top). High-magnification
micrographs of the RPE-outer segment interface demonstrated
normal morphology (Fig. 2, bottom).

Iris Abnormalities in Homozygous Myo6'"™% Mice

At age 4 weeks, in vivo imaging demonstrated a bilateral,
abnormal, scalloped pupil shape in homozygous MyoG'""*89
mutants (Fig. 3, left, middle). This phenotype was fully
penetrant and generally caused by formation of synechiae,
including adhesions of the iris to the cornea (anterior synechiae)
or to the lens (posterior synechiae). Subsequent imaging at 8
weeks and at 1 year or older showed similar but less
pronounced findings (Fig. 3). The SDOCT imaging of mutants
with bilateral synechiae revealed multiple abnormalities within
the anterior segment at both 4 weeks and 8 weeks (Fig. 4). At 4
weeks, a lenticular opacity (arrowhead) can be observed
immediately adjacent to a keratolenticular adhesion (arrow)
involving the posterior cornea and the lens. At 8 weeks, the
misshapen iris and keratolenticular adhesion persist, but the
lenticular opacity is less apparent and somewhat resolved. A
corneal ulceration (arrowhead) can also be observed on the
posterior cornea at 8 weeks. Anterior chamber cavities are also
abnormally small at both time points (asterisks). The SLO of
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Ficure 5. Homozygous Myo6""%9 mice display attenuated ERGs. Averaged strobe-flash ERG responses at 4 weeks (A-C), 8 weeks (D-F), and 1
year or older (G-D. (A, D, G) Averaged tracings from control (/4 and tvrm89/+4) and mutant (fvrm89/tvrm89) mice in response to stimuli of —2.4,
—0.6, and 2.4 log cd s/m?. (B, E, H) The a-wave luminance-response functions (points indicate the average = SEM). (C, E I) The b-wave luminance-
response functions (points indicate the average = SEM). Data summarize results from 22 control and 10 mutants at 4 weeks, from 24 controls and 7
mutants at 8 weeks, and from 4 controls and 2 mutants at 1 year or older. **P < 0.0001, **P < 0.001, *P < 0.01 by Student’s /test.

mice at 4 weeks, 8 weeks, or 1 year or older did not identify any
clinical RPE or retinal abnormalities (Fig. 3, right).

Homozygous Myo6"" ™5 Mutants Display Reduced
Light-Evoked Responses of the Retina and RPE

The ERG is reduced in amplitude in Myo6*”*’ mice.'? To
determine whether this feature is shared in the MyoG™™S?
mutants (Fig. 1C), we used ERGs to examine the function of the
outer retina and of the RPE. The strobe-flash ERG depicts both
photoreceptor activity in the form of the a-wave and bipolar cell
function as revealed by the b-wave. Figure 5 shows averaged
ERG tracings at 4 weeks (A), 8 weeks (D), and 1 year or older
(G) in response to a subset of the strobe-flash stimuli (—2.4,
—0.6, and 1.4 log cd s/m?, respectively). At each age, the overall
amplitude of ERGs obtained from homozygous MyoG™" ™S9
mutants was reduced compared with that of control (-4 and
tvrm89/+4) littermates. Luminance-response functions for the
major components of the ERG are shown in Figure 5 at 4 weeks
(B, O), 8 weeks (E, F), and 1 year or older (H, I). Compared with
control, response functions of homozygous Myo6™"5° mutants
are reduced by a consistent factor across flash luminance. The
amplitude of the a-wave was reduced on average by 40% at 4
weeks (B), 53% at 8 weeks (E), and 31% at 1 year or older (H),
and the amplitude of the b-wave was reduced by 35% at 4 weeks
(©), 46% at 8 weeks (F), and 34% at 1 year or older (). These
reductions are comparable to the 25% (a-wave) and 30% (b-
wave) reductions reported in Myo6*”* mutants aged 6 to 7
weeks.!? We found no change in b-wave latency at any age (data
not shown).

We next assessed the light-evoked responses of the RPE.
Figure 6A shows representative dc-ERG tracings from homo-
zygous mutant Myo6™"8° and control mice at 4 weeks and 8
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weeks. The four main components of the dc-ERG (Fig. 6A) are
generated because of changes in ion conductance across the
basal and apical RPE membranes in response to light stimuli.?*
Compared with control, the overall amplitude of the dc-ERG
was reduced in homozygous Myo6'""*8? mutants at both age 4
weeks and 8 weeks; as shown in Figure 6, the individual
components at these two ages were reduced by 36% and 30%
(respectively) for the c-wave (B), 45% and 27% for the FO (O),
and 31% and 25% for the LP (D), as well as by 18% at both ages
for the off-response (E). Collectively, these results demonstrate
that ERG components generated by the RPE response were
diminished in homozygous Myo6™"™8 mutants but that the
magnitude of this reduction was less pronounced at age 8
weeks.

RPE Function in Homozygous Myo6" ™% Mice Is
Reduced but Is Spared Relative to Photoreceptor
Activity

The dc-ERG is generated secondary to rod photoreceptor
activity.?#25> As a consequence, a reduced dc-ERG could
reflect RPE dysfunction or a reduced effective stimulus from
rod photoreceptors. In view of the reduced a-wave of
homozygous Myo6'"% mutants (Fig. 5), we examined the
relation between rod photoreceptor activity and the individ-
ual dc-ERG components of homozygous Myo6™""8%-mutant
mice. Each panel of Figure 7 shows the amplitude of a dc-ERG
component (c-wave [A], FO [B], LP [C], and off-response [D])
plotted against the amplitude of the a-wave elicited by a high-
luminance stimulus after each response measure was normal-
ized to the control average. When the dc-ERG is reduced
beyond the a-wave, the plotted points fall below the diagonal
line; points fall along the diagonal line when the response
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Ficure 6. The RPE function is reduced in homozygous Myo6'”"”*%? mice. (A) Representative dc-ERGs of control (/4 or tvrm89/+) mice (black)
and mutant (form89/tvrm89) mice (gray) at 4 weeks and 8 weeks. Baseline measurements are recorded for 30 seconds before initiation of a 7-
minute light stimulus of 2.4 log c¢d/m?. The major dc-ERG components are labeled. (B-E) Amplitude of c-wave (B), FO (C), LP (D), and off-response
(E) obtained from mice aged 4 weeks or 8 weeks. Bars indicate the average = SEM of 20 control and 7 mutant mice at 4 weeks and of 15 control

and 7 mutant mice at 8 weeks. **P < 0.001 by Student’s #-test.

measures are reduced by equal amounts. In general, at 4
weeks points fall close to the diagonal, indicating that dc-ERG
and ERG a-waves are reduced by equivalent amounts. At 8
weeks, points fall above the diagonal, demonstrating that RPE
function is spared despite the decrease in photoreceptor
activity.
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Myosin 6 localization has been reported in cone ellipsoids of
various fish species,!"!3 and it is highly expressed at the outer
limiting membrane and inner segment of mouse photorecep-
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Ficure 7. The RPE function is equivalent to or better than photoreceptor activity in homozygous Myo6'"89 mice. Relative changes in amplitude
of each major dc-ERG component (c-wave [A], FO [B], LP [C], and off-response [D]) as a function of a-wave amplitude in response to a light stimulus
of 1.4 log cd s/m?. Each filled point indicates data obtained from an individual homozygous Myo6'"8-mutant mouse plotted relative to the average
control response. Data sets from 4 weeks are denoted by squares, and data sets from 8 weeks are denoted by triangles. The average + SEM for each
age is represented by an open square (4 weeks) or open triangle (8 weeks). The average + SEM for control mice is represented by an open circle.
The diagonal line indicates an equivalent reduction in the a-wave and each major component of the dc-ERG.
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Ficure 8. Cone ERG is reduced in homozygous Myo6"%° mice. Averaged light-adapted strobe-flash ERG responses at 4 weeks (A, B), 8 weeks (C,
D), and 1 year or older (E, F). Mice were light adapted for 7 minutes following dark-adapted testing and underwent strobe-flash ERGs under a steady
rod-desensitizing adapting field (20 cd/m?). (A, C, E) Representative tracings from control (+/4 and tvrm89/+) and mutant (tvrm89/tvrm89) mice
in response to a light stimulus of 1.9 log cd s/m?. (B, D, F) Cone ERG amplitude measured from the peak of the b-wave to the amplitude of the a-
wave at 8 milliseconds. Data points indicate the average = SEM of 22 control and 10 homozygous Myo6*""S? mice at age 4 weeks, of 24 control
and 7 homozygous Myo6""89 mice at age 8 weeks, and of 4 control and 2 homozygous Myo6™"8? mice at age 1 year or older. **P < 0.0001, **P <

0.001, *P < 0.01 by Student’s #test.

tors'? (Fig. 1). Therefore, we assessed the cone ERGs of
homozygous Myo6™"8 mice. Figure 8 shows representative
responses of homozygous mutant Myo6'"*8? and control mice
elicited by a 1.9 log cd s/m? flash stimulus for mice aged 4
weeks (A), 8 weeks (C), or 1 year or older (E). As shown in
Figure 8, the cone ERG is reduced by a comparable degree
across flash luminance, averaging 21% at 4 weeks (B), 38% at 8
weeks (D), and 34% at 1 year or older (F).

DISCUSSION

Myosin 6 is involved in many cellular processes important to
sensory function.?>?” Herein, we describe the retinal pheno-
type of the Myo6™"8° mutant that carries a novel missense
mutation in the motor domain of Myosin6. Our results add to
the literature noting critical roles for myosin 6 at the inner and
outer ear stereocilia in mice and in human deafness.1528-33
Moreover, our analysis of the functional and structural effects
of the tvrm89 mutation provides a detailed report of the retinal
phenotype in Myo6 mutants.

Unlike previously described Myo6 mutants, which involve
null mutations that result in a loss of myosin 6 in the actin-rich
domains within the retina/RPE, including rod photoreceptor
inner segments, horizontal cells, and Miiller glia,'"'334 myosin
6 protein expression is retained in the homozygous Myo 6”89
retina (Fig. 2). This feature indicates that the Myo6™v"S?
mouse model presented herein may provide insight into
phenotypic features attributed to loss of myosin 6 function.

Iris Abnormalities in Myo6'"™%-Mutant Mice

A novel finding in the homozygous Myo6'""*8? mutant is the
scalloped shape of the iris margin and abnormal morphology of
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the anterior segment (Figs. 3, 4). A similar feature was not
reported for any of the MyoG*” strains; however, it is unknown
if this was because the iris abnormalities were not present or
were missed. Bilateral synechiae were present in all homozy-
gous Myo6'™”"8% mutants, and approximately 50% of these
animals also displayed lesions within the anterior chamber
(Figs. 3, 4). We noted that these phenotypic features typically
became less pronounced with age in the majority of animals
imaged, which may be attributable to the use of mydriatics for
ERG studies. The mydriatics and/or cyclopegics utilized for
routine ERG studies are known to break synechiae and are
used clinically in the treatment of iritis and iridocyclitis.>>
Consistent with this idea, posterior and anterior adhesions
were visualized at 4 weeks and were maintained at the 8-week
time point in the subset of animals that only underwent
anesthesia by isofluorane inhalation and which were never
treated with xylazine or topical mydriatics (Fig. 4).

Nonprogressive Reduction in Retinal Function of
Myo6'""™8 Mice Without an Anatomical Correlate

Our detailed ERG analysis demonstrated that retinal function
was reduced in 4-week-old homozygous Myo6™"89 mutants,
the earliest age examined. The Myo6'""*8%-mutant phenotype,
which involves reduced ERG amplitude in the face of normal
retinal structure, is unusual but has been reported in other
models and could reflect a reduced photoreceptor dark
current, altered regulation of ions and pH in the subretinal
space, a change in resistance of the retinal circuit through
which the ERG is recorded, or some other mechanism.3¢-38
The dark current is the steady influx of a primarily sodium
ion current that occurs in photoreceptors in the dark,
maintaining them in a depolarized state. Upon presentation
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of light stimuli, the cation channels close, and photoreceptors
hyperpolarize, releasing neurotransmitters to second-order
neurons. Changes in the distribution or expression of the
sodium ion channels or sodium-calcium exchanger in the rod
outer segment could thus lead to reductions in both
photoreceptor activity and responses of RPE and bipolar cells.

The general decrease in retinal function that we observed
in homozygous Myo6""™8% mutants could alternatively relate
to a change in ion conductance across the RPE and/or a
change in pH homeostasis that can occur in response to
altered function of the endolysosomal pathway. Myosin 6 is
associated with both the autophagosome?® and lysosome,°-1?
where the mutant form of myosin 6 could prevent either
proper phagocytosis of shed outer segments, exchange of
visual cycle components, or disk turnover and morphogenesis.
Notably, we found that myosin 6 localization is unchanged in
homozygous Myo6'""8? mice (Fig. 1D) but that its protein
expression is higher within the RPE compared with wild-type
and heterozygous mice (Fig. 1C). Within polarized epithelial
cells such as the RPE, myosin 6 internalizes and transports
receptors away from apical microvilli via clathrin-mediated
endocytosis.>!1,12,17,26,31,40-46 Mvyosin 6 is known to mediate
endocytosis of the cystic fibrosis transmembrane receptor
(CFTR) in polarized epithelial cells.47-4® Cystic fibrosis
transmembrane receptor underlies a chloride ion conductance
that is partially responsible for generation of the FO. In
Mpyosin6null mice, CFTR expression is maintained on the
apical membrane of intestinal epithelium.? We have previ-
ously reported that dc-ERG is abnormal in CFTR-mutant
mice.?> Our data therefore suggest that the Myo6™ 82
mutation may confer loss of endocytosis of CFTR at the apical
RPE and contribute to the reduction in the ERG via altered
chloride ion conductances.

Other mouse mutants that demonstrate reduced ERG
amplitude in the absence of anatomical changes to the retina
include the Mct3~~ mouse, in which the ERG reductions were
attributed to altered jon and pH homeostasis in the subretinal
space due to the absence of normal lactate transport by
monocarboxylate transporter 3 (MCT3).3° The sodium-driven
bicarbonate exchanger (NCBE)-knockout mouse also displays
a reduction in b-wave amplitude, with no change in retinal
morphology.>” The altered ERG in this mouse is also thought to
result at least partially from impaired intracellular pH
regulation and chloride ion concentration. Lysosomal dysfunc-
tion can also lead to changes in pH via dysfunction of the ATP-
driven proton pump in the RPE membrane.?®

Loss of Myo6 could cause a change in resistance across the
retinal circuit through which the ERG is recorded. Such a
change could account for an overall reduction in ERG
components despite preservation of retinal structure. While
it is possible that the adhesions present in the mutant could
potentially attenuate the amount of light reaching the retina
because of this phenotype, a change in pupil dilation would
lead to decreased sensitivity and prolonged latency, which
were not observed. Whether any of these potential mecha-
nisms underlie the Myo6-mutant phenotype of reduced ERG
amplitudes in the face of normal retinal structure will require
further analysis.

We have presented a mouse model that can be used to
better understand the role of myosin 6 and how it may interact
with and compensate for other myosin isoforms. Despite the
addition of two small amino acid inserts (amino acids 9 and 13)
within the motor domain and a unique 53-amino acid insert
between the converter domain and light chain-binding helix,
which confers its minus-end directionality,>® myosin 6 main-
tains a high degree of homology to other myosin isoforms,
most notably in the head-motor domain.>'->% The phenotypes
of Myo6-null and Myo6"""8? mice are similar to that of Myo7a
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(shaker)-null mice, which is a known Usher IB gene. This
mouse mutant also presents with deafness and circling/head
tossing behaviors associated with vestibular defects>>-5¢ and
demonstrates reductions in ERG component amplitudes,
without photoreceptor degeneration (unless combined with
the loss of Cadherin-23, Cdh23).57-°! Most important, Myo7a is
also expressed in the RPE and at the actin-rich domain of the
inner segment.®2%3 It is interesting to speculate on the
potential functional redundancy that may exist between these
two myosin isoforms and determine how each acts indepen-
dently. The generation of mice lacking both Myo6 and Myo7a
would provide insight into this possibility.
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