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In order to coordinate the complex relationship between supplies distribution and path selection, some influential factors must be
taken into account such as the insufficient remaining capacity of the road and uncertainty of travel time during supplies distribution
and transportation. After the structure of emergency logistics network is analyzed, the travel time Bayes risk function of path and
the total loss Bayes risk function of the disaster area are proposed. With the emergency supplies total transportation unit loss as the
goal, an emergency logistics network optimizationmodel under crowded conditions is established by the Bayes decision theory and
solved by the improved ant colony algorithm. Then, a case of the model is validated to prove that the emergency logistics network
optimization model is effective in congested conditions.

1. Introduction

In the past ten years, nearly 9000 disasters have led to
a great loss of property and casualties occurring in the
world, on an average of about two new disasters every
day [1]. Frequent natural disasters and other unexpected
emergencies, especially like earthquakes, typhoons, floods, or
other natural disasters, are not only a test of the government’s
emergency response but also a challenge for emergency logis-
tics. However, during the process of planning, transporting,
and storing, humanitarian logistics, unlike normal logistics,
have their own unique characteristics [2] such as the large
amount of material transportation, the uncertainty of vehicle
routing, the urgency of the rescue time, and the randomness
of abnormal congestion events.

In order to make effective plans, humanitarian logistics
network designers need to collect information and make a
provisional decision based on the existing information [3].
And with the development of disasters, the decision will
be continuously adjusted to the current situation. Lodree
Jr. and Taskin [4] introduced a stochastic inventory control
problem and formulated it as an optimal stopping problem
using Bayesian updates based on hurricane predictions.

Tofighi et al. [5] addressed a two-echelon humanitarian
logistics network design problem and developed a novel
two-stage scenario based possibility-stochastic programming
(SBPSP) approach. However, there are many parameters that
are difficult to quantify, making the humanitarian logistics
optimization problem more complicated [6].

In the beginning of the disaster, as Özdamar andBalcik [7,
8] pointed out, traffic congestion will be heavier and it is easy
to make traffic halted. Because of damaged roads and traffic
congestion, common in disaster, section’s remaining capacity
decreases while the impedance increases. The sensitivity of
section travel time for the additional traffic becomes higher
and the uncertainty of the section travel time is increasing.
Thus, it is very hard to select the path of humanitarian
logistics and construct humanitarian logistics network. Here,
in order to overcome the problem, the Bayes theory is
introduced to formulate the travel time Bayes risk function
of section, which is used to rationally quantify the travel time
of section.

The uncertainty [5] exists not only in the path selection
but also in the relief demands [8]. Özdamar et al. [9, 10]
pointed out that, because of the dynamics and uncertainties
associated with various disaster characteristics, relief supplies
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are often available in limited quantities and precise relief
demands are hard to rationally quantify during disaster. And
there exists the game between affected areas [11, 12]. Each
disaster area wants to get sufficient relief supplies, so the
game will take place between affected areas. Furthermore,
the different O-D distribution will lead to different forms
of flow distribution in the transportation network [13]. So
how to deal with the complex relationship between supplies
distribution and path selection has become particularly
important. In order to solve this problem, in consideration
of the correlation between the total emergency loss and the
delay of the emergency supplies, the total loss Bayes risk
function of the disaster area is formulated. The total loss
Bayes risk function consists of losses caused by the number
of delayed relief supplies in the affected areas, which can
reflect the effectiveness of emergency logistics network, and
the losses of transportation time caused by real-time traffic
condition, which can reflect the effectiveness of the travel
time Bayes risk function.

Based on the total loss Bayes risk function, the emergency
supplies total transportation unit loss is defined.With it as the
goal, amultiperiod emergency logistics network optimization
model under crowded conditions is established by employing
multiperiod Bayesian decision theory, which can minimize
the total loss Bayes risk function and the travel timeBayes risk
function, and the dynamic user equilibrium (DUE) model
[14], which makes full use of the remaining capacity of the
road and minimizes transportation time [15]. Based on the
model, an improved ant colony algorithm is proposed. And
a case of the model is validated to prove that the emergency
logistics networ optimization model is effective in congested
conditions.

2. Literature Review

Optimization of emergency resources transportation net-
work is a typical multipath selection problem under the
influence of multifactors, such as the uncertainty of vehicle
routing and the randomness of abnormal congestion events.

From the perspective of emergency logistics network,
many scholars have made some researches on the opti-
mization of emergency logistics network and some research
achievements have been achieved. Aksen and Aras [16],
Boloori Arabani and Farahani [17], and Farahani et al. [18]
have studied the emergency facility location problem (FLP).
Cosgrave [19] presented the three properties of emergency
decision and used the Decision Participation Contingency
Theory to construct a simple model of emergency decision-
making process. Özdamar et al. [9] proposed a mixed
multistage integer programming model which is solved by
the Lagrangian Relaxation Technique. Pauwels et al. [20]
explained the “irreversible effect” of decisions, which pre-
sented in economics research results, and applied the results
to the withdrawal decision problems. Özdamar and Demir
[7] described a hierarchical cluster and route procedure
(HOGCR) for coordinating vehicle routing in large-scale
postdisaster distribution and evacuation activities. Yong and
Nan [21] had applied Bayesian analysis and optimization

theory to establish emergency logistics system model which
is solved by the genetic algorithms. Afshar and Haghani [22]
had proposed a modeling integrated supply chain logistics in
real-time large-scale disaster relief operations.

From the perspective of researchmethods, relevant schol-
ars have studied this problem based on Bayesian theory;
Zhan et al. [23] addressed multisupplier, multiaffected area,
multirelief, and multivehicle relief allocation problem in
disaster relief logistics. A multiobjective optimization model
based on disaster scenario information updates is proposed
in an attempt to coordinate efficiency and equity through
timely and appropriate decisions regarding issues such as
vehicle routing and relief allocation. Azoury [24] proposed
a Bayesian solution to dynamic inventory models under
unknown demand distribution conditions. Some relevant
scholars also have studied this problem based on the network
flow model [25], the game theory [26], scenario planning
[27], and cooperative strategy [28, 29]. Existing research
achievements have laid a certain foundation for this problem.

Nevertheless, optimization of emergency resources trans-
portation network is complicated system engineering; there
still are some facts that must be considered:

(1) Section, as the basic unit of emergency logistics
network, has special traffic attributes. During disaster,
the road capacity will decline and the travel time of
section is highly sensitive for the additional traffic and
varies with time under the congested or disordered
conditions.

(2) Theway ofmaterial distributionwill affect the choices
of vehicle routing. Because each disaster area wants
to get sufficient relief supplies, the game will take
place between affected areas. However, the different
O-D distribution will lead to different forms of flow
distribution in the transportation network [13]. So the
way of material distribution will affect the choices of
vehicle routing.

3. The Analysis of Emergency Logistics
Network Architecture

Being a special logistics network, emergency logistics net-
work is a complex network composed of a large number of
sides (sections or paths) and node (logistics node). From
complex network perspective, the emergency logistics trans-
portation network has the characteristics of multinetwork
andmultilevel.Here, in order to fully understand the complex
relationships between subnetworks of emergency logistics
network, the emergency logistics network will be divided
into three network layers: the actual road network, the
disaster distribution network, and the emergency materials
transportation network.

The actual road network is composed of many sections
and transportation hubs, which is the basis of all transporta-
tion activities. The intersections or hubs are considered as
nodes of the actual road network, while the sections between
nodes are the edges of the actual road network. The actual
road network is defined as 𝐴 − 𝐴, whose edges have some
characteristic value: the volume of traffic and length. So it
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Figure 1: The flow chart of structuring emergency materials transportation network.

can be seen as a weighted network. 𝐴 − 𝐴 network can be
expressed as

𝐺
𝐴
= (𝐴, 𝐸

𝑎−𝑎
) , (1)
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Assuming that the disaster information can be quantified
and trusted, the disaster distribution network is composed
of the damaged road and the demanded emergency supplies.
The disaster distribution network is defined as 𝐵 − 𝐵, whose
network nodes are the disaster areas.The edges of the network
are the road linking the disaster areas and emergency supplies
storage center. 𝐵 − 𝐵 network can be expressed as
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the section has been interrupted.

The emergency materials transportation network is a set
of emergencymaterials transportation path, which is decided
after taking the actual road network and the disaster distribu-
tion network into account. As shown in Figure 1, the planner
refers to the actual road network and collects information
about the damaged road and disaster distribution and then
make a provisional decision about the relief transportation
network. Since the disaster distribution will evolve over time
[3, 4], the relief transportation network should include a
variety of transportation solutions to adjust to the complex
and changeable situation.

4. Establishing Emergency Logistics Network
Optimization Model

4.1. Assumption. The Bayes Decision Method is the way of
using the prior information and the sample information of
the parameters to make decisions. Its prior information is
based on the historical disaster information data. So consider
the following assumptions.

Assumption 1. Thedisaster information can be quantified and
trusted and the distribution of the disaster obeys a certain
distribution. Thus, the prior distribution density functions
𝜋(𝐺
0

𝑏
) = (𝜃, 𝛾) of the damaged road distribution 𝜃 =

[𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑛
] and the emergency supplies demand distribu-

tion 𝛾 = {(𝜃
𝑖
, 𝜃
𝑗
) | 𝛽(𝜃

𝑖
, 𝜃
𝑗
) ∈ [0, 1]} can be gotten from
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historical data. The sample distribution 𝐺𝑡
𝑏
= (𝐵
𝑡
, 𝐸
𝑡

𝑏−𝑏
) can

be gotten from the relief information platform at 𝑡 periods.
When the conditional density function of the emergency
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and the sample information of the parameters, we can get the
emergency supplies distribution plan 𝛿𝑡. And the emergency
supplies distribution plan 𝛿
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Assumption 2. After having 𝛿𝑡(𝐵𝑡) and 𝛿𝑡(𝐸𝑡
𝑏−𝑏
), the dynamic

user equilibrium (DUE) model [16], which is known as
W-F model, is used to assign the traffic flow so that the
transportation time is shortest. And the solution for this
model had been given in reference [30]:
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(4)

Assumption 3. The travel time of each section conforms to
the US Federal Highway Administration impedance function
model.

The function model is

𝑡
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0
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𝛽

] , (5)

where 𝑡
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is the travel time of section 𝑎. 𝑡

0
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time of section 𝑎 when the traffic volume is zero. 𝑉 is the
traffic volume of section 𝑎. 𝛼, 𝛽 are parameters, and their
recommended values are 𝛼 = 0.15, 𝛽 = 4.

Because of damaged roads and traffic congestion, the
section’s travel time is increasing. Based on the DUE model,
travel time 𝑡
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) of section 𝑎 can be gotten under the
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Assumption 4. Based on previous experience in disaster
relief, early in the emergencies, the amount of total demand 𝑐

𝑛
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4.2. The Travel Time Bayes Risk Function of Path 𝑑. Because
secondary disasters lead to updated disaster distribution
network, the sample distribution is also updated. According
to the definition formula of Bayes risk function in reference
[31], the travel time Bayes risk function of path 𝑑 is
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4.3. The Total Loss Bayes Risk Function of the Disaster Area.
Here, the time threshold is being given. When the travel
timeismore than the time threshold, it will be considered that
the delay causing the loss will happen. So delayed time Δ𝑡𝑡

𝑛
is
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where 𝑟𝑡(𝜋∗
𝑡
, 𝛿
𝑡
) is the travel time of vehicles between 𝑚 and

𝑛. 𝑇𝑡
𝑚𝑛

is the time threshold of affected areas 𝑛.
As we all know, when supplies do not arrive in time, the

property or life will be lost. Here, the transportation loss,
which can reflect not only the delay time distribution but also
the arrival rate of delayed supplies, is defined as the product
of delayed time Δ𝑡𝑡

𝑛
and the number of delayed supplies 𝑐𝑡

𝑛
−

∑
𝑚
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. This is shown in Figure 2.

According to the definition formula of Bayes risk function
in reference [31], total transportation loss 𝑍 Bayes risk
function of the disaster area is as follows:
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Figure 2: Time distribution of arrived supplies.

4.4. The Establishment of the Model. This model objective
function is the minimal emergency supplies total trans-
portation unit loss which is related to both the arrival time
and the quantity of emergency supplies. According to Bayes
theory, the emergency logistics network optimization model
is established in congested conditions in 𝑡 stages.

The top model is
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∑
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The lower model is
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𝑥
𝑎
(𝑡)

0

𝜉
𝑎
𝑐
𝑎 (𝜔) 𝑑𝜔𝑑𝑡

s.t. 𝑥
𝑛

𝑎
(𝑡) = 𝑢

𝑛

𝑎
(𝑡) − 𝜉𝑎𝑥

𝑛

𝑎
(𝑡)

∀𝑎 ∈ 𝐴, ∀𝑛 ∈ 𝑁, ∀𝑡 ∈ [0, 𝑇]

∑

𝑎∈𝐴(𝑚)

𝑢
𝑛

𝑎
(𝑡) = 𝑞𝑚𝑛 (𝑡) + ∑

𝑎∈𝐵(𝑚)

𝜉
𝑎
𝑥
𝑛

𝑎
(𝑡)

∀𝑚 ∈ 𝑁, ∀𝑛 ∈ 𝑁, ∀𝑡 ∈ [0, 𝑇] , 𝑘 ̸= 𝑛

𝑥
𝑛

𝑎
(0) = 𝑥

𝑛,0

𝑎
∀𝑎 ∈ 𝐴, ∀𝑛 ∈ 𝑁

𝑢
𝑛

𝑎
(𝑡) ≥ 0 ∀𝑎 ∈ 𝐴, ∀𝑛 ∈ 𝑁, ∀𝑡 ∈ [0, 𝑇] ,

(13)

where 𝐸𝜋
∗

(𝐵
𝑡

) is the posterior probability density function
expectation of 𝐵𝑡 at 𝑡 stage. 𝐸𝐵

𝑡

𝜃
𝑡 is the expectation when

the observation value of sample distribution 𝜃𝑡 is 𝐵𝑡. 𝑐𝑡
𝑛
is

the total demanded amount of affected areas 𝑛. 𝑦𝑡
𝑚𝑛

is the
supplied amount from supply point 𝑚 to affected areas 𝑛.
𝑟
𝑡
(𝜋
∗

𝑡
, 𝛿
𝑡
) is the section a travel time of vehicles between

origin-destination𝑚 and 𝑛.𝑇𝑡
𝑚𝑛

is the time threshold value of
affected areas 𝑛. 𝐸𝜋

∗

(𝐸
𝑡

𝑏−𝑏
) is the posterior probability density

function expectation of𝐸𝑡
𝑏−𝑏

at 𝑡 stage.𝐸𝐸
𝑡

𝑏−𝑏

𝛾
𝑡

is the expectation
when the observation value of sample distribution 𝛾

𝑡 is
𝐸
𝑡

𝑏−𝑏
. 𝑡𝑎𝑑𝑡
𝑛𝑚

is section 𝑎 travel time of path 𝑑 between origin-
destination𝑚 and 𝑛 at 𝑡 stage. 𝑡𝑡

𝑎
is the actual time of section

𝑎 at 𝑡 stage. 𝑡
𝑖𝑗
(𝛿
𝑡
) is the travel time under the emergency

supplies distribution plan. 𝑡
𝑖𝑗
(𝐸
𝑡

𝑏−𝑏
∗ 𝐸
𝑎−𝑎
) is the additional

time under road capacity changing.

5. The Algorithm Design

Since the optimization problem is NP-hard problems and
cannot be converted by polynomial or linear programming to
solve, the ant colony algorithm is used to solve this problem
in this paper. There are two main phases that the ant colony
algorithm is comprised of: the ant’s solution construction and
the pheromone update [32]. To solve the problems of the
model, the ant colony algorithm calculation is modified to
adapt to it.

(1) The ant’s solution construction: before the path selec-
tion, the prior distribution of both the section’s remaining
volume rate and the supplies demanded quantity of each dis-
aster area is evaluated. Here, each affected area is considered
as attractor with different attract strength. According to the
principle of greedy algorithm, each ant pursuits the highest
unit value of food, which means that attraction strength 𝑄

𝑛

is directly proportional to stock losses 𝑝𝑡
𝑚𝑛

in affected area 𝑛
and inversely proportionate to transport distance 𝐿

𝑚𝑛
from

affected area to emergency materials storage center. Initial
pheromone 𝜏

𝑎
(0) of sections of 𝑎 is as follows:

𝜏
𝑎 (0) =

𝑡
𝑎 (0)

∑
𝑎
𝑡
𝑎 (0)

+
𝑝
𝑡

𝑚𝑛
(0) ⋅ ∑

𝑛
𝐿
𝑚𝑛 (0)

∑
𝑛
𝑝𝑡
𝑚𝑛
(0) ⋅ 𝐿𝑚𝑛 (0)

𝛼
𝑎𝑑

𝑚𝑛
. (14)

The probability of selection 𝑝𝑘
𝑖𝑗
(𝑡) from node 𝑖 to node 𝑗

can be defined as follows:

𝑝
𝑘

𝑖𝑗
(𝑡) =

𝜏
𝛼

𝑖𝑗
(𝑡) × 𝜂

𝛽

𝑖𝑗
(𝑡)

∑
𝑗∈tabu

𝑘

𝜏
𝛼

𝑖𝑗
(𝑡) × 𝜂

𝛽

𝑖𝑗
(𝑡)

, (15)

where 𝜏
𝑖𝑗
(𝑡) is the pheromone strength in edge (𝑖, 𝑗), 𝜂

𝑖𝑗
(𝑡)

is a heuristic value that is available a priori, 𝛼, 𝛽 are two
parameters which determine the relative influence of the
pheromone trail and the heuristic information, and tabu

𝑘
is

the tabu table.
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Table 1: Each section travel time under normal conditions.

Section A B C D E F G H I J K L M N O P Q
𝑡
0
/(h) 2.1 2.3 1.4 3.4 2.4 3.4 2.5 2.2 2.7 4.1 2.8 1.3 2.4 3.6 2.3 1.5 3.4

Table 2: The observed value of the section’s remaining volume rate.

Stage A B C D E F G H I J K L M N O P Q
1 0.4 0.3 0.4 0.2 0.3 0.2 0.2 0.1 0.2 0.3 0.4 0.4 0.4 0.5 0.2 0.3 0.3
2 0.5 0.4 0.3 0.4 0.3 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.5 0.3 0.2 0.4 0.3

Table 3: The observed value of the demand for materials in the affected area.

Stages 1 2 3 4 5 6 7 8
1/pcu 56 86 89 56 78 57 56 79
2/pcu 47 57 67 74 46 35 34 56

(2) The pheromone update: in order to simulate the phe-
romone evaporation phenomenon, the pheromone update is
as follows:

𝜏
𝑖𝑗 (𝑡) = (1 − 𝜌) × 𝜏𝑖𝑗 (𝑡) + 𝜌 ×∑

𝑘

Δ𝜏
𝑘

𝑖𝑗
(𝑡) ,

𝜌 ∈ (0, 1) ,

(16)

where 𝜌 is the volatile factor of pheromone and Δ𝜏𝑘
𝑖𝑗
is the

remaining pheromone of 𝑘th ant. Because the Bayes decision
theory is introduced, the pheromone density ratio of each
road can be adjusted according to the posterior information:

Δ𝜏
𝑘

𝑖𝑗
= 𝐶 ⋅ 𝑃(

𝐴
𝑗

𝐵
) = 𝐶 ⋅

𝑃 (𝐴
𝑗
) 𝑃 (𝐵/𝐴

𝑗
)

∑
𝑛

𝑖=1
𝑃 (𝐴
𝑖
) 𝑃 (𝐵/𝐴

𝑖
)
, (17)

where 𝐶 is the pheromone’s density value on each path at
initialization phase. 𝑃(𝐴

𝑖
) is the ratio of 𝑖th successor route

pheromones and the total pheromone on all successor route.
And 𝑃(𝐵/𝐴

𝑖
) ∈ [0.5, 1]. Supposing there are 𝑛 successor

routes, when 𝑗th successor route is selected, 𝑃(𝐵/𝐴
𝑖
) can be

gotten as follows:

𝑃(
𝐵

𝐴
𝑖

) =
{

{

{

1 −

𝐿
𝑗

2max 𝐿
𝑖 = 𝑗

0.5 𝑖 ̸= 𝑗,

(18)

where max 𝐿 is the maximum length of routes.

6. Case Study

In this section, we provide details of the case study for the
emergency logistics network optimizationmodel to optimize
the transportation network of emergency materials aiming at
better response to the relief work for the earthquake. Here,
take the Wenchuan Earthquake as a case. The Wenchuan
Earthquake affected 47,789 villages and 4,656 towns in
Sichuan, Gansu, Shanxi, and Chongqing provinces [33]. In
order to simplify the calculation and prove themodel, we only
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Figure 3: The emergency materials storage center and the affected
area network distribution map.

consider a storage center located in Chengdu, which allocates
supplies to the affected areas. The simplified structure dia-
gram is as shown in Figure 3.

The supplies quantity of emergency supplies storage
center is 973. Under normal condition, each section travel
time 𝑡

0
can be found in Table 1. The observed value of the

demanded supplies in the affected areas and the section’s
remaining volume rate can be gotten from the national
disaster reduction center as in Tables 2 and 3. Time threshold
of affected area 𝑛 can be found in Table 4.

(1)The Prior Distribution.We can get the prior information of
the disaster distribution network and the affected population
fromChina’s national disaster reduction center database [33].
The prior distribution of the demanded materials in the
affected area is normal distribution 𝜃𝑡 ∼ 𝑁(53, 246). It is
a pity that the prior distribution of damaged roads cannot
be gotten. According to disaster relief experience, we assume
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Table 4: Time threshold of affected area n.

The affected area 1 2 3 4 5 6 7 8
Time threshold 𝑇

𝑛
/(h) 1.92 2.57 1.02 5.24 5.34 3.22 4.62 5.21

Table 5: Comparison of the average transportation time before and after optimization.

1 2 3 4 5 6 7 8
After optimization 2.39 2.74 1.53 6.21 6.36 3.97 5.32 5.84
Before optimization 2.42 3.21 1.89 7.23 7.59 4.18 6.42 6.73
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Figure 4: The total transportation unit loss.

that the section remaining volume rate’s prior distribution is
normal distribution 𝛽𝑡

𝑖𝑗
∼ 𝑁(0.24, 0.16).

(2) The Simulation Results and Analysis. The simulation
program is written in C++ program. Before and after the
Bayes theory is applied, the simulation convergence figures of
emergency supplies total transportation unit loss are shown
in Figure 3 and the average transport time of eight affected
areas is shown in Figure 4 and Table 5.

Comparison of the average transportation time before
and after optimization is shown in Table 5.

By comparing the results before and after the Bayes theory
is applied, we can find from Figures 3 and 4 and Table 5
that total transportation unit loss and average transport
time have decreased, which has proved that it is effective
in introducing the Bayes theory to optimize the emergency
supplies transportation in this model. From Figure 3, it is
obvious that the convergence speed of the ant algorithm
is improved after introducing the Bayes theory which is
consistent with the result of the paper [34].

7. Conclusions

At the beginning of the disaster, especially large-scale disas-
ters such as earthquakes, the demanded emergency supplies
often increases dramatically. But there often exists shortage
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After the Bayes theory is applied

Th
e a

ve
ra

ge
 tr

an
sp

or
t t

im
e

87654321

The affected area

8

7

6

5

4

3

2

1

0

Figure 5: The average transportation time of eight affected areas.

or delay of supplies. The road transport network is also
extremely crowded because of the damaged roads and the
disorderly traffic. In this paper, we take emergency logistics
network as the research object and study it deeply; the
research conclusions are the following.

(1) Analysis of the structure of emergency logistics
network: in this paper, the emergency logistics network
is divided into three network layers: the actual road net-
work, the disaster distribution network, and the emergency
materials transportation network. That fully demonstrates
the inherent relationship between every emergency logistics
network subnet.

(2) Based on Bayesian decision, a double emergency
logistics network optimization model is established in the
paper. In the top model, some factors, the uncertainty of
the travel time and time threshold, are considered. In the
lower model, the dynamic user equilibrium (DUE) model
is used to assign the traffic flow so that the transportation
time is shortest. In this process, both the travel time Bayes
risk function of section and the total loss Bayes risk function
of the disaster area are constructed, which effectively solves
the uncertain problem of material distribution and path
selection.

(3) It is effective in applying Bayesian decision theory to
optimize emergency logistics. Comparing the results before
and after the Bayes theory is applied, we can find that the
average transport time of eight affected areas shows different
degrees of decline (Figure 5). It means that it is effective



8 Mathematical Problems in Engineering

in introducing the Bayes theory to optimize the emergency
supplies transportation in this model. Comparing emergency
supplies total transportation unit loss before and after the
Bayes theory is applied proves that introducing the Bayes
theory is helpful in optimizing the ant algorithm and the
emergency supplies transportation.
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