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BEAM POSITION CORRECTION IN THE FERMILAB LINAC 

K. L. Junck, E. McCrory 
Fermi National Accelerator Laboratory*, 

Batavia, IL 605 10, USA 

Introduction 

Orbit correction has long been an essential feature of 
circular accelerators, storage rings, multipass linacs, and linear 
colliders [l-3]. In a drift tube linear accelerator (DTL) such as 
the H- Linac at Fermilab, beam position monitors (BPMs) and 
dipole corrector magnets can only be located in between 
accelerating tanks. Within a tank many drift tubes (from 20 to 
60) each house a quadrupole magnet to provide strong transverse 
focusing of the beam. With good alignment of the drift tubes 
and quadrupoles and a sufficiently large diameter for the drift 
tubes, beam position is not typically a major concern. In the 
Fermilab DTL, 95% of the beam occupies only 35% of the 
available physical aperture (4.4 cm). 

The recent upgrade of the Fermilab Linac [4] from a final 
energy of 200 MeV to 400 MeV has been achieved by replacing 
four 201.25 MHz drift tube linac tanks with seven 805 MHz 
side-coupled cavity modules (the high energy portion of the 
linac or HEL). In order to achieve this increase in energy 
within the existing enclosure, an accelerating gradient is required 
that is a factor of 3 larger than that found in the DTL. This in 
turn required that the physical aperture through which the beam 
must pass be significantly reduced. In addition, the lattice of 
the side-coupled structure provides significantly less transverse 
focusing than the DTL. Therefore in the early portion of the 
HEL the beam occupies over 95% of the available physical 
aperture (3.0 cm). In order to prevent beam loss and the 
creation of excess radiation, the ability to correct beam position 
throughout the HEL is of importance. 

An orbit smoothing algorithm [5,6] commonly used in the 
correction of closed orbits of circular machines has been 
implemented to achieve a global least-squares minimization of 
beam position errors. In order to accommodate several features 
of this accelerator a refinement in the algorithm has been made 
to increase its robustness and utilize correctors of varying 
strengths. Although a least-squares minimization technique is 
not the only possibility, it has been operationally shown to be 
an effective method of orbit correction. 

Theory 

The orbit smoothing algorithm is briefly summarized here. 
In general we have N BPMs and M dipole correcting magnets 
with N > M. The initial distorted path down the linac as 
measured by these N BPMs is given by the N vector &. The 
goal is to find an array of dimension M, denoted by &which 
consists of the angular kicks to be given by the dipole corrector 
magnets. The final particle position is then given by: 

Xf=X,+T+ (1) --= 
where the NxM matrix T is : 

T - axi 
ij aej (2) 

* Operated by Universities Research Association Inc. under contract 
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namely, the change in beam position at BPM i caused by 
changing the strength of the angular kick at dipole j. The 
quantity x2 is defined by: 

X0 +T.e . X, +T+ -= ) ( -7 ) 

=i4ixOi +jz,4Hj) 

To minimize x2, differentiate Equation #3: 
Fork= 1 ..M 

i=l i 

=254x ) o+T4j =0 -=: 

(3) 

(4) 
where the MxN matrix T is the transpose of matrix T. 
Solving for the desired array of dipole corrector strengths 8 
yields: 

e = -(iT)-‘g& == (5) 

Thus from measuring the matrix T and the beam position 
displacements q the proper deflections at the dipole corrector 
magnets Q can be found. 

Implementation 

The HEL consists of seven 805 MHz side-coupled cavity 
modules. Each module consists of four accelerating sections. 
In each of the drift regions between these four sections are 
located a quadrupole magnet and beam position monitor as well 
as various diagnostics. The BPMs are of a stripline design with 
4 plates that can give beam position readings in both the 
horizontal and vertical planes simultaneously. Several BPMs at 
the entrance and exit of the HEL are read in both planes, 
however the majority of BPMs are only monitored in one plane. 
Each BPM is mounted in the bore of a quadrupole. In order to 
maintain transverse focusing of the beam these quadrupoles 
produce a nominal gradient of 21.4 Tesla/m over a length of 8.5 
cm. At this gradient, a position error of 0.5 mm in the beam 
entering a quadrupole will produce an angular kick of 0.6 
milliradians in the 116 MeV beam entering the HEL and an 
angular kick of 0.3 milliradians at the final beam energy of 400 
MeV. 

In the first two drift regions of a module dipole corrector 
magnets are placed. The dipole corrector magnets consist of 
copper wire wound around a square iron magnet frame. These 



dipoles are powered by 2 separate power supplies and can 
independently steer the beam in both the horizontal and vertical 
planes. The length of the drift region between accelerating 
sections is proportional to the beam velocity. Due to space 
limitations, dipole magnets early in the HEL are more compact 
in design. However this is offset by the fact that the beam 
energy is still relatively low. In later regions of the HEL 
adequate space is available to accommodate larger dipole 
magnets but the beam energy is higher and the resultant amount 
of beam deflection is smaller. The maximum amount of beam 
deflection provided by the dipole magnets ranges from 3.6 
milliradians at the entrance of the HEL to 2.0 milliradians at the 
end of the HEL. For the region of the HEL in which the 
steering algorithm is implemented the total number of beam 
position monitors is 30 (16 horizontal and 14 vertical) and the 
number of dipole corrector magnets is 11. 

Due to the nature of the FODO lattice, a horizontal 
corrector placed near a vertically focusing quadrupole will have a 
much smaller effect than a horizontal corrector placed near a 
horizontally focusing quadrupole. Therefore of the two dipole 
corrector magnets located in each HEL module only one dipole 
will provide a significant steering capability in a given plane. 
With this variation in the effective strength of correctors and the 
desire to reduce beam position errors at all quadrupoles (and thus 
reduce radiation losses from beam scraping) the idea of a global 
optimization algorithm as described in the previous section is 
appealing. Solving Equation #5 could lead to a minimum least- 
squares condition that is not physically achievable due to limits 
on the maximum magnitude of dipole correction available. To 
make the algorithm as robust as possible, the solution must be 
confined to the physical range available. 

The minimum point of x2 in an M dimensional space is 
found by locating the point of zero derivative (Equation #4). 
However if constraints are placed upon the region of space under 
consideration then the endpoints must be examined for a 
minimum also. This can easily be accommodated in the 
algorithm by fixing one dipole to its maximum value and 
solving for the remaining M-l dipole values in the same 
manner. For example if the first dipole magnet is set to its 
maximum value: 
For k = 2 . . M: 

N M 
= 

c 2 Xoi + Tile? + CTije 
i=l j=2 

j ik 

” 

~0 

(6) 
where the vector X0* now contains the beam displacements as 
measured by the BPMs plus the position change incurred by 
fixing one dipole corrector. The matrix T now has a dimension 
of N x (M-l) and the (M-l) dimension vector Q can once again 
be found by Equation #5. 

If a global solution is found within the acceptable physical 
range of dipole corrector strengths then the problem is solved. 
However if the global solution is not acceptable, an iterative 

procedure is used setting each dipole corrector in turn to its 
maximum value and searching for the minimum x2 with the 
remaining M-l correctors. Informational output to the user is 
in the form of a root mean square (RMS) position error: 

1 n 

/ c x1: RMs= - 
N 

(7) 

where N is the number of BPM measurements. 

Results 

The goal of the steering algorithm is to steer the beam 
through the center of each quadrupole which is also where the 
BPMs are located. Since the alignment of the quadrupole center 
to the BPM center is typically good to only 0.3 mm, the desired 
positions of the beam have been determined experimentally. 
Beam traveling through the magnetic center of the quadrupole 
will not be steered by the quadrupole. Therefore upstream 
dipole correctors are used to position the beam at a quadrupole 
so that no change in the beam position is recorded by 
downstream BPMs when the gradient of the quadrupole is 
varied. This point is then defined to be the zero position of the 
BPM. 

The elements of the T matrix given in Equation #2 are 
experimentally determined by measuring the beam position at 
all BPMs while varying the current in a dipole corrector. To 
accommodate pulse to pulse variations in the linac, an average 
of five readings from each BPM are used for the position 
measurement and this average typically has a standard deviation 
of _+ 0.2 mm. This is the dominating source of uncertainty in 
measurements since the BPMs provide a 0.002 mm resolution 
over their + 3 mm linear operating region. A least squares 
linear fit is then made to the data points. The statistical 
uncertainty in the slope of the linear fit is typically 0.1 
mm/Amp which represents a 5-10% uncertainty in the value of 
many of the T matrix elements. The beam-dynamics program 
Trace 3-D [7] has also been used to predict the T matrix values 
by calculating the transfer matrix between a dipole and BPM. 
Agreement between the predicted and measured values is 
typically within flO% for the first two BPMs following a 
dipole, however as the distance between dipole and BPM 
increases the agreement between predicted and measured values 
becomes very poor, even exceeding 100%. The reason for this 
discrepancy is unknown, but may be the cumulative effect of 
survey uncertainties in the longitudinal position of lattice 
elements. 

A measurement of the T matrix elements has the added 
benefit of providing information on coupling between the 
horizontal and vertical planes. To within the statistical accuracy 
of the measurement, the response of a BPM to changes in a 
dipole in the opposite plane is found to be zero. 

The steering algorithm provides the best solution and is not 
an iterative procedure. However due to the measurement 
uncertainties of the T matrix elements if significant changes in 
dipole settings are called for, the procedure may require one 
iteration before converging. In the typical course of day-to-day 
tuning where changes are small no iteration is needed to achieve 
a final solution. 

Figure 1 shows the typical improvement in beam position 
at each BPM achieved by the algorithm. In the horizontal plane 
the RMS error is reduced from 0.41 mm to 0.06 mm while in 
the vertical plane the RMS error is reduced from 0.52 mm to 
0.15 mm. Figure 2 shows the improvement in RMS beam 



position over a wide range of operational conditions. Clearly 
the correction achievable in the vertical plane is poorer than that 
of the horizontal plane. From survey data it has been 
determined that a 3.1 mm vertical offset exists between the DTL 
and the HEL and that the RMS deviation in quadrupole position 
from the linac axis is 10% higher in the vertical plane than the 
horizontal plane. These misalignments make the task of orbit 
correction more difficult in the vertical plane. 

The addition of proper boundary examination to the 
algorithm has allowed correctors of marginal strength to be 
utilized in beam steering while maintaining stability in the 
algorithm’s solution. Having dipole correctors at their 
maximum value is clearly not a desirable operational situation; 
it is anticipated that further examination and correction of 
quadrupole misalignments will improve this situation. 
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Figure 1. Typical algorithm results. Initial (X) and Final (0) beam 
position offsets for (a) the horizontal and (b) the vertical plane. 
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Figure 2. Final beam position error versus Initial beam position 
error for (a) horizontal and (b) vertical plane for one iteration of the 
beam steering algorithm. 
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