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ABSTRACT 
In this paper, the coupled extensional-torsional behavior of 

a 4” flexible pipe is studied. The pipe was subjected to pure 
tension and two different boundary conditions were considered: 
ends free and prevented from axially rotating. The response of 
the pipe is predicted with a three-dimensional nonlinear finite 
element (FE) model. Some aspects of the obtained results are 
discussed, such as: the effect of restraining the axial rotation at 
the extreme sections of the model; the effect of friction or 
adhesion between the layers of the pipe on the induced axial 
rotation (or torque) and elongation; and the reduction to simple 
plane behavior usually assumed by analytical models. The 
numerical results are compared to the ones measured in 
experimental tests performed at COPPE/UFRJ. Reasonable 
agreement is observed between all results pointing out that the 
analyzed pipe is torque balanced and that friction mainly affects 
the axial twist or torque led by the applied tension. Moreover, 
the cross-sections of the pipe remain straight with the imposed 
load, but different axial rotations are found in each layer. 

INTRODUCTION 
Flexible risers (Fig. 1) are key components in the design 

and successful operation of floating facilities devoted to drill, 
produce, store or off-load offshore oil and gas. They are 
composite pipes made up of several concentric polymeric and 
metallic layers which, working together, provide flexibility as 
well as high axial and pressure resistance. The polymeric layers 
work as sealing and/or anti-wear components, while the 
metallic layers withstand the imposed loads. There are basically 
three different types of metallic layers: There are basically three 
different types of metallic layers: 

1. Inner carcass: made from profiled steel strips 
wounded at angles close to 90° (see Fig. 1), which 
mainly resists to radial inward forces.  
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2. Pressure armor: usually made from Z-shaped steel 
wires wounded at angles close to 90° (see Fig. 1), 
which supports the system internal pressure and also 
radial inward forces.  

3. Tensile armors: these layers typically use rectangular 
(most common) or round shaped steel wires laid in 
two or four layers and cross-wounded at angles 
between 30° and 55°. They resist to tension, torque 
and pressure end cap effects. 

inner carcass

internal plastic sheath
pressure armor

anti-wear tape

tensile armors

outer plastic sheath

 
Figure 1 – Typical flexible pipe. 

 
The problem of evaluating the local structural response of 

these structures has been dealt in the literature with analytical 
and numerical models and also experimental tests. Most of 
them are devoted to predict their response to moderate 
axisymmetric or bend loads. 

On the analytical side, Ferét and Bournazel [1] formulated 
a set of linear equations that governs the response of flexible 
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pipes made of long concentric tubular and helicoidal armor 
layers. Witz and Tan [2] proposed an analytical nonlinear model 
that predicts the axial-torsional structural behavior of flexible 
risers. The model considers that the polymeric layers are long 
thin-walled cylinders and the behavior of the helical armors is 
governed by Love’s equilibrium equations for thin helical rods. 
Separation between layers is also addressed. Recently, Custódio 
and Vaz [3] and Saevik and Bruaseth [4] proposed analytical 
models which aggregated some improvement to the available 
ones by considering geometric, material and contact 
nonlinearities in the analysis of slender tubular structures such 
as umbilical cables and flexible risers. These authors also 
presented detailed experimental results from axisymmetric tests 
with umbilical cables. 

On the numerical side, Ribeiro et al. [5], based on the 
previous works of Cruz [6] and Sousa [7] presented a three-
dimensional finite element model to study the response of 
flexible risers under pure tension or axial compression. The 
model consisted of a “sandwich” of concentric thin shells, 
which represented the inner carcass, the pressure armor and all 
polymeric layers. The wires of the tensile armor were modeled 
with three-dimensional beam elements. Interaction between 
layers was established with non-linear springs. Recently, Bahtui 
et al. [8] studied the response of a five-layer (three polymeric 
layers and a pair of tensile armor layers) flexible pipe to pure 
tension with a detailed three-dimensional finite element model. 
In this model, sheath layers are represented with three-
dimensional eight-noded solid elements. Contact elements are 
defined between each layer and no interaction is considered 
between tendons of helical armor layers. Moreover, friction 
between layers are addressed. According to the authors, very 
good agreement between the proposed model and analytical 
ones was found, but the model demanded great computational 
effort. Besides, the presented analyses did not consider the 
presence of the inner carcass and/or the pressure armor which 
would probably lead to an even more complex and onerous 
model. 

Furthermore, there are two experimental works which is 
worth to mention: the one from Witz [9] and, recently, the study 
presented by Ramos Jr. et al. [10]. Witz [9] carried out an 
interesting study in which the axial and torsional stiffness of a 
2.5” flexible pipe were experimentally evaluated considering 
different boundary conditions at the extremities of the pipe. The 
bending stiffness was also experimentally estimated with 
different levels of internal pressure. The author detailed 
described the internal layers of the pipe and proposed a “blind” 
test to several institutions by asking them to estimate those 
stiffness with their models. Generally, the results provided by 
the models agreed well with the experimental ones for the 
extensional-torsional response of the pipe. Bending results 
were, however, considerably more scattered. Witz [9] assigns 
that the key feature to correctly predict the local structural 
behavior of a flexible pipe is to account for the interaction 
between all its layers. Moreover, a study considering combined 
tension, torsion, pressure and bend loads were suggested as 
2 
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well as more tests to confirm the presented experimental 
results. 

Ramos Jr. et al. [10] recently presented a set of 
experimental tests with a 2.5” flexible pipe in order to study its 
extensional-torsional response. The pipe was subjected to 
tension with and without internal pressure and with different 
boundary conditions at its ends. Detailed information about the 
internal structure of the flexible pipe is presented and the 
experimental results were compared to the ones from a 
previously stated model (Ramos Jr. and Pesce [11]). The 
authors point that the analytical model predicted well the axial 
stiffness of the pipe and the average strains in the outer tensile 
armor wires. However, the measured torque or twist in the pipe 
due to the applied tension had a highly nonlinear behavior and, 
therefore, the analytical model failed to predict these values. 
Part of the differences between the results was attributed to the 
inability of the analytical model to address the structure internal 
friction. Furthermore, the studied structure was torque-balanced 
and the applied internal pressure did not affect its axial 
stiffness. 

Hence, despite their computational efficiency, analytical 
models assume in a certain extent a set of simplifying 
assumptions that may interfere in the overall response of the 
flexible pipe and, according to Custódio and Vaz [3], can be 
divided in four groups: 

1. Regularity of initial geometry. 
2. Reduction to simple plane cross-section analysis. 
3. Neglection of the effects of shear and internal friction. 
4. Linearity of the response. 
Thus, in this work, a three-dimensional nonlinear finite 

element (FE) model capable of simultaneously modeling the 
flexible riser and different types of mechanical loads is 
presented. This FE model accounts for all layers of the riser as 
well as possible interactions between them. Geometric, material 
and contact nonlinearities, including friction, are also 
addressed. Therefore, from the four major groups of 
assumptions, the proposed model will keep only the first one. 
In order to validate this model, a set of experimental tests is 
presented. In these tests, performed at COPPE/UFRJ, a 4,0” 
flexible pipe is subjected to pure tension. The effect of having 
the axial rotation at the ends of the pipe restrained or not is 
evaluated. The measured axial rotations, elongations and 
external radial displacements are compared to the values 
predicted by the numerical model. Furthermore, the effect of 
internal friction and the commonly assumed hypothesis of 
simple plane behavior are also discussed. 

FE MODEL  
 
General remarks 

Figure 2 presents a general overview of the developed 
model. 
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Figure 2 – Isometric view of the numerical model. 

 
The model consists of various concentric thin-walled 

shells, which represent each layer of the pipe except the wires 
of the tensile armors which are modeled with three-dimensional 
beam elements. Interaction between layers is assured through 
the presence of contact elements. The whole model is detailed 
hereafter. 
 
Inner carcass and pressure armor representation 

The construction of a solid three-dimensional finite 
element model to direct represent the inner carcass and the 
pressure armor of flexible risers is, by itself, an extremely 
onerous computational task (Bahtui et al. [8]), due to the high 
number of degrees of freedom involved. Thus, an alternative 
approach capable of reducing the number of degrees of freedom 
and, at the same time, adequately modeling these layers is 
necessary. 

Firstly, it is reasonable to suppose that: 
1. The internal friction in these layers is negligible. 
2. There is no interaction between the laying direction of 

the tendons and their normal direction.  
In this work, the term tendon refers to the profiled steel 

strip that forms the inner carcass and also to each wire that 
constitute the pressure armor. These hypotheses are acceptable 
as the tendons that constitute these layers are laid in angles 
close to 90° and the interlocking process leaves internal gaps. 
Hence, these layers could be considered as helical beams and 
modeled, for instance, with three-dimensional beam elements. 
However, these tendons have very small pitch and, 
consequently, a large number of beam elements is necessary 
and the computational cost of the model would be also high. 

Hobbs and Raoof [12] and Raoof and Hobbs [13] dealt 
with the problem of calculating the mechanical properties of 
strands and wire ropes by representing the various layers of 
helical wires with equivalent orthotropic shells. Relying on this 
approach, several different problems related to the static and 
dynamic response of wire ropes were successfully studied (see 
Kraincanic [14]). Thus, in this work, an analogy between 
helical tendons and orthotropic shells is also established, but 
considering a finite element approach. The main idea is to 
assure that both structures (helical tendon and orthotropic shell) 
3 
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have the same stiffness and extreme (inner and outer) fiber 
stresses. 
 
Analogy between helical tendons and orthotropic shells 

Initially, more two hypotheses are assumed: 
3. The thicknesses of the inner carcass and of the 

pressure armor are small in comparison to the internal 
diameter of the layer. 

4. Shear effects are negligible meaning that the linear 
elements perpendicular to the middle plane of the 
structure remain straight and normal to the deflection 
surface of the structure after bending. 

Considering hypotheses 1 to 4, the inner carcass and the 
pressure armor can be seen as orthotropic shells. Hence, 
considering the coordinated axes pointed out in Fig. 3, the 
stress-strain relations are given in Eq. (1). 
 

 
Figure 3 – Coordinate systems. 

 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⋅=

⋅
⋅−

+⋅
⋅−

⋅
=

⋅
⋅−

⋅
+⋅

⋅−
=

xyxyxy

y
yxxy

y

x
yxxy

xyy

y

y
yxxy

yxx

x
yxxy

x
x

sss

s
ss

s
s

ss

ss
s

s
ss

ss
s

ss

s
s

G

EE

EE

γτ

ε
νν

ε
νν

ν
σ

ε
νν

ν
ε

νν
σ

11

11

 (1) 

 
where sσ  and sτ  are, respectively, the normal and shear 
stresses at the shell surface; sε  and sγ  are, respectively, its 
elongation and angular distortion; sE , sG  and sν  are, in this 
order, the Young modulus, the shear modulus and the Poisson 
coefficient of the material that constitutes the shell; and 
subscripts x and y designate the direction to which the 
mentioned values are related. 

As, by hypotheses 1 and 2, the tendons of the inner carcass 
and the pressure armor do not resist to loads normal to their 
laying direction, it can be assumed that 0=

ysE  and 

0==
xyyx ss νν . Therefore, Eq. (1) reads: 

xxx sss E εσ ⋅= , 0=
ysσ , 

xyxyxy sss G γτ ⋅=   (2) 
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Considering Eq. (2), the stiffness of the equivalent 
orthotropic shell according to Timoshenko and Woinowsky-
Krieger [15] are given by: 
 

( )
xsss EhEA ⋅= , ( ) EhEI s

s ⋅⎟
⎟
⎠

⎞
⎜
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⎝

⎛
=

12

3
, ( )

xys
s

s GhGJ ⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

3

3
 (3) 

 
where ( )sEA , ( )sEI  and ( )sGJ  are, respectively, the membrane, 
bending and torsional stiffness of the orthotropic shell; and hs is 
its thickness. 

The stiffness of an helical tendon, according to 
Timoshenko and Woinowsky-Krieger [15] are expressed as: 
 

( ) E
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where ( )tEA , ( )tEI  and ( )tGJ  are the axial, bending and 
torsional stiffness of the tendon; E and G are the Young and 
shear modulus of the material that constitute the tendon; nt is 
the number of tendons in the considered layer, which is, 
generally, 1 for the inner carcass and 1 or 2 for the pressure 
armor; A and J are the cross-sectional area and the torsional 
constant of the tendon; Lp is the pitch of the tendon: 
 

( )α
π

tan
2 RLp

⋅⋅
=  (5) 

 
where R is the mean radius of the layer and α is the lay angle of 
the tendon. 

Recently, Souza [16], based on a series of experimental 
tests, proposed that the equivalent moment of inertia of the 
wire, eqI , is given by:  
 

3

22 112
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I
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p

y
teq

ν−
⋅⋅⋅=  (6) 

 
where ν  is the Poisson coefficient of the material that 
constitute the tendon and h is its height; Iy is the lower moment 
of inertia of the tendon cross-section. 

Equaling Eqs. (3) and (4) and considering Eq. (6), the 
equivalent physical and geometric properties of the orthotropic 
shell are: 
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3  (7) 

 
At this point, the stress-strain relations of the orthotropic 

shell are defined in Eqs. (2) and (7). Thus, the stiffness of the 
helical tendons and of the orthotropic shells can be made equal. 
Nevertheless, the equivalence between the stiffness of the 
helical tendon and the orthotropic shell does not imply the 
4 
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equivalence between stresses. According to Timoshenko and 
Woinowsky-Krieger [15], the extreme (outer and inner) fiber 
stresses at the orthotropic shell are: 
 

s

xm
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=σ , 2
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M
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⋅
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6

s
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where m

sx
σ , b

sx
σ  and 

xysτ are, respectively, the membrane, 

bending and shear stress at the extreme fibers of the orthotropic 
shell; xN  is the normal force acting in direction x; yM  is the 
bending moment in y; and xyM  is the torsional moment. 

The stresses at the extreme fibers of the helical tendon, 
according to Timoshenko and Woinowski-Krieger [15], can be 
stated as: 
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NL
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2
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where n

t x
σ , b

t x
σ  and 

xytτ are the normal, bending and shear 

stress at the extreme fibers of the tendons; t is the thickness of 
the metallic strip or of the wire that form the tendons of the 
inner carcass or the pressure armor. 

Dividing each related stress in Eqs. (8) and (9), the 
relations between the extreme fiber stresses of the helical 
tendon and the equivalent orthotropic shell can be deduced. 
These relations are called stress correction factors and are given 
by: 
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where σ

mcf , σ
bcf  and σ

scf are the membrane, bending and shear 

stress correction factors. 
Once the stresses are calculated with the proposed model, 

the extreme fiber stresses in the tendons of the inner carcass or 
of the pressure armor (

xt
σ  and 

xytτ ) are: 

 
b
sc

m
sct xbxmx

ff σσσ σσ ⋅±⋅= , 
xysxy sct f ττ σ ⋅=  (11) 

 
where the signs ± refers to the outer or inner fibers of the 
tendon.  

It is also possible, by re-writing Eqs. (8) and (9) in terms of 
strains, to establish strain correction factors: 
 

1=ε
mcf , 

s
c h

hf
b

=ε , 
s

c h
tf

s
⋅=

2
1ε  (12) 
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where ε
mcf , ε

bcf  and ε
scf are the membrane, bending and shear 

strain correction factors. 
The strains at the extreme fibers of the tendons can be 

calculated with Eq. (11) by substituting the stresses for the 
related strains. 

 
Polymeric layers representation 

The inner liner, the anti-wear layers and the outer sheath of 
flexible risers are modeled as thin-walled cylinders with 
physical properties equal in all directions, i. e., they are 
represented by isotropic shell elements. Some flexible risers, 
however, also have polymeric bandages to prevent the failure 
by excessive axial compression. These bandages are wounded 
at angles close to 90° and, consequently, are modeled as 
orthotropic shells and resist only to tension, which introduces a 
non-linear physical behavior. 
 
Tensile armor representation 

Each helical wire of the tensile armors is modeled with 
three-dimensional beam elements. As the width and the 
thickness of these wires are usually much smaller than their 
length, they could be considered as slender structures and, 
consequently, shear effects are neglected and Euler-Bernoulli 
elements are employed. 

The wires are normally rectangular shaped and assumed to 
be perfectly conformed to the cylinder that supports them. 
Hence, the wire cross-section principal inertia axis is aligned 
with a vector that links the center of the riser’s cross-section to 
the center of the wire’s cross-section. 
 
Modeling contact nonlinearities 

In the proposed model, the interaction between the layers 
of the flexible riser is established with surface to surface 
contact elements. These elements allow large relative 
displacement between the layers by using a contact detection 
algorithm based on the pinball technique (see Belytschko and 
Neal [17]) and contact forces evaluated with the augmented 
Lagrangian method (see Belytschko et al. [18]). 

The augmented Lagrangian method consists of calculating 
a series of penalty forces during the equilibrium iterations so 
that the final penetration between the two contact bodies is 
smaller than a value previously established. In the developed 
model, an allowable penetration of 0.1% of the smaller 
thickness between the two layers in contact is adopted. 

Penalty forces are calculated by placing fictitious springs 
along the contact boundaries of two bodies. When contact is 
established, these forces are applied to the nodal points of the 
contact elements placed along the contact bodies. The forces 
are proportional to the penetration and a chosen penalty 
parameter, which can be physically interpreted as the stiffness 
of the springs. The choice of this stiffness, called normal 
contact stiffness, may be performed with relatively simplicity, 
but respecting some rules. On the one hand, very high values 
may lead to numerical instabilities and, on the other hand, very 
small values provoke violations of the contact conditions. 
5 

aded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of U
Different estimates of contact normal stiffness proposed in 
Belytschko and Neal [17] and Benson and Hallquist [19], for 
instance, points to a value equivalent to the stiffness of the 
elements in contact. 

As an estimate of the normal contact stiffness, suppose two 
cylindrical layers of a flexible riser in contact due to the action 
of a distributed load, as shown in Fig. 4a.  

 

 
Figure 4 – Schematic representation of the normal stiffness 

of contact elements. 
 

Now, an equivalent model is idealized by substituting the 
solid layers by shells connected by two springs in series, each 
one having the stiffness equivalent to half the thickness of the 
considered solid layer, as presented in Fig. 4b. The stiffness of 
each spring, K, for a given layer i, is: 
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⋅
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where cA  is the contact area, which is approximated by: 
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where cR , ch , cdn  and ldn  are, in this order, the mean radius, 
the thickness, the number of circumferential divisions and the 
number of longitudinal divisions of the inner layer upon which 
the contact elements are placed; and ln  is the number of layers 
in the flexible riser. 

The normal contact stiffness, eqK , for the contact elements 
of the interface i is (Fig. 4c): 
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Friction between layers is addressed by considering the 

Coulomb friction model. The presence of gaps between layers 
is directly accounted in the FE mesh by assuming that the mean 
radius of a given layer is equal to its original radius plus the gap 
dimension. 

 
Modeling material nonlinearities 

Nonlinear material behaviour is assessed by the sub-layer 
model or Besseling model (see Besseling [20]) and the relation 
between uniaxial stress state from tensile tests and multiaxial 
stress state is established with the yield criterion from Von 
Mises considering associative flow rule. The stress-strain 
relationship of each material that constitutes the flexible riser is 
approximated by the Ramberg-Osgood curve: 
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where yσ  is the yield stress of the material; and 1c  and 2c  are 
Ramberg-Osgood constants. 

This curve can be directly applied to represent the stress-
strain relation of the tensile armors wires and polymeric layers. 
For the inner carcass and the pressure armor, the FE stresses 
have to be corrected by the factors presented in Eq. (10). As it 
will be pointed in the next section, the FE model was 
implemented using a commercial finite element package 
(ANSYS®) which allows the creation of user subroutines in 
Fortran 90 that are applied during the solution procedure. 
Therefore, a subroutine to automatically correct the stresses in 
the inner carcass and the pressure armor was created and these 
stresses are considered together with the Von Mises yield 
criterion. 

 
Implementation and solution 

The described model was implemented in a FE mesh 
generator called RISERTOOLS, which generates FE meshes to 
be analyzed in ANSYS® program. 

Considering the available elements in ANSYS® and the 
proposed model, the following elements were used: SHELL181 
(non-linear shell element) is employed to model the inner 
carcass, the pressure armor and the polymeric layers of the 
riser; BEAM188 (non-linear beam element) is used to represent 
the wires of the tensile armors; and CONTA174 / TARGE170 
are used to simulate the contact between the layers of the riser. 

In order to solve the set of simultaneous equations 
generated by the finite element discretization, the sparse solver 
method was chosen. This method associated to an equation 
reordering procedure gave accurate results with the least 
computational effort. 
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EXPERIMENTAL TESTS 
Aiming at studying the extensional-torsional behavior of 

flexible pipes, the metallic frame presented in Fig. 5 was 
constructed and installed at the Structures Laboratory of 
COPPE/UFRJ. This equipment can simulate tension and torsion 
loads acting simultaneously in pipes with a total length up to 
10m.  
 

 
Figure 5 – View of the metallic frame. 

 
In this work, the structural behavior of a 10m sample of a 

4.0” flexible pipe subjected to pure tension was analyzed. The 
tensile load was cyclically applied to the pipe from zero to a 
maximum value between 350kN and 450kN and then returned 
to zero. Three loading-unloading cycles were performed in each 
test considering two different end conditions: 

1. One end free to rotate and the other one clamped. 
2. Both ends prevented from rotating with one of them 

clamped. 
Three experiments for each end condition were carried out 

in order to check for the repeatability.  
A general view of the whole experimental apparatus is 

presented in Fig. 6.  
 

 
Figure 6 – General view of the experimental apparatus. 

 
The apparatus consisted of two load cells, Fig. 7, devoted 

to measure the applied tension and the torque reaction of the 
pipe, when its ends are prevented from rotating.  
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(a) 

 
(b) 

Figure 7 – Load cells: (a) tension and (b) torsion. 
 

Four displacement transducers were also employed. Three 
were used to observe the axial displacements of the pipe and 
one was connected to the torque load cell in order to measure 
its axial displacement. A detail of the displacement transducer 1 
is presented in Fig. 8. 
 

 
Figure 8 – Detail of the displacement transducer 1. 

 
Moreover, two inclinometers were fixed to metallic plates 

and linked to the ends of the flexible pipe by magnetic bases, as 
pointed out in Fig. 9. These inclinometers measured the axial 
rotation of the pipe. 
 

 
(a) 

 
(b) 

Figure 9 – Inclinometers (a) 01 and (b) 02 
 

Finally, six inductive sensors were used to measure the 
radial variation of the pipe, as shown in Fig. 10. These sensors 
provide high precision, non-contact position measurement by 
varying its electrical output in proportion to the position of a 
metal target within its working range (2.0 – 8.0 mm). 
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Figure 10 – Inductive sensors. 

CASE STUDY 
Table 1 presents the main characteristics of the studied 4,0” 

flexible pipe (internal diameter equals to 101.6mm). 
 

Table 1 – Characteristics of the 4.0” flexible pipe. 
Layer Properties 

Inner 
carcass 

thickness = 4.0mm; number of wires = 1 
lay angle = +87.6°, Interlocked profile 
area = 32.0mm2, moment of inertia = 52.1mm4 

Internal 
plastic 
sheath 

thickness = 5.0mm 

Pressure 
armor 

thickness = 6.2mm; number of wires = 2 
lay angle = +87.0°, Z profile 
area = 54.1mm2, moment of inertia = 173.4mm4 

Anti-wear 
tape thickness = 2.0mm 

Inner tensile 
armor 

thickness = 2.0mm; number of wires = 47 
lay angle = +35.0°, rectangular profile 
width = 7.0mm 

Outer 
tensile 
armor 

thickness = 2,0mm; number of wires = 49 
lay angle = -35.0°; rectangular profile 
width = 7.0mm 

Fabric tape thickness = 1.15mm 
Outer 
plastic 
sheath 

thickness = 5.0mm 

 
The inner carcass is constituted of AISI 304 steel with a 

Young modulus of 193GPa and a Poisson coefficient of 0.3. 
The material of the pressure and tensile armors has Young 
modulus of 205GPa and Poisson coefficient of 0.3. The internal 
plastic sheath is made of PA11 with Young modulus of 345MPa 
and Poisson coefficient of 0.3, while the outer plastic sheath is 
also formed by PA11, but with Young modulus of 215MPa and 
Poisson coefficient of 0.3. Finally, the fabric and anti-wear 
tapes were assumed to have Young modulus of 350MPa and 
Poisson coefficient of 0.3. 
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Numerical analyses 
A FE model with a total length of 1274mm was 

constructed. This model has 25922 nodes and 48922 elements 
leading to 155532 degrees of freedom. 

The total length of the model is equivalent to two linear 
pitches of a wire of the outer tensile armor and is different from 
the length of the tested pipe in order to reduce computational 
effort. Since the axial displacement and rotation or the resulting 
torque of the pipe is directly proportional to the length of the 
model, this truncated model proved to be valid.  

Moreover, this length was found to be, after several mesh 
trials, enough to guarantee that possible local perturbations 
caused by the imposed boundary conditions did not affect the 
response of the pipe as a whole. The extremities of the FE 
model have coupled displacements in order to simulate the 
presence of the end-fittings and, therefore, correctly transfer the 
imposed boundary conditions. Figure 11 illustrates a view of 
the boundary conditions at an end of the numerical model. 
 

 
Figure 11 –Boundary conditions at an end of the flexible 
pipe (axial rotation restrained and imposed axial force). 

 
In order to compare the numerical results to the 

experimental ones, the same boundary conditions considered in 
the experimental tests were also assumed here. 

Furthermore, a parametric study to evaluate the effect of 
different friction coefficients between layers was also carried 
out. For the sake of comparisons, the same friction coefficient 
was assumed in all interfaces in each analysis. Friction 
coefficients of 0 (free sliding), 0.05, 0.10, 0.20, 0.40, 0.60 and 
1.00 were considered. Moreover, a bonded situation, which 
corresponds to infinite friction coefficient between layers, was 
also considered 
 
Numerical results 

Figure 12 presents the distribution of the axial 
displacements obtained in the analysis with free sliding 
between all layers of the pipe and with ends free to rotate. This 
distribution is similar to the ones obtained in all other analyses, 
8
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length of the model. 

Tables 2 and 3 present the ratio between the imposed 
tension, F, and the axial deformation, ε, obtained in each 
numerical analysis performed. The ratio between the axial 
rotation, φ, or torque, T, and the associated axial deformation 
and the ratio between the radial displacement, ΔD, and the axial 
deformation are also presented. 
 

 
Figure 12 – Axial displacement distribution, in mm, along 

the flexible pipe. 
 
Table 2 – Axial displacements and rotations with free axial 

rotation at an end of the flexible pipe. 
Friction 

coefficient 
F / ε 

(x102kNm/m) 
φ / ε 

(x102deg m/m) 
ΔD / ε 

(x102m2/m) 
0.00 1350.990 0.26262 -0.1911 
0.05 1351.076 0.26150 -0.1911 
0.10 1351.105 0.26061 -0.1911 
0.20 1351.191 0.25905 -0.1911 
0.40 1351.248 0.25702 -0.1911 
0.60 1351.277 0.25493 -0.1911 
1.00 1351.334 0.25310 -0.1911 

Bonded 1352.195 0.00000 -0.1911 
 
Table 3 – Axial displacements and torque with axial rotation 

restrained at the ends of the flexible pipe. 
Friction 

coefficient 
F / ε 

(x102kNm/m) 
T / ε 

(x102kNm2/m) 
ΔD / ε 

(x102m2/m) 
0.00 1352.281 2.099 -0.1923 
0.05 1352.281 2.099 -0.1923 
0.10 1352.281 2.099 -0.1923 
0.20 1352.281 2.099 -0.1923 
0.40 1352.309 2.099 -0.1923 
0.60 1352.309 2.099 -0.1923 
1.00 1352.309 2.099 -0.1923 

Bonded 1352.309 2.099 -0.1923 
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Tables 2 and 3 point that the axial stiffness of the pipe is 
not dependent on the friction between layers. When one of its 
end is free to rotate, the obtained no friction stiffness is only 
0,09% lower than the bonded stiffness and, when its ends are 
prevented from rotating, this difference is lower than 0.01%. 
The axial stiffness is also not altered by the restriction of the 
axial rotation. 

Furthermore, the induced axial rotation is quite small and 
also slightly affected by the friction coefficient, when this value 
is kept between 0.00 and 1.00. The estimated axial rotation for 
the no friction case is only 3.8% higher than the one calculated 
with a friction coefficient of 1.0. However, when the layers of 
the pipe are fully bonded, the axial rotation is zero. When the 
ends of the pipe are clamped, the induced torque is not altered 
by the friction between layers. 

The radial constriction of the pipe is also very small and 
not sensible to the friction between layers. Constant values 
were found in both analyzed cases and the ones estimated with 
ends prevented from rotating are slightly higher (0.6%) than the 
radial displacements calculated with free axial rotation. 

Thus, the analyzed flexible pipe is torque balanced since 
the axial rotations induced by the tensile load is quite small and 
its axial stiffness is not altered by the axial rotation restriction. 

It is now important to observe the displacements predicted 
for each section of the pipe. Figure 13 presents the axial 
translations in each layer and cross-section of the pipe when 
one of its ends is free to rotate and no friction between layers is 
considered. Figure 14 presents the axial rotations for the same 
case. In these figures, position 0mm (first cross-section) is the 
clamped end of the pipe. 
 

0 400 800 1200 1600
Position (mm)

0.0

1.0

2.0

3.0

4.0

5.0

A
xi

al
 tr

an
sl

at
io

n 
(m

m
)

Layers
Inner carcass
Internal plastic sheath
Pressure armor
Anti-wear tape
Inner tensile armor
Outer tensile armor
Fabric tape
Outer plastic sheath

 
Figure 13 – Axial translations in each layer and cross-

section of the pipe: end free to rotate. 
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Figure 14 – Axial rotations in each layer and cross-section of 

the pipe. 
 

Figure 13 shows that the axial translation is the same in 
each layer and cross-section of the pipe. It varies linearly with 
respect to the position of the cross-section. Figure 14 presents 
small regions near the extremities of the model in which the 
axial rotation is locally affected by the imposed boundary 
conditions. However, out of these regions, the calculated axial 
rotations are not the same in all layers of the pipe. Thus, the 
cross-sections of the pipe remain straight, but the axial rotations 
in each of its layers are different. 

On the other hand, when the ends are prevented from 
rotating, the axial rotations along the pipe are null and, 
consequently, the hypothesis of straight section with the same 
twist in each layer is valid. 

A common assumption of analytical models devoted to the 
axisymmetric analysis of flexible pipes is that axial translations 
and rotations are the same for all layers of the pipe and in each 
of its cross-sections. As pointed out previously, this is not 
confirmed by the FE model when the ends are not prevented 
from rotating and may affect the prediction of the axisymmetric 
response of a flexible pipe. 
 
Numerical and experimental comparisons 

Figure 15 presents the experimental measures of the 
flexible pipe axial deformations with respect to the applied 
tension. In this figure, the end of the pipe is free to twist. Figure 
16 shows the same variation, but, in this case, the ends of the 
pipe are prevented from rotating. 
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Figure 15 – Axial deformation vs applied tension: ends free 

to rotate. 
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Figure 16 – Axial deformation vs applied tension: ends 

prevented from rotate. 
 

Figure 15 shows, after an initial accommodation caused by 
initial gaps between the layers of the pipe and the initial 
catenary configuration due to its self weight , that the axial 
deformation of the pipe varies linearly with the imposed 
tension. During the loading or unloading phases, no significant 
modification in the axial stiffness of the pipe is observed. A 
linear function was fitted to the experimental points leading to 
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an axial stiffness of 134000kN, which is only 0.8% lower than 
the value predicted by the FE model when no friction is 
considered. The FE curve is also plotted in Figure 15. 

Figure 16 presents a similar behavior, but no initial 
accommodation was observed. In these tests, the linear fit 
indicates an axial stiffness of 128600kNm/m, which is only 
4.0% lower than the stiffness estimated in the tests with ends 
free to rotate and 4.8% lower than the FE axial stiffness. 

Hence, it can be concluded that the restriction of the axial 
rotation did not alter the axial stiffness of the pipe. 

Figures 17 and 18 deal with the induced axial rotation and 
torque in the pipe, respectively. In Fig. 17, besides the 
experimental points, three more curves are presented. Two 
bilinear functions were fitted to the experimental points: one for 
the loading phases and the other to the unloading phases. 
Moreover, the curve predicted by the FE model with no friction 
is also plotted. In Fig. 18, three curves are showed with the 
experimental points: two linear functions were fitted to the 
experimental points after a 0.18% axial deformation is reached; 
and the FE curve estimated with no friction between layers. 

These figures present a highly nonlinear response. In Fig. 
17, the axial rotation of the pipe, after the accommodation 
phase, grows almost linearly until the load is reversed. When 
the reversal occurs, the axial rotation initially increases with a 
small reduction in the axial deformation and then it starts to 
decrease in a constant rate. However, when an axial 
deformation of about 0.28%m/m is reached, the ratio between 
the axial rotation and deformation decreases to a value of about 
a third of the previous one. When the pipe is reloaded, the 
initial ratio is almost equal to the low value exhibited in the end 
of the unloading phase, but, when an axial deformation of about 
0.3%m/m is achieved, the relation between the axial rotation 
and deformation increases to a value three times higher. This 
type of response was observed in all three loading-unloading 
cycles. 

The experimentally measured axial rotations suggest that 
some kind of adhesion may exist between the layers of the pipe, 
as the transition between loading and unloading phases and 
even the response of the pipe during these phases involves 
significant changes in the relation between the axial rotation 
and elongation. The higher values obtained for this ratio is, in 
average, only 6.8% higher than the FE one (26.262deg m/m) 
when no friction is considered. This high value is reached when 
significant tension is acting and, consequently, a possible 
internal friction in the pipe is overcame. The lower value 
corresponds to about 35% of the FE one and is observed when 
low tension is acting, which indicates that this is related to 
some initial internal friction or adhesion between the layers of 
the pipe. Some FE simulations were performed in order to 
obtain this low value and very large values for the friction 
coefficient between layers (higher than 100) were necessary. 

In Fig. 18, the response of the pipe is initially quite mixed. 
The ratio between the induced torque and the axial deformation 
increases and decreases in a highly nonlinear way until an axial 
deformation of about 0.18%m/m is achieved. After that, this 
ratio is almost constant and the variation of the torque with 
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respect to the axial deformation is approximately linear. The 
average experimental value for this ratio (average of the two 
linear functions) is only 1.7% lower than the FE predicted one 
(2.099kNm2/m). 
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Figure 17 – Axial deformation vs Axial rotation: ends free to 

rotate. 
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Figure 18 – Axial deformation vs torque: ends prevented 

from rotating. 
 

Figures 19 and 20 illustrate the variation of the radial 
displacement of the pipe with its axial deformation for the case 
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in which the ends are free to rotate and prevented from rotating, 
respectively. 
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Figure 19 – Axial deformation vs radial displacement: ends 

free to rotate. 
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Figure 20 – Axial deformation vs radial displacement: ends 

prevented from rotating. 
 

These figures show the same behavior. There is an initial 
accommodation of the pipe followed by a linear variation 
between the axial deformation and the radial constriction. 
When the load is reversed, an initial accommodation phase 
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occurs again and, after that, the radial displacement starts to 
linearly decrease. The linear functions fitted to the experimental 
measurements presented in Figs. 19 and 20 led to close values 
for the ratio between the radial displacement and the axial 
deformation: -18.6m2/m and -16.8 m2/m (average). This 
indicates that the restriction of the axial rotation does not affect 
the radial displacements in the pipe. These values are about 
3.0% (ends free to rotate) and 12.5% (ends prevented from 
rotating) lower than the FE ones (-19.1m2/m and -19.2m2/m, 
respectively). 

Finally, it is important to observe that the nonlinear 
behavior observed for the axial rotation and torque in the 
experimental test is not seen in the axial deformation of the 
pipe. This is also stated by the FE model since the variation of 
the friction coefficients, as pointed in Tables 3 and 4, did not 
imply any significant modification in the axial stiffness of the 
pipe. 

CONCLUSIONS 
 

This paper dealt with the coupled extensional-torsional 
behavior of a 4” flexible pipe. The pipe was subjected to pure 
tension and two different boundary conditions were considered: 
ends free and prevented from axially rotating. The response of 
the pipe was predicted with a proposed three-dimensional 
nonlinear finite element (FE) model. Some aspects of the 
obtained results are discussed, such as:  

1. The effect of restraining the axial rotation at the 
extreme sections of the model. 

2. The effect of friction or adhesion between the layers of 
the pipe on the induced axial rotation (or torque), 
elongation and radial constriction of the pipe. 

3. The reduction to simple plane behavior usually 
assumed by analytical models.  

The numerical results predicted that the axial stiffness and 
the radial displacements of the pipe did not vary with the 
restriction of the axial rotation at its extremities. Moreover, the 
model indicated that the amount of friction between the layers 
of the pipe also did not affect its axial stiffness or radial 
displacements. The FE model also pointed to very low values 
for the induced axial rotation or torque at the extremities. 
Furthermore, the axial rotation was slightly changed when 
friction coefficients between 0.0 and 1.0 were considered, but 
decreases to 0 if the layers of the pipe are supposed to be 
bonded (very high values of friction coefficients). The induced 
torque also did not vary with the considered friction 
coefficients. 

An important aspect verified in the numerical analysis was 
that the sections of the pipe elongates equally, but the axial 
rotations are different in each layer. Thus, the assumption that 
all layers are subjected to the same axial rotation is not valid. 

The experimental tests pointed to a nonlinear response of 
the pipe to the imposed tension. This nonlinear behavior is 
caused mainly by:  
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• The initial configuration of the pipe, which usually 
presents initial gaps between its layers and a catenary 
shape due to its self-weight. 

• Friction between the layers.  
The initial configuration of the pipe provokes an 

accommodation phase when low tensile loads are being applied 
(large axial deformations with low tension), while friction 
significantly modifies the induced axial rotation and torque in 
the pipe, but seems to not alter its axial stiffness or radial 
constriction. 

When compared to the experimental measurements, the 
predicted FE results agreed quite well. The measured axial 
stiffness were between 0.8% (ends free to rotate) and 4.8% 
(ends prevented from rotating) lower than the FE calculated 
ones. Moreover, the measured ratio between the radial 
displacement of the pipe and its axial deformation was between 
3.0% (ends free to rotate) and 12.5% (ends prevented from 
rotating). 

The no friction ratio between axial rotation and elongation 
was only 7.3% higher than the measured one for high tensile 
loads. For low tensile loads, the measured ratio is about a third 
of this FE one. This low tension ratio was achieved with the FE 
model when very high friction coefficients were considered and 
suggests the existence of an initial adhesion between the layers 
of the pipe. 

Analogous to the variation of the axial rotation, the 
induced torque also initially exhibits a highly nonlinear 
behavior, but, for high tensile loads, it tends to vary linearly 
with the axial elongation. Again, for this level of loading, the 
numerical results agreed quite well with the experimental ones. 

To conclude with, it is authors belief that this work 
contributes to better comprehend the behavior of a flexible pipe 
under tension and the effect of friction on its response. Besides, 
it presents a robust three-dimensional FE model to deal with the 
local mechanical analysis of flexible pipes. The obtained results 
also encourage the use of this model to analyze other types of 
axisymmetric loads such as internal and external pressure, 
torsion and axial compression and possible combinations 
between them. 
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