
YASGUI: Not Just Another SPARQL Client?

Laurens Rietveld1 and Rinke Hoekstra1,2

1 Department of Computer Science, VU University Amsterdam, The Netherlands
{laurens.rietveld,rinke.hoekstra}@vu.nl

2 Leibniz Center for Law, University of Amsterdam, The Netherlands
hoekstra@uva.nl

Abstract. This paper introduces YASGUI, a user-friendly SPARQL
client. We compare YASGUI with other SPARQL clients, and show the
added value and ease of integrating Web APIs, services, and new tech-
nologies such as HTML5. Finally, we discuss some of the challenges we
encountered in using these technologies for a building robust and feature
rich web application.

Keywords: SPARQL, endpoints, API, Web service, Semantic Web

1 Introduction

Developers that use traditional Web technologies are pampered with full-featured
development tools such as in-browser debugging, integrated development en-
vironments, increasingly simple and lightweight services (RESTful APIs), and
broad take up in industry. Semantic Web technologies have some catching up
to do. The recent start of the W3C Linked Data Platform working group3 is a
good step in bringing triple-store querying closer to traditional RESTful APIs.
However, the ingenuous developer wanting to have a first taste of Linked Data is
scared away by austere clients for a rich but complex query language: SPARQL.

Indeed, several good RDF programming libraries exist, but uptake of these
still relies on a good understanding of SPARQL and the underlying Semantic
Web paradigm which can only be attained with simple, lightweight and user
friendly clients for interacting with Linked Data. This observation holds for
Semantic Web savvy developers as well: trying and testing SPARQL queries is
often a cumbersome and painful experience: all who know the RDF namespace by
heart raise their hands now! A related question that is hard to answer for many:
“Where is that Linked Data?”. Most of us will know the DBPedia endpoint
URL, but can perhaps mention only a handful of other endpoints in total.

This paper introduces yet another SPARQL GUI (YASGUI4), a SPARQL
client that shows the added value of combining Web 2.0 and Semantic Web
technologies [1,2] for providing a more gentle Linked Data interaction environ-
ment. We find that most existing SPARQL clients do not offer functionality that

? This work was supported by the Dutch national program COMMIT
3 See http://www.w3.org/2012/ldp/wiki/Main_Page
4 See http://aers.data2semantics.org/yasgui/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357562045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.w3.org/2012/ldp/wiki/Main_Page
http://aers.data2semantics.org/yasgui/


goes far beyond a simple HTML form. These implementations convey a rather
narrow interpretation of what a SPARQL client interface should do: POST (or
GET) a SPARQL query string to an endpoint URL. As a result, they currently
offer only a selection of the features that we, as a community, could offer to both
ourselves as well as new users of Semantic Web technology.

YASGUI is a web-based SPARQL client that functions a a wrapper for both
remote and local endpoints. It integrates linked data services and web APIs to
offer features such as autocompletion and endpoint lookup. It supports query
retention – query texts persist across sessions – and query permalinks, as well
as syntax checking and highlighting. YASGUI is easy to deploy locally, and it
is robust. Because of its dependency on third party services, we have paid extra
attention to graceful degradation when these services are inaccessible or produce
unintelligible results

The following sections give a brief overview of the featureset of the current
state of the art features of SPARQL clients, followed by a more detailed descrip-
tion of YASGUI.

2 SPARQL Client Features

Table 1 lists eleven currently existing SPARQL clients, ranging from very basic to
elaborate. The features of these clients fall into several categories, syntactic fea-
tures (autocompletion, syntax highlighting and checking), applicability features
(endpoint or platform dependent or independent) and usability (query retention,
results rendering and download, quick evaluation). This section describes these
features in more detail, and discusses whether and how various SPARQL clients
implement these features.

2.1 Syntactic Features

Most modern applications containing textual input support autocompletion. Ex-
amples are the Google website which shows an autocompletion list for your search
query, or your browser which (based on forms you previously filled in) shows au-
tocomplete lists for text inputs. One advantage of autocompletion is that it saves
you from writing the complete text. Another advantages is the increase in trans-
parency, as the autocompletion suggestions may contain information the user
was not aware of. The latter is especially interesting for SPARQL, where users
might not always know the exact prefix he/she would like to use, or where the
user might not know all available properties in a triplestore. The only SPARQL
interface that currently makes use of this functionality is the FLINT SPARQL
Editor5, which uses autocompletion to suggest classes and properties.

Syntax highlighting is a common functionality for programming language edi-
tors. It allows user to distinguish between different properties, variables, strings,
etc. The same advantage holds for query languages such as SPARQL, where
you would like to distinguish between literals, URIs, query variables, function
calls, etc. The only SPARQL editor currently supporting syntax highlighting is

5 See http://openuplabs.tso.co.uk/demos/sparqleditor

http://openuplabs.tso.co.uk/demos/sparqleditor


the FLINT SPARQL Editor, which uses the CodeMirror JavaScript library6 to
bring color to SPARQL queries.

Most Integrated Development Environments (IDEs) provide feedback when
code contains syntax errors (i.e. syntax checking). Feedback is immediate, which
means the user can spot syntax errors in the code without having to execute
it. Again, such functionality is useful for SPARQL editing as well. Immediate
feedback on a SPARQL syntax means the user can spot invalid queries with-
out having to execute it on a SPARQL endpoint. The FLINT SPARQL editor
supports syntax checking by means a JavaScript SPARQL grammar and parser.

2.2 Applicability Features

There are only few clients who allows access to multiple endpoints. Most triple-
stores provide a client interface, linking to that specific endpoint. They are end-
point dependent. Examples are 4Store [6], OpenLink Virtuoso [7], OpenRDF
Sesame Workbench [4] and SPARQLer7. More generic clients are the Sesame2
Windows Client [4], Glint8, Twinkle9 and SparqlGUI10. Other applications fall
somewhere in between. The FLINT SPARQL Editor only connects to endpoints
which support cross-domain JavaScript (i.e. CORS enabled). This is a problem
because not all endpoints are CORS enabled, such as FactForge, CKAN, Mon-
deca or data.gov. Other editors support only XML or JSON as query results,
such as SNORQL11 (part of D2RQ [3]), which only support query results in
SPARQL-JSON format.

Platform (In)dependence increases the accessibility of a SPARQL client. The
user can access the client on any operating system. Web interfaces are a good
example: a site should work on any major browser (Internet Explorer/Fire-
fox/Chrome), and at least one of these browsers is available for any type of com-
mon operating system. Examples are Virtuoso, 4Store and the Flint SPARQL
Editor. Another example of multi-platform support is the use of a .jar file (e.g.
Twinkle), as any major operating system supports Java and executing Java
archives. Examples of single-platform applications are Sesame2 Windows Client
and SparqlGUI: they require Windows.

2.3 Usability Features

Query retention allows for easy re-use of important or often used queries. This
allows the user to close the application, and resume working on the query later.
An example is the ‘Query Book’ functionality of the Sesame Windows Client.

Quick evaluation or testing of a graph generated by the user should not re-
quire the hassle of installing a local triplestore. Ideally, this functionality would

6 See http://codemirror.net/
7 See http://www.sparql.org/
8 See https://github.com/MikeJ1971/Glint
9 See http://www.ldodds.com/projects/twinkle/

10 See http://www.dotnetrdf.org/content.asp?pageID=SparqlGUI
11 See https://gitSNORQLhub.com/kurtjx/SNORQL

http://codemirror.net/
http://www.sparql.org/
https://github.com/MikeJ1971/Glint
http://www.ldodds.com/projects/twinkle/
http://www.dotnetrdf.org/content.asp?pageID=SparqlGUI
https://gitSNORQLhub.com/kurtjx/SNORQL


be embedded in the SPARQL client application itself. Most applications re-
quiring a local installation on the users computer support this feature, such as
Twinkle. The Sesame Windows Client supports file uploads as well, though it
requires a local triplestore which implements the OpenRDF SAIL API.

Query results (such as JSON or XML) for SELECT queries are often rela-
tively difficult to read and interpret, especially for a novice. A rendering method
which is easy to interpret and understand is a table. All applications except
4Store support the rendering of query results into a table. Because of the use of
persistent URIs, we would expect navigatable results for resources, e.g. in the
form of drawing the URIs as hyperlinks. This feature is not supported by some
applications, such as Virtuoso, Twinkle or SparqlGUI. SNORQL is an applica-
tion with an elaborate way of visualizing the query results. Besides allowing the
user to navigate to the page of the URI, the user can click on a link to browse
the current endpoint for resources relevant to that URI.

Downloading the results as a file allows for better re-use of these results. A
user might want to avoid running the same heavy query more than once, and
use the results stored as a file instead. Additionally, the results of CONSTRUCT
queries are often used in other applications or triplestores. Saving the user from
needing to copy & paste query results clearly improves user experience as well.
The only application that does not support the downloading of results, is the
FLINT SPARQL editor.

Most of the clients described above are restricted to one simple task: accessing
information behind a SPARQL endpoint. However, equally important to this
task is assisting the user in doing so. This is something where all but one appli-
cations fail. Regrettably, the one interface with a user-friendly interface (FLINT
SPARQL editor) falls short in the important feature of accessing all endpoints.
We conclude that currently no single endpoint independent, accessible, user-
friendly SPARQL client exists.

3 The YASGUI SPARQL Client

In this rest of this section we discuss the architecture, features and design con-
siderations of YASGUI (Figure 1) and compare them to other clients.

3.1 Architecture

YASGUI is built using SmartGWT toolkit12, jQuery13, and uses new HTML5
functionalities such as local storage and client-side generation of files. Some of
the newest HTML5 functionalities are not supported by outdated browsers and
Internet Explorer. This degradation is handled gracefully: access via an incom-
patible browser results in a notification to the user and disabled features (such
as downloading of files, or client-side caching of large objects). The decision to
use HTML5 is motivated by the increasing support of the standard by major

12 See http://www.smartclient.com/product/smartgwt.jsp
13 See http://jquery.com/

http://www.smartclient.com/product/smartgwt.jsp
http://jquery.com/


Table 1: SPARQL client feature matrix

Feature 4
S
to

re

O
p

e
n
L

in
k

V
ir

tu
o
so

S
N

O
R

Q
L

S
P

A
R

Q
L

e
r

S
e
sa

m
e

W
o
rk

b
e
n
ch

S
e
sa

m
e
2

W
in

d
o
w

s
C

li
e
n
t

G
li
n
t

T
w

in
k
le

S
p
a
rq

lG
U

I

F
li
n
t

S
P

A
R

Q
L

E
d
it

o
r

Y
A

S
G

U
I

Autocompletion - - - - - - - - - + a + b

Syntax Highlighting - - - - - - - - - + +

Syntax Checking - - - - - - - - - + +

Multiple Endpoints - - - - - + + + + c +/- c +

Query retention - - - - - + + - + - +

File upload - - - - + +/- d - + + - - e

Platform independent + + + + + - - + - + +

Results rendering - +/- f + +/- f + +/- f +/- f +/- f +/- f + +

Results download + + + + + + + + + - +

a
Autocompletion of properties and classes available in the triple store

b
Autocompletion of prefixes/namespaces, support for properties and classes is a planned feature.

c
Can deal with a limited number of endpoints, e.g. only CORS enabled ones.

d
File upload requires a local triple store that implements the OpenRDF SAIL API, e.g. OpenRDF
Sesame or OpenLink Virtuoso.

e
File upload is a planned feature, using the rdfstore-js client side triple store.

f
The rendering does not use hyperlinks for URI resources.

browsers. The server-side part of YASGUI is responsible for some of the commu-
nication with external services and endpoints. Communication with SPARQL
endpoints is done using the Jena library [5]. External services used by YAS-
GUI are CKAN14, Mondeca15 and Prefix.cc16 (see section 3.2), and bitly17 (see
section 3.4).

3.2 Syntactic Features

Two existing libraries provide support for syntax highlighting and checking in
YASGUI: The CodeMirror JavaScript library, which is an extensive JavaScript
library for highlighting code, and a JavaScript SPARQL grammar of the FLINT
SPARQL Editor. Given this grammar, CodeMirror applies the highlighting to
the SPARQL query. Additionally, CodeMirror provides a well documented API
to parse and dissect the SPARQL query, useful for other YASGUI features such
as prefix autocompletion. Both libraries are well documented, well maintained,
extendible and easy to use. The existence of both libraries illustrate the avail-

14 See http://semantic.ckan.net/sparql
15 See http://labs.mondeca.com/endpoint/ends
16 See http://prefix.cc/
17 See http://bitly.com

http://semantic.ckan.net/sparql
http://labs.mondeca.com/endpoint/ends
http://prefix.cc/
http://bitly.com


Fig. 1: Screenshot of the YASGUI interface

ability of elaborate open source project, and the small amount of effort it takes
to integrated them into an application.

YASGUI uses the RESTful API of Prefix.cc to perform autocompletion of
namespace prefixes: full namespace URIs are completed as you type. We further-
more rely on the CKAN SPARQL endpoint for endpoint URL autocompletion
and search. This autocompletion feature functions by matching the partially
typed endpoint, with the list of endpoints (and their descriptions). The CKAN
endpoint provides access to the CKAN datahub.io18 catalogue of datasets. Users
can either use a simple autocompletion combobox, or browse through a list of
endpoints in a table. Our fallback option for CKAN is the endpoint provided
by Mondeca. Mondeca hosts a project where the availability (up-time) of these
endpoints is published. Both endpoints have proven to be difficult to use and
access for our purposes. The CKAN endpoint is rather unreliable in uptime, and
the Mondeca endpoint often return syntactically invalid XML. In the implemen-
tation of YASGUI we try to handle both issues as gracefully as possible. The list
of endpoints provided by CKAN or Mondeca is cached on the YASGUI server.
If YASGUI fails to retrieve the list in real time from either of the endpoints, we
fall back to the cached results.

18 See http://datahub.io

http://datahub.io


Another issue with CKAN (and to a lesser extent Mondeca) is the reward
model for adding and maintaining the catalogue: there is little incentive for own-
ers of a dataset to add it to CKAN, and even less incentive keep the information
up to date (e.g. when the endpoint is down or moved). As a result, CKAN is
cluttered with outdated information, and some endpoints are missing. This is
partly compensated by Mondeca, which allows filtering by endpoints which are
up, though incorrect or missing information still persists. The reward model em-
ployed by Prefix.cc is the opposite: the content is crowd-sourced (anybody can
add prefixes), and voting is used to to deal with conflicting prefix definitions.
Users of prefix.cc have an incentive to keep the information up to date and as
correct as possible. As a result, the information retrieved from prefix.cc is more
reliable and usable than information from CKAN and Mondeca.

3.3 Applicability Features

As mentioned in section 2, client-side web applications such as the FLINT
SPARQL Editor are endpoint independent, but only work on CORS-enabled
endpoints. To overcome this limitation, YASGUI includes a server-side proxy
for accessing endpoints that do not support CORS. For endpoints which do
support cross domain JavaScript, YASGUI executes the queries solely from the
clients side via JavaScript. The only scenario where YASGUI fails to connect
to an endpoint is where a locally installed endpoint is unreachable from the
web, operating on a different port than YASGUI, and CORS-disabled. Here, the
YASGUI proxy is not able to access the client. Because of the CORS restriction,
YASGUI is not able to access the endpoint via JavaScript as well, as it is operat-
ing on a different port. We consider this issue to be minor: because the endpoint
is installed locally, the user will have access to change its CORS settings, or even
run the endpoint via a different port.

Other than dealing with the accessibility issues of CORS disabled sites, end-
point independent clients should support configurable requests. For instance,
some endpoints may only support the XML results format, or allow the use of
additional request parameters, such as the ‘soft-limit’ of 4Store. Such endpoints
can only be used to their full potential if users are able to specify these addi-
tional arguments manually. Therefore, YASGUI supports the specification of an
arbitrary number of request parameters for every endpoint.

Finally, we had to add quite some code to deal with possible errors returned
by endpoints. The SPARQL protocol specifies what the endpoint request and
response should look like, but leaves error handling unspecified: what HTTP
error code should be sent by an endpoint, and how should error messages be
communicated. As a result, triple stores come with various ways of conveying
errors. Some endpoints return the error as part of an HTML page (with the
regular 200 HTTP code), or as a SPARQL query result. Others only return an
HTTP error code, where only some include a reason phrase together with the
error code. The latter is a best practice for RESTful services. The absence of
a standard, and the failure to adhere to best practices, makes a generic robust
error handling solution messy and difficult to implement. Developing such a



solution requires coding and testing by trial and error, and test queries on as
many different endpoints as possible.

3.4 Usability Features

As Table 1 shows, most SPARQL clients support both rendering and down-
loading of query results to some extent. YASGUI does both as well. Users can
render results either as a lightweight HTML table (for large numbers results), an
elaborate sortable/groupable table, or show the raw query results with syntax
highlighting. Tables can be downloaded as CSV, where raw query results are
available for download ‘as is’.

YASGUI stores the application state, making this application state persistent
between browser/user sessions: a returning user will see the screen as it was
when she last closed the YASGUI browser page. We elaborate on this feature
by providing query permalink functionality. For a given query and endpoint
combination, YASGUI creates a link. Opening the link in a browser will open
YASGUI with the specified query, endpoint and request arguments filled in. We
believe this is a welcome feature for people working together with a need to
exchange queries. Other than regular query permalinks, YASGUI supports the
generation of shortlinks as well using the Bitly URL shortener service. Using an
external service such as bitly poses some limitations: their is a fair use policy,
limiting the scalability of this solution. Additionally, there is a danger of link-rot
as well. An alternative to an external URL shortener service is implementation of
such a service as part of YASGUI. This deals with both the issues of scalability
as well as link-rot. We opted for the external bitly service, as the danger of link-
rot is low with a popular service such as bitly. Whenever scalability becomes
an issue, the alternative of implementing our own service would still be a viable
option.

4 Discussion

In the preceding sections we described YASGUI and compared it to other clients.
YASGUI shows how straightforward it is combining Web APIs, libraries and
new Web technologies. Compared to other clients, YASGUI is the first client
that really leverages the tools and services we as a community have developed
for ourselves.

In the process, we encountered 4 challenges in using WEB APIs and Linked
Data together. First, maintenance of Web 2.0 content is a challenge. External
services such as CKAN contain outdated, incorrect or incomplete information
(section 3.2). The main challenge here is how to manage this information, e.g.
using a reward model where users have an incentive to update the information, or
active curation by the service manager. Secondly, standard adherence (or lack
of standards) is a challenge (section 3.3), such as the different error handling
approaches implemented by endpoints. Additionally, graceful degradation (sec-
tion 3.2) is an issue. The before-mentioned challenges, as well as issues such as
external services breaking down, should not break the application. In the worst
case, it should only break application features. Finally, it is worth considering



whether or not to use online web services. Use of online web services such as
url-shorteners or endpoint catalogues create external dependencies. For some
services such as CKAN, graceful degradation is possible. However, for other ser-
vices such as url-shorteners, this is not the case. This is a trade-off. Instead of
using online web services, an application specific implementation may be prefer-
able and more robust.

In general, our experience is that there is an abundance of libraries, new Web
technologies, services, and APIs. The use of these tools increases the feature set
of your application, and decreases the number of lines you have to write.

References

1. Ankolekar, A., Krötzsch, M., Tran, T., Vrandečić, D.: The two cultures: Mashing
up Web 2.0 and the Semantic Web. Web Semantics: Science, Services and Agents
on the World Wide Web 6(1), 70–75 (Feb 2008)

2. Battle, R., Benson, E.: Bridging the semantic Web and Web 2.0 with Representa-
tional State Transfer (REST). Web Semantics: Science, Services and Agents on the
World Wide Web 6(1), 61–69 (Feb 2008)

3. Bizer, C., Seaborne, A.: D2rq treating non-rdf databases as virtual rdf graphs.
World Wide Web Internet And Web Information Systems p. 26 (2004)

4. Broekstra, J., Kampman, A., Van Harmelen, F.: Sesame: An architecture for storing
and querying RDF data and schema information (2001)

5. Grobe, M.: Rdf, jena, sparql and the ’semantic web’. In: Proceedings of the 37th
annual ACM SIGUCCS fall conference. pp. 131–138. SIGUCCS ’09, ACM, New
York, NY, USA (2009)

6. Harris, S., Lamb, N., Shadbolt, N.: 4store: The design and implementation of a
clustered RDF store. In: 5th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2009). pp. 94–109 (2009)

7. Openlink Virtuoso: Universal server platform for the real-time enterprise (2009),
http://www.openlinksw.com/

http://www.openlinksw.com/

	YASGUI: Not Just Another SPARQL Client

