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The amplitude of motion of quartz crystal resonators, u0, has been calculated on the basis of the
transmission line model by Mason �Piezoelectric Crystals and Their Applications to Ultrasonics
�Van Nostrand, Princeton, 1948��. It is predicted to be u0=4/ ��n�2 Qd26Uel,0, where n is the
overtone order, Q is the quality factor, d26 is the piezoelectric strain coefficient, and Uel,0 is the
amplitude of the driving voltage. This simple result is in good agreement with previous numerical
calculations, with an experimental value from the literature, and with our own experimental checks.
As a side result, an equation is provided which allows to estimate the active area of the crystal from
the product of the motional resistance R1 and the Q factor. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2359138�

INTRODUCTION

Quartz crystal resonators are well-known tools to deter-
mine the thicknesses of films deposited on their surface.1

Other types of acoustic coupling between the crystal and its
environment have also been investigated.2,3 Generally speak-
ing, the amplitude of motion is unessential in these investi-
gations as long as it is small enough to ensure linear stress-
strain relations. As far as the crystal itself is concerned, one
checks for nonlinearity by determining the “drive-level
dependence.”4 At high amplitudes of oscillation, the reso-
nance frequency slightly increases, the main reason being a
small anharmonicity in the elastic constants of the crystal. As
long as linear stress-strain relations hold �both inside the
crystal and in the adjacent sample�, the amplitude of motion
drops out of the equations predicting frequency shift. The
frequency shift only depends on the ratio between the stress
and the speed at the crystal surface, and the amplitude may
therefore be safely ignored.5 The theoretical literature fol-
lows this line of reasoning in the sense that the emphasis is
on the frequency of resonance, as opposed to the actual value
of the amplitude at resonance.6

However, the amplitude of motion is indeed of substan-
tial interest to researches that combine the quartz crystal mi-
crobalance �QCM� with atomic force microscopy �AFM� or
with experiments probing interfacial mechanical behavior.
The amplitude of motion is often comparable to the resolu-
tion of the AFM. If this is the case, the motion of the crystal
perturbs the imaging process. Also, nonlinear behavior is
ubiquitous in contact mechanics experiments �probing fric-
tion and adhesion�, due to the inherent nonlinear nature of
the interfacial friction.7 For example, the onset of sliding
usually occurs at some critical level of lateral force. The

determination of the lateral force exerted by the crystal onto
the tip of an AFM �or some other object touching it� requires
knowledge of the amplitude of motion.

The literature contains a few experimental and numerical
studies on the amplitude of oscillation. Martin and Hager
have argued that the amplitude should be of the order of
d26QUel,0, where d26=3.1 pm/V is the piezoelectric strain
coefficient, Q is the quality factor of the resonance, and Uel,0

is the amplitude of the electrical excitation.8 Herts et al. have
described a procedure to measure the oscillation amplitude
by optical means.9 This paper does not contain a comparison
to theory. Kanazawa has provided an algorithm simulating
the behavior of loaded quartz crystals10 based on Tiersten’s
theory of piezoelectric plates.6 The amplitude of motion is
contained in this calculation, but the calculation relies on a
numerical solution of a set of implicit equations. There is no
explicit algebraic expression for the amplitude. Kanazawa
finds a value of u0 / �QUel,0�=1.3 pm/V, where u0 is the am-
plitude. This calculation confirms the conjecture by Martin
and Hager. More specifically, Kanazawa states that u0

=0.41d26QUel,0, where the numerical prefactor is nontrivial.
Ballato has also reported on a numerical calculation of the
amplitude.11 Borovski et al. have experimentally determined
the amplitude of oscillation by imaging the surface of a run-
ning crystal with a scanning tunneling microscope �STM�.12

Certain patterns appeared elongated after the oscillation had
been turned on. The amplitude of oscillation could be in-
ferred from the image distortion. The authors report a value
of u0 / �QUel,0�=1.4 pm/V, which is in fair agreement with
Kanazawa’s calculation. Full quantitative agreement with
theory is not expected because the Tiersten theory assumes a
laterally infinite resonator, whereas for real crystals, the os-
cillation is confined to the center of the crystal by means of
energy trapping.13

We derive a simple, explicit equation predicting the am-
plitude of motion based on a transmission line model.14 In-
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serting values, we arrive at a value of u0 / �QUel,0�
= �1/n2�1.25 pm/V, where n is the overtone order. The n−2

scaling is numerically confirmed by Kanazawa’s
calculation.15 Interestingly, Bruschi et al. mentioned as side
remark in Ref. 16 that the amplitude of motion should scale
as n−2. No argument is provided as to why this should be the
case.

DERIVATION OF THE AMPLITUDE FROM
THE TRANSMISSION LINE MODEL

The following calculation is based on the electrome-
chanical analogy and on the Mason equivalent circuit17,6 as
depicted in Fig. 1. The electromechanical analogy maps volt-
ages onto forces and currents onto speeds. The following
relations hold:8

Iel = �u̇ ,

Uel =
1

�
F ,

�1�

Zel =
Uel

Iel
=

1

�2

F

u̇
=

1

�2Zm,

� =
Ae26

dq
,

where Iel is the electric current, u̇ is the lateral speed of
motion, Uel is the voltage, F is the lateral force, Zel is the
electric impedance, Zm is the mechanical impedance �the
force-speed ratio�, � links speed and current via the piezo-
effect �see below�, dq is the thickness of the crystal, A is the
effective area of the crystal �close to the area of the back
electrode�, and e26=9.65�10−2 C/m2 is the piezoelectric
stress coefficient. Figure 1�a� shows the Mason circuit with
open acoustic ports to the left and right. Zq=8.8 kg m−2 s−1 is
the acoustic impedance of AT-cut quartz, 2hq=dq is the thick-
ness of the crystal, kq is the wave number of shear sound, C0

is the “parallel” electrical capacitance across the electrodes,
and the �unessential� element Zk=�2 / �i�C0� accounts for pi-
ezoelectric stiffening. Zk is neglected in the following. Figure
1 indicates how the speed of lateral movement at the crystal
surfaces corresponds to a “current” through the respective
port. The piezoeffect is depicted as a transformer, where the
parameter �—speaking in electric terms—is the ratio of the
number of loops on both sides of the transformer. In Fig.
1�b�, both faces of the crystal have been short circuited. They
are assumed to be stress-free. In application, the crystal is
usually loaded on the front �for instance, with a film or a
liquid�. However, the load usually is small compared to the
other circuit elements. A small load is a prerequisite for
reliable operation of the QCM. For the purpose of this
calculation, we may neglect the load altogether. The load,
of course, indirectly affects the amplitude in case it decreases
the Q factor �see Eq. �9� below�. A decrease of amplitude
brought about by a load-induced decrease of the Q factor is
captured by the calculation below. Since there are no open
ports in the second circuit, the impedance Zm across the

left-hand side of the transformer can be calculated by appli-
cation of the Kirchhoff laws to the circuit elements as shown
in Fig. 1�c�. The current through the left-hand side of the
transformer is the ratio of the “voltage” ��Uel� and the im-
pedance Zm. This current is twice the speed at the crystal
surface u̇.

A resonance is given by the condition that the electrical
impedance of the crystal is zero. For real frequencies the
impedance can never vanish completely because of viscous
losses. For the first part of the calculation, we use complex
resonance frequencies, fr

*= fr+ i�, where fr is the usual reso-
nance frequency and � is the half bandwidth at half
maximum.5 The resonance condition then is Zel�fr

*�=0. On
resonance, the impedance of the acoustic branch Zm �consist-
ing of all circuit elements connected to the left-hand side of
the transformer, see Fig. 1�c�� is small. Since the element
�i�C0�−1 is much larger than Zm �on resonance� and in par-
allel to the acoustic branch, we may neglect this element as
well. Therefore, the resonance condition is equivalent to
Zm�fr

*�=0. Clearly, we need to calculate the impedance of
the acoustic branch Zm. Applying the Kirchhoff rules to the
elements shown in Fig. 1�c� we find18

FIG. 1. The Mason equivalent circuit. �a� Open mechanical ports to the right
and the left �corresponding to arbitrary stress-speed ratios at the front and
back surfaces�. �b� The Mason circuit with short-circuited �load-free� sur-
faces. �c� The mechanical impedance Zm of the device is the impedance
across the left side of the transformer as calculated by application of the
Kirchhoff rules to the circuit elements. The lateral speed at the front surface
is equal to one-half of the current across the left side of the transformer,
which, in turn, is equal to the ratio of the voltage �Uel and the impedance
Zm.
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Zm =
− iAZq

sin�2kqhq�
+

1

2
iAZq tan�kqhq� = −

1

2
iAZq cot�kqhq� ,

�2�

where the relation −2/sin�2x�+tan�x�=−cot�x� has been
used. On resonance Zq cot�kqhq� vanishes. Note that kq is a
complex number �kq=kq�− ikq�� due to internal friction. Re-
quiring that Zm vanishes on resonance, we find

kqhq =
2�fr

*

cq
hq =

n�

2
, n = 1,3,5, . . . , �3�

where cq is the complex speed of sound and n is the overtone
order. For the resonance frequency, we find

fr
* = fr + i�

= n
cq� + icq�

4hq
= n

�Gq� + iGq�

��q2dq

= fr�1 + i
Gq�

Gq�
= fr�1 + i

tan �

2
� , �4�

where Gq is the complex shear modulus of the crystal, �q is
its density, and tan �=Gq� /Gq� is the loss tangent. The rela-
tion cq= �Gq /�q�1/2 was used. Note that the approximation
�Gq�+ iGq��

1/2�Gq�
1/2�1+ i /2Gq� /Gq�� requires Gq��Gq�,

which is certainly fulfilled for quartz crystals. The quality
factor of the resonance, Q, is given by

Q =
fr

2�
=

1

tan �
. �5�

We now calculate the mechanical impedance Zm on reso-
nance for real frequencies of excitation. For real frequencies,
kq� is nonzero. Using Eq. �2� in conjunction with Zq=Zq�
+ iZq�=Zq��1+ ikq� /kq�� and also separating cot�kqhq� into its
real and imaginary parts, we find

Zm = −
1

2
iAZq cot�kqhq�

= −
1

2
iAZq��1 + i

kq�

kq�
�	−

sin�2kq�hq�
cos�2kq�hq� − cosh�2kq�hq�

− i
sinh�2kq�hq�

cos�2kq�hq� − cosh�2kq�hq�
 . �6�

On resonance, we have kq�hq=n� /2, sin�2kq�hq�=0, and
cos�2kq�hq�=−1. Assuming kq��kq� �small dissipative
losses�, we can Taylor expand the right-hand side of Eq. �6�,
yielding

Zm �
1

2
AZqkq�hq = AZq

n�

8
tan � , �7�

where the relations hq=n� / �2kq�� and kq� /kq�
= �Gq� /Gq��

1/2��tan �� /2 have been used.
The mechanical current through the left-hand side of the

transformer is given by �Uel /Zm. Given that the speed at the
crystal surface u̇ is equal to half of this current, we find

u̇0 =
1

2

�Uel,0

Zm
=

1

2

�Uel,0

AZq�n�/8�tan���
�

4

n�Zq
Q

e26

dq
Uel,0,

�8�

where Eqs. �1� and �5� were used for the parameters � and
tan �, respectively. Finally, we calculate the amplitude u0

from the speed as

u0 =
1

�
u̇0 =

1

2�nf f

4

n�Zq

e26

dq
QUel,0

=
4

�2

1

n2

e26

Zqcq
QUel,0 =

4

�2

1

n2d26QUel,0, �9�

where f f is the frequency of the fundamental. Equation �9�
made use of the relations dq=cq / �2f f�, cq= �Gq /�q�1/2, Zq

= �Gq�q�1/2, and e26=d26Gq=d26Zqcq. The parameter d26

=3.1�10−12 V/m is the piezoelectric strain coefficient. The
driving voltage Uel,0 is often quoted in terms of the electrical
power in units of decibel, where 0 dBm corresponds to a
power of 1 mW. The conversion is Uel,0�V�=0.317
�10�power�dBm�/20�. Inputting values, we arrive at

a

QUel
=

4

�2

1

n2d26 = 1.25
1

n2

pm

V
. �10�

Equation �10� is the central outcome of the calculation.
The result compares well with the experimental value of
1.4 pm/V, where the latter has been determined from the
length of the scratches induced by the STM tip.12 Kanazawa
finds a similar value by numerically solving the full Mason
circuit.10 Note that the derivation assumes laterally infinite
resonators; it does not account for energy trapping. Equation
�9� is therefore expected to miss a numerical factor of order
unity.

CALCULATION OF THE ACTIVE AREA FROM THE Q
FACTOR AND THE MOTIONAL RESISTANCE R1

Before continuing with the experimental verification, we
briefly mention a side result of the above calculation, which
is of considerable practical interest. According to Eqs. �1�
and �8�, the electrical current through the left-hand side of
the transformer in Fig. 1 is given as

Iel,0 = 2�u̇0 = 2
Ae26

dq

4

n�Zq
Q

e26

dq
Uel,0, �11�

where the factor of 2 enters because the current through the
transformer is twice the current at the surfaces. Solving this
equation for the effective area A we find

A =
Iel,0

Uel,0

n�Zqdq
2

8Qe26
2

=
Gmax

Q

n�Zq

8Gq
2d26

2

cq
2

4f f
2 =

Gmax

Q

n�

32Zqd26
2f f

2 , �12�

where the relations dq=cq / �2f f�, e26=Gqd26, and cq

= �Gq /�q�1/2=Gq /Zq were used. The peak conductance Gmax

= Iel,0 /Uel,0 is routinely obtained as one of the fit parameters
in impedance analysis. It is the inverse of the motional resis-
tance R1. Both the peak conductance and the Q factor are
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measures of the sharpness of the resonance. As Eq. �12�
shows, the ratio of the two provides the effective area A. The
larger the effective area, the more current is drawn on the
peak of the resonance. The effective area is a nontrivial
quantity because the back electrode confines the amplitude to
the center of the crystal via energy trapping and it is a priori
not clear what—exactly—the amplitude distribution is. The
effective area is a measure of the width of this distribution. It
can be monitored online in impedance analysis experiments.
It turns out that the effective area sometimes varies with the
experimental conditions.

EXPERIMENT

Experimental checks on the amplitude of oscillation
were performed along the lines of Ref. 12 by imaging a
structured surface with an AFM �Fig. 2� and a scanning elec-
tron microscope �SEM, Fig. 3�. The crystals investigated
�149257-1, Maxtek Inc., Santa Fe Springs, CA� had a funda-
mental frequency of 5 MHz, a diameter of 1 in., and a
titanium-gold coating on both sides. The back electrode had
the usual key-hole shape, providing energy trapping. As Figs.
2 and 3 show, the images get blurred when the oscillation is
turned on. In order to quantify the “blurring” of the images,
the edges were enhanced by means of Sobel filtering. Figure
4 summarizes the result of the quantitative analysis. These
experiments confirm Eq. �10� to the expected extent, given
that energy trapping and the lateral distribution of amplitudes
are not contained in the calculation.

CONCLUSIONS

Using the electromechanical analogy we have derived a
simple equation for the amplitude of motion of quartz crystal
thickness shear resonators. The equation is in agreement with
experimental results from our laboratory and from the litera-
ture, and also in agreement with a previous numerical calcu-
lation.
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APPENDIX: DERIVATION OF THE AMPLITUDE
OF MOTION WITHOUT RECURSION
TO EQUIVALENT CIRCUITS

For the sake of completeness, we rederive Eq. �9� from
an algebraic relation contained in the literature, not making
recursion to an equivalent circuit. We start out from Eq.
�36.18� in Ref. 18, which—using our variables—is

u0	Gqkqhq cos�kqhq� −
e26

2

	
sin�kqhq�
 = e26

1

2
Uel,0, �A1�

where 	 is the dielectric constant. The second term in brack-
ets deals with piezoelectric stiffening. It slightly shifts the
frequency of resonance. We are not concerned with the reso-
nance frequency itself, but with the amplitude at resonance
and therefore neglected the term proportional to sin�kqhq�.
This is equivalent to the neglect of the term Zk in Fig. 1.
Resonances occur when the term in square brackets becomes
small. We expand the cosine as cos��kq�− ikq��hq�
=cos�kq�hq�cosh�kq�hq�+ i sin�kq�hq�sinh�kq�hq�. At reso-
nance, the real part vanishes, which amounts to cos�kq�hq�
=0, kq�hq�n� /2, and sin�kq�hq�=1. Assuming small dissi-
pation �kq��kq��, we can approximate the imaginary part by
kq�hq, leading to

u0Gq
n�

2
kq�hq = e26

1

2
Uel,0. �A2�

Further using kq�hq= �Q /2�kq�hq= �Q /2�n� /2 and e26/Gq

=d26, we find

u0
n�

2

n�

4

1

Q
= d26

1

2
Uel,0, �A3�

which proves Eq. �9�.
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�1.77 V, right�. The image is blurred by the oscillation. The size of the
image is about 1 
m.
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FIG. 4. Comparison of the experimentally determined amplitudes to the
prediction of Eq. �10�.
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