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A Constraint Satisfaction
Algorithm for the Generalized
Inverse Phase Stability Problem
Researchers have used the (calculation of phase diagram) CALPHAD method to solve
the forward phase stability problem of mapping from specific thermodynamic conditions
(material composition, temperature, pressure, etc.) to the associated phase constitution.
Recently, optimization has been used to solve the inverse problem: mapping specific
phase constitutions to the thermodynamic conditions that give rise to them. These point-
wise results, however, are of limited value since they do not provide information about
the forces driving the point to equilibrium. In this paper, we investigate the problem of
mapping a desirable region in the phase constitution space to corresponding regions in
the space of thermodynamic conditions. We term this problem the generalized inverse
phase stability problem (GIPSP) and model the problem as a continuous constraint satis-
faction problem (CCSP). In this paper, we propose a new CCSP algorithm tailored for
the GIPSP. We investigate the performance of the algorithm on Fe–Ti binary alloy system
using ThermoCalc with the TCFE7 database against a related algorithm. The algorithm
is able to generate solutions for this problem with high performance.
[DOI: 10.1115/1.4034581]

1 Introduction

The designers of novel materials require an understanding of
phase stability in order to assess the feasibility of a material and
how it changes during processing. The calculation of phase dia-
gram (CALPHAD) method has enabled researchers to develop
databases that contain pertinent thermodynamic information on
specific alloys and associated phases [1]. In this method, the ther-
modynamics of phases are described through mathematical mod-
els fitted to experimental data.

Many CALPHAD software packages developed to date are well-
suited for solving the forward phase stability problem: calculating
the phase stability state of a multicomponent, multiphase system
given a set of thermodynamic conditions (processing conditions
such as composition, temperature, and pressure). However,
because design is inherently an inverse process, we are interested
instead in the inverse problem: determining the thermodynamic
conditions that give rise to a desired phase stability state.

Previous investigations have used optimization algorithms in
the context of inverse phase stability problems to search for
extremal points in multidimensional phase stability maps [2–8].
These extremal points are locations along a direction correspond-
ing to a single thermodynamic degree-of-freedom, e.g., the lowest
liquidus temperature. This class of problems typically has a single
solution and can be formulated straightforwardly as

Minimize
x2X

f ðxÞ (1)

where the set X � RN is the feasible region in the decision space
(thermodynamic conditions), and f is a function (e.g., a CAL-
PHAD model) from RN to R that maps thermodynamic conditions
to the thermodynamic degree-of-freedom of interest. The optimi-
zation problem in Eq. (1) can be solved using conventional techni-
ques. In Ref. [4], mesh-adaptive direct search (MADS) [9]
algorithms are used to find extrema in phase stability. More
recently, the Arroyave group has used genetic algorithms (GAs)
to solve similar problems [6].

Although the location of extremal points, or any isolated
point(s) in the phase constitution space, is sometimes of interest to
material scientists [10,11], more generalized knowledge is desira-
ble for the materials discovery and design process. Specifically,
we are interested in identifying the region or set in the design
space that gives rise to a desirable range of thermodynamic condi-
tions, we refer to this problem as the generalized inverse phase
stability problem (GIPSP).

For example, a designer may want to know what thermody-
namic conditions (a set of designs) result in the presence of r
phase in steels, since any amount of r phase is undesirable due to
its embrittling effects (as little as 3 wt.% reduces impact toughness
by more than half [12]) and its drastic deterioration of the stability
against corrosion. A compact representation of this set would be
useful to material designers as a constraint on the search space
that is easy to evaluate. In cases when uncertainty in the appropri-
ate CALPHAD model is high, materials designers may be inter-
ested in finding a set of potentially desirable solutions that they
can refine and prune through experimentation. In general, materi-
als designers are interested in identifying the set of all the thermo-
dynamic conditions that could produce the set of arbitrary phase
constitutions. In the language of engineering design, materials
designers would like to apply set-based approach [13] to the mate-
rials discovery process.
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In the context of set-based design, Shahan and Seepersad sug-
gested the use of Bayesian network classifiers to model the satis-
factory region [14]. In Ref. [15], the technique is extended to
multilevel design problems (multilevel models are those that are
hierarchically nested) and applied to materials design. An exten-
sion is developed by Rosen [16] that enables the incorporation of
process knowledge. However, the focus of these works is on the
design methodology concerning multiscale design rather than an
efficient algorithm approach for approximating the satisfactory
set, which is the aim of this paper.

We model the GIPSP as a continuous constraint satisfaction
problem (CCSP) [17], a type of constraint satisfaction problem
(CSP) where all the variable domains are continuous real inter-
vals. The GIPSP is to map specific regions in multidimensional
phase constitution spaces to ranges of values of thermodynamic
conditions space. The solution set to this problem is ranges of val-
ues (enclosures) rather than discrete points. The GIPSP is particu-
larly challenging because the search space is highly nonlinear and
discontinuous, the CALPHAD model is a black-box since its
details are not available, and the problems of interest may be mul-
tidimensional (>10).

Typical algorithmic approaches for CCSPs (Fig. 1), such as
those based on interval arithmetic [18], require accessible analyti-
cal problem formulations. However, the GIPSP involves a nona-
nalytical CALPHAD model. Methods such as design of
experiments (DOE) [19] or inductive design exploration (IDEM)
[20,21] are not tractable for high-dimensional problems since they
sample the search space. Another approach is to use adaptive sam-
pling schemes to replace the expensive to evaluate constraint with
a surrogate model [22–25]. However, these approaches have diffi-
culty representing discontinuities in the search space and suffer
from the curse of dimensionality [26]. To address this limitation,
Basudhar and Missoum developed the explicit design space
decomposition (EDSD) method. The EDSD method relies on a
support vector machine (SVM) classifier to model the design
space constraint boundary, rather than approximate the constraint
function. The EDSD method has been shown to accurately model
the constraint boundary on several test problems within only a
fewer iterations.

However as we will show that the SVM technique used in
EDSD has difficulty representing the solution to a typical GIPSP.
In a GIPSP, it is undesirable to densely sample the unsatisfactory
region since it comprises the vast majority of the space. In the
case where the samples are imbalanced (many more from one
class than another), the SVM will be unreliable in the under-
sampled region. In cases with imbalanced sampling, the support
vector domain description (SVDD) technique has been shown to
be more appropriate [27]. In this paper, we present an algorithm
that instead relies on the support vector domain description
(SVDD) [27] classifier, which leads to improvements in both com-
putation time and solution quality of the GIPSP.

2 Generalized Inverse Phase Stability Problem as a

Continuous Constraint Satisfaction Problem

We define the GIPSP using standard notation in the CSP litera-
ture [28] as a triple

P ¼ ðX ;D; CÞ (2)

where X ¼ ðx1; x2;…; xnÞ is a n-tuple of variables defined in the
thermodynamic conditions space, and D ¼ I1;�; I2;� � � � �; In is
the Cartesian product of the corresponding domains, where Ii is a
real interval for i ¼ 1; 2;…; n. The set of constraints that must be
satisfied is denoted as C ¼ ðC1;C2;…;CtÞ, which is a t-tuple of
constraints. Each constraint Cj is a pair Rj, Sj, where Rj is a rela-
tion on the variables in Sj ¼ scopeðCjÞ. The relation Rj defines the
consistent value combinations. Specifically, in the context of the
GIPSP, Rj is an inequality or equality in terms of the function
mapping between thermodynamic conditions and phase constitu-
tions (i.e., constraints defined on the CALPHAD model). The set
Sj � X is an unordered k-tuple of distinct variables, where k is the
arity of Rj. In other words, Sj is simply the tuple of variables that
participate in the constraint Rj.

A solution is a n-tuple A ¼ ða1; a2;…; anÞ, where A 2 D and
each Cj is satisfied, in which Rj holds on the projection of A onto
the scope, i.e., Sj. The problem is to find the set of all the solutions
to the problem, denoted solðPÞ. In the GIPSP, the user defines
each constraint Cj in the phase constitution space. For example,
one may be interested in the thermodynamic conditions X ¼
ðx1; x2Þ that produce materials consisting of between 40 wt.% and
60 wt.% of a specific phase. This constraint is expressed as
C � 0:4 � f ðXÞ � 0:6, where f ð�Þ maps thermodynamic condi-
tions to the phase composition of interest. The CCSP is expressed
as

X ¼ ðx1; x2Þ
D ¼ ðxlb

1 ; x
ub
1 Þ � ðxlb

2 ; x
ub
2 Þ

C � 0:4 � f ðXÞ � 0:6

(3)

where the superscripts lb and ub denote the variable lower and
upper bounds, respectively.

Since mapping from the thermodynamic conditions space to the
phase constitution space is highly complex, discontinuous, and
nonanalytical, satisfying the user-defined constraints C is nontri-
vial. In the motivating problem, we are interested in the set of all
the solutions, solðPÞ, to the CCSP where all the variable domains
are continuous real intervals and all the numeric relations are
equalities and/or inequalities. The constraints are, in general,
highly nonlinear.

3 Related Work

3.1 Existing CSP Algorithms. Classical methods for solving
CSPs such as backtracking [29], iterative broadening search [30],
and limited discrepancy search [31] are intended for problems
with discrete domains and are not efficient for solving CCSPs. To
apply these to a CCSP, one must discretize the variable space to
an enumerable set [32]. Such an approach would be intractable for
most GIPSPs because of the high-dimensional (often n> 10) [33]
of many materials design scenarios. Most techniques developed
specifically for solving CCSPs are based on interval arithmetic,
branch and bound, or the root inclusion test. In one of the first
examples of set-based design, Ward proposed the use of interval
arithmetic to search for the feasible set of designs efficiently [18].
Subsequently, this work was extended to more general set-based
representations [34]. Hu et al. proposed a method that uses gener-
alized interval to solve for the feasible set [35,36]. The NUMER-
ICA [37] modeling language in particular guarantees correctness,
completeness, and certainty. Devanathan and Ramani presented a
polytope-based method, where the constraints are transformed

Fig. 1 Illustration of a CCSP. The function f ð�Þ represents the
nonlinear CALPHAD model that maps the thermodynamic con-
dition space (a) to the phase constitution space (b). The query
C5 ðC1;C2; . . . ;C4Þ is defined by the user in the phase constitu-
tion space, e.g., C4 � ðf b � cÞ, where c is a constant. Due to the
nonlinear mapping between the thermodynamic conditions
space and the phase constitution space, the solution in the
thermodynamic conditions space is nonconvex.

011401-2 / Vol. 139, JANUARY 2017 Transactions of the ASME

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



into ternary constraints [38]. Then, the so-called consistency
method is used to prune the search space. These techniques
require an analytical or closed-form expression to determine
whether a subsection of the search space contains feasible solution
[28,39,40]. Since the CALPHAD model is a “black-box” in the
sense that the details are not accessible, methods that rely on inter-
val arithmetic or constraint decomposition cannot be used for the
GIPSP.

3.2 Design of Experiments. Identifying the feasible set
(solving a CSP) is a key challenge in many set-based design meth-
ods. Design of experiments (DOE) can be used to test the con-
straint model at a set of finite points in the design domain. A
limitation is that the points will not lie on the boundary of the con-
straints. The inductive design exploration method (IDEM)
addresses this limitation [20,21]. The IDEM consists of discrete
point evaluations (discrete sampling) of the design process, per-
forming inductive, top-down feasible space exploration based on
metamodels. The aim is to obtain a robust solution with respect to
model uncertainty. To approximate the constraint boundary, the
design space is sampled using a typical DOE. The true constraint
boundary will lie between the satisfactory and unsatisfactory dis-
crete points. A root-finding technique is used to find the location
of the boundary between these points. The constraint is then repre-
sented as a set of boundary points and points inside the feasible
space. Although this method generates points on the boundary of
the constraint, it does little to reduce the computational burden of
the initial DOE, which suffers from the curse of dimensionality.

3.3 Constraint Modeling. Constraint satisfaction has also
been addressed in the reliability-based design optimization
(RBDO), where the aim is to avoid the performance failure
region. Consider a product with random system parameters X and
a performance function g(x), where the product fails if g(x)< 0.
The reliability of the product is defined as

R ¼ PðgðXÞ � 0Þ ¼
ð

gðxÞ>0

� � �
ð

fXðxÞdx (4)

where fXðxÞ is the joint probability density function of all the ran-
dom parameters. This integral may be approximated using Monte
Carlo simulation (MCS), but this approach can be computation-
ally expensive when a large number of samples are required or the
constraints are expensive to evaluate. A principle focus in RBDO
is the efficient approximation of the solutions to the constraint
g(x). An approach common in the literature is to replace the
expensive to evaluate constraint g(x), with an inexpensive surro-
gate model generated from sampled data. The most straightfor-
ward methods sample the space globally, which becomes
prohibitively expensive at high dimensionality. An approach for
reducing the number of samples required to construct the surro-
gate model is adaptive sampling. Adaptive sampling approaches
incrementally improve the surrogate model by sampling points
that most effectively improve the model [22–24]. These
approaches attempt to efficiently “train” a surrogate model over
the entire search space. However, to approximate Eq. (2), it is
only necessary to know where the constraint is satisfied. This
insight led to the efficient global reliability analysis (EGRA)
method. In EGRA, samples are generated by maximizing the
expected feasibility function, which provides an indication of how
well the true value of the response is expected to satisfy the con-
straint [25]. Several other criteria can be found in the literature
[41–43].

As argued by Basudhar and Missoum, the principle limitations
surrogate-based approaches are response discontinuities and the
curse of dimensionality [26]. The discontinuities in the search
space are problematic for gradient-based techniques. To address
this limitation, they proposed a method referred to as explicit
design space decomposition (EDSD), which does not approximate

the response of the limit state function, instead constructs an
explicit constraint boundary around the design variables [44].
Thus, the EDSD method is unaffected by discontinuities and other
irregularities in the search space. The EDSD method relies on the
use of support vector machines to construct an explicit boundary
of the constraint in the design space. Support vector machines
(SVMs) are a machine-learning technique for supervised learning
associated with two-class classification. That is, given a set of
training examples, each example is marked as belonging to one of
the two classes. The SVM uses the training examples to build a
model that assigns new (unobserved) examples to one of the cate-
gories. The SVM is initially trained on a sample of points. Then,
an adaptive strategy is used to generate points that likely lie on
the constraint boundary.

The EDSD method has been shown to approximate the limit
state function successfully for a number of test problems [45].
However, because the EDSD method relies on the SVM method,
its performance deteriorates when an SVM is not an appropriate
representation of the boundary. The SVM treats evaluated samples
as a two-class data set: feasible and infeasible observations. For a
good performance, the SVM technique requires both classes to be
well sampled [46,47].

This limitation is significant in the GIPSP, where, intuitively,
few process parameter combinations will yield a desirable mate-
rial. Thus, the solution to a GIPSP is typically small relative to the
search space. In this scenario, it is undesirable to evenly sample
both satisfactory and unsatisfactory classes, especially for high-
dimensional problems where a balances sampling of the entire
search space may be computationally expensive. If to reduce com-
putational expense, we undersample the unsatisfactory space, the
resulting SVM will be unreliable in the undersampled unsatisfac-
tory space and will tend to have high rates of false positives. In
cases with imbalanced sampling, the support vector domain
description (SVDD) technique has been shown to be more appro-
priate [27]. Whereas the SVM scheme is a two-class classifier, the
SVDD scheme is a one-class classifier intended to address the
case where the training data are mainly from a single category.

4 Support Vector Domain Description

The support vector domain description (SVDD) [27] is used to
approximate the solution based on observed data. The SVDD
method is a nonprobabilistic machine-learning technique for pre-
dicting the boundary of a data set in an Euclidean space. The
SVDD method bears close resemblance to support vector
machines (SVMs) [48,49]. The principal difference being that
SVDD is a one-class classifier while SVMs are two-class classi-
fiers. For a detailed description of the SVDD, see Refs. [27] and
[50]. Under the SVDD method, one finds the minimum radius
hypersphere that contains a set of training data. Let xi denote a
vector in the design variable space X —the input space. Given n
data points, X ¼ fxiji ¼ 1; 2;…; ng, the minimum radius hyper-
sphere containing every data point with centroid a and radius r

Minimize
r;a

r2 þ c
X

i

ni

subject to kxi � ak2 � r2 þ ni; ni � 0 8i
(5)

where ni are the slack variables that allow for the possibility of
outliers in the training set. The parameter c defines how to trade-
off between Hampshire volume and errors. Any point at a distance
equal to or less than r from the hypersphere center is inside of the
domain description. However, because a hypersphere is typically
a poor representation of the domain, a kernel function is used to
nonlinearly remap the training data into a higher-dimensional fea-
ture space where a hypersphere is a good model. Through the so-
called kernel trick, the data points are mapped to the feature
space, without computing the mapping explicitly. The result is an
implicit mapping to a feature space of unknown, possible infinite,
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dimensionality. There are several valid kernel functions common
in the literature [51]. The proposed algorithm uses the Gaussian
kernel function

KGðxi; xjÞ ¼ UðxiÞ � UðxjÞ ¼ e�qkxi�xjk2

(6)

where U(�) is the nonlinear mapping from the data space to the
feature space. The q parameter determines how “tightly” or
“loosely” the domain description is fit around the training data.
The constraint in Eq. (5) then becomes

kUðxiÞ � bk2 � r2 þ ni 8i (7)

where b is the centroid of the feature space hypersphere. Rewrit-
ing in terms of the kernel function, the Wolfe dual problem can be
developed from Eq. (7) as

Maximize
bi

X
i

biKðxi; xjÞ �
X

i;j

bibjKðxi; xjÞ

subject to 0 � bi � c 8iX
i

bi ¼ 1

(8)

For a detailed description of the method for formulating the Wolfe
dual problem see Ref. [52]. For each data point, xi for i¼ 1, 2,…,
n, there are three possible classifications:

(1) It is inside the hypersphere, which is indicated by bi¼ 0.
(2) It is on the boundary of the hypersphere, which is indicated

by 0<bi< c.
(3) It is an outlier outside of the hypersphere, which is indi-

cated by bi¼ c.

Data on the boundary of the hypersphere are called support vec-
tors (SVs) and are essential to the domain description representa-
tion. The outliers are not part of the domain description. Choosing
c� 1 yields no outliers since

P
ib1 ¼ 1 and 0<bi< c 9i, and

therefore, bi 6¼ c 8i. The squared distance of the feature space
image of a point, z, to the centroid of the hypersphere is

r2ðzÞ ¼ Kðz; zÞ � 2
X

i

biKðxi; zÞ �
X

i;j

bibjKðxi; xjÞ (9)

A new test point, z, is inside the domain description if the distance
from the feature space image of test point to the hypersphere cent-
roid is less than the radius of the hypersphere. The expression for
classification, Eq. (9), is a simple algebraic expression that is fast
to evaluate. In fact for the Gaussian kernel function, the first term
is equal to 1, and the last term can be precomputed since it is inde-
pendent of z.

A final consideration is the SVDD method that is able to tighten
the description by using negative examples—labeled outliers. The
aim in this case is to find the minimum radius hypersphere that
includes the positive examples (target-data) while excluding the
negative examples (outlier-data). Consider that target-data are
enumerated by indices i, j and the outlier-data by l, m. Further, the
target-data are labeled yi¼ 1 and outlier-data are yl¼�1. The
search problem becomes

Minimize
r;a

r2 þ c1

X
i

ni þ c2

X
l

nl

subject to kxi � bk2 � r2 þ ni

kxl � bk2 � r2 þ nl

ni; nl � 0 8i; l

(10)

Again, by the method of Lagrange multipliers, we can obtain

L ¼
X

i

b0iKðxi; xjÞ �
X

l

b0lKðxl; xlÞ �
X

i;j

b0ib
0
jKðxi; xjÞ

þ2
X

l;j

b0lb
0
jKðxl; xjÞ �

X
l;m

b0lb
0
mKðxl; xmÞ (11)

where b0i ¼ yibi (the index i again enumerates both target and out-
lier-data). See Ref. [46] for a detailed exposition of the SVDD
method with negative examples.

To prevent weighting variables with large magnitudes more
than those with lower ones in this comparison, the training data
are centralizing (scale all data to a �1 to 1 range), which improves
the SVDD model. An important benefit of the SVDD method is
that it can be constructed incrementally and decrementally [53].
This allows for a relatively inexpensive update procedure to be
used when new members are added or removed from the SVDD.
Figure 2 is an illustration of the SVDD method on a two-
dimensional data set in the thermodynamic conditions space.

To underscore the difference in performance between the SVM
and SVDD classifiers, we develop two test problems where one
class (the satisfactory region) is (a) large and (b) small relative to
the domain, see Fig. 3. In each case, we created a training data set
with 50 satisfactory and 50 unsatisfactory random examples. In
example (a) where the regions are proportional, the samples are
relatively balanced, while in (b), they are imbalanced (the unsatis-
factory region is undersampled).

We use both examples to train an SVM and SVDD classifica-
tion model. We used the SVM algorithm in MATLAB’s Statistics
and Machine Learning Toolbox [54], and SVDD model in
DD_Tools [55] developed in the Pattern Recognition Laboratory
at Delft University of Technology, Delft, Netherlands. The results
are illustrated in Fig. 3. In scenario (a), the SVM model outper-
forms the SVDD model. This is expected since the SVDD tends
to generate conservative model; recall that the SVDD finds the
minimum radius hypersphere around the target-data. In contrast,
in scenario (b) where the data are not balanced, the SVM classifier
results in a significant overestimation. In the latter case, the more
conservative SVDD scheme has better performance. This basic
insight motivates an adaptive sampling scheme based on SVDD
rather than SVM for the GIPSP.

5 Proposed Algorithm

Our aim is to develop an adaptive sampling scheme based on
the SVDD technique for approximating the constraint boundary.
The basic idea of the proposed algorithm is that the true boundary
of the satisfactory region is approximately parallel to our current
best guess. In the proposed algorithm, we search along the direc-
tion perpendicular to the SVDD boundary (our current best guess)
for a point on the true boundary of the satisfactory region using a
root-finding method. Figure 4 is an illustration of this idea. An ini-
tial point is selected along the SVDD boundary along with an ini-
tial step size. The initial step size is selected using information
from the SVDD. If the end point is outside of the satisfactory
region, a root-finding method is used to find a point on the bound-
ary. The proposed method is described in detail in Algorithm 1.
We assume that the designer has available small number of
designs that satisfy the specified phase state properties, i.e., the
constraints. The initial samples may be obtained from prior equi-
librium experimental data or found using conventional optimiza-
tion techniques. In the case studies presented in this paper, we use
random sampling to generate n data points X ¼ fxiji ¼ 1; 2;…; ng
in the design variable space. The randomly generated samples are
assigned labels Y ¼ fyiji ¼ 1; 2;…; ng, such that y¼ 1 or y¼�1
according to whether or not they satisfy the constraints, respec-
tively. The set of indices Ib is initialized to the empty set.

The samples and their corresponding labels are used to generate
an approximation of the solution set using the SVDD technique.
We use M to denote this classification model. The model
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parameters q and c are selected such that the so-called F1 measure
is minimized, see Ref. [56] for details. Ultimately, our goal is to
search along the direction perpendicular to the boundary of M.
First, we must select a suitable starting point for this search. An
intuitive initial point is some support vector (SV), since the SVs
are those samples that lie on the boundary of the domain descrip-
tion. However, in practice, there tends to be few SVs relative to
the size of training data. In only a few iterations, all the SVs of
the SVDD model may lie on the true boundary of the satisfactory
region but our approximation may still be poor. Instead, the algo-
rithm selects the point on the boundary ofM that maximizes the
distance to any point on the true boundary. Let the indices corre-
sponding to the samples that lie on the boundary of the true solu-
tions be Ib. The initial sample xa is found such that

Maximize
t;xa

t

subject to t � jjxj � xajj 8j 2 IbX
i

b0iKGðxi; xaÞ ¼ r

(12)

where t is a dummy variable, X ¼ fxi; i ¼ 1;…; ng are the train-
ing data, and r ¼

P
ib
0
iKGðxi; xkÞ for any k 2 SV � f1;…; ng, the

set of support vectors. To prevent the case where the algorithm
attempts to “reuse” a previous initial point, Ib should also include
the indices corresponding to previous initial sample points.
Because the Gaussian Kernel is an inexpensive function, Eq. (12)
is fast to evaluate. It is important to note that the initial point xa is
not guaranteed to be satisfactory. This can occur when the SVDD
modeling parameter q (see Sec. 4) is set too “loose.” As a result, it
is necessary to evaluate the initial point xa against the constraints
C to determine its label, denoted as ya.

Next, the algorithm takes an initial step in the direction perpen-
dicular to the boundary of M at xa, which is the direction that
maximizes the distance to the feature space centroid

d ¼ @r2 zð Þ
@z

¼ �2
X

i

b0i
@K xi; zð Þ
@zi

(13)

which is the gradient of Eq. (9). In the case of the Gaussian kernel

@KG xi; zð Þ
@z

¼ 2 xi � zð Þeqjjz�xijj2 (14)

It is desirable to choose a step size c large enough to cross the
boundary of the satisfactory region. If the label ya¼ 1, we should
step outside ofM to find additional satisfactory points, “growing”
the model. On the other hand, ya¼�1 indicates that M is opti-
mistic, and we should step inside ofM to find additional unsatis-
factory points, “tightening” the model. Choosing an appropriate
initial step size has a significant impact on algorithmic perform-
ance. One consideration is that the initial step should not take us
too far from the current SVDD, M. To address this, we limit the

step size to c � mincfr2ðxa � c 	 dÞg=2, which limits the step size
according to the size and shape of M along the direction of d.
Another consideration is that during search, we should expect dis-
jointed “clusters” in M. In this situation, we should take a step
size that is at the feature space midpoint of the clusters. If dis-
jointed clusters exist along the direction d, their feature space

midpoint is at c ¼ maxcfr2ðx0 þ c 	 dÞg. We use these concepts
to determine the initial step size according to Algorithm 2.

The next step is to search for a boundary point using line search
(spec. bisection search), see Algorithm 3 for a description. If the
initial step xb did not cross the boundary of the true solution, that
is, ya¼ yb, the bisection search algorithm terminates and returns
the training set X and Y containing only the samples xa and xb.
Else, the algorithm uses bisection search to reduce the size of the
interval between xa and xb until it is less than some user-defined
error tolerance, e.

Finally, the training set X and Y are updated to contain the sam-
ples points that were evaluated against the constraints, i.e., points
for which a label y was generated. The set of indices Ib is also
updated to contain indices corresponding to the true boundary
points found (within tolerance e). This process is repeated user-
defined N times, a termination rather than a convergence criteria.
It would be possible to develop a convergence criteria based on
the change in M at each generation; this is left as future work.
Without a convergence criteria, analysis of computation complex-
ity is less meaningful but still worth considering. In the case of
the GIPSP, evaluating a design against constraints (ClassLabel in
Algorithms 1–3) is the elementary operation, all others are lower
order. Let e0 and e be the maximum interval length and error toler-
ance for the bisection search, respectively. The time complexity is
OðN log2ðe0=eÞÞ, where N is the number of iterations to be
performed.

Algorithm 1 SVDD-Based Sampling Algorithm

1. procedure SVDDsample(X ;D; C)
2. X; n RandomSampleðX ;DÞ
3. Y  ClassLabelðX; CÞ
4. Ib  1
5. for i 1 to N do
6. M train SVDD model with X, Y � Eq. (8)
7. xa; ya  Select initial point � Eq. (12)
8. xb; yb  TakeInitStepðM; C; xa; yaÞ
9. Xi;Yi; Ii  BisectionSearchðxa; ya; xb; yb; CÞ
10. X; Y  ðX;XiÞ; ðY; YiÞ � Concatenate
11. Ib  ðIb; Ii þ nÞ
12. n nþ Ii

13. returnM

Algorithm 2 Take Initial Step

1. procedure TakeInitStep(M; C; xa; ya)
2. d  gradient of rðxaÞ � Eq. (13)

3. cmax  maxcfr2ðxa þ c dÞg � r2 from Eq. (9)
4. cmin  mincfr2ðxa � c dÞg
5. c minfcmax; cming
6. if ya¼�1 then � If xa is not satisfactory
7. c �c
8. xb  xa þ c d
9. yb  ClassLabelðxb; CÞ
10. return xb, yb

Algorithm 3 Bisection Search

1. procedure BisectionSearch(xa; ya; xb; yb; C)
2. X;Y  ðxb; xaÞ; ðyb; yaÞ � Concatenate
3. I  2 � Counter
4. if ya 6¼ yb then
5. while jjxa � xbjj � e do
6. xc  xb þ 1

2
xa � xbÞð � Midpoint

7. yc  ClassLabelðxc; CÞ
8. X;Y  ðX; xcÞ; ðY; ycÞ
9. if ya¼ yc then � Update interval
10. xa; ya  xc; yc

11. else
12. xb; yb  xc; yc

13. I  I þ 1 � Update counter
14. return X, Y, I

6 Case Study

6.1 Test Problems. We evaluate the performance of the pro-
posed algorithm on Fe–Ti binary alloy system, see phase diagram
in Fig. 5. Given the thermodynamic conditions, the phase compo-
sitions are computed using ThermoCalc with the TCFE7 database.
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Recall that the GIPSP is the triple P ¼ ðX ;D; CÞ. The thermody-
namic conditions (design variables) are X ¼ ðx1; x2; x3Þ, where x1

is the mass percent of Ti, x2 is the mass percent of Fe, and x3 is
the temperature (Kelvin). The search domain D is defined as

x1 þ x2 ¼ 100

0 � xi � 100 for i ¼ 1; 2

600 � x3 � 2000

(15)

The CALPHAD model, denoted f ¼ ðf1ðXÞ; f2ðXÞ;…; f5ðXÞÞ;
maps the thermodynamic conditions to the volume fraction of
BCC, FCC, HCP, Laves, and liquid phase, respectively. We con-
sider two different scenarios (test cases). In the first test case, the
materials designer wishes to find all the thermodynamic condi-
tions that result in volume fraction of Laves and liquid phase
between 0.25 and 0.75. For this test case, the constraints C are

0:25 � fiðXÞ � 0:75 for j ¼ 4; 5 (16)

In the second test case, the materials designer wishes to find all
thermodynamic conditions that result in volume fraction FCC
greater than 0.05. For this test case, the constrain C is

f2ðXÞ � 0:05 (17)

The solutions to these search problems are illustrated in Fig. 5, the
shaded regions. The test cases were selected to investigate the per-
formance of the algorithm when the solution is nonconvex (test
case 1), and small relative to the search space (test case 2). Notice
that for test case 1, interactions at the eutectic cause irregularities
in the solution set. Although these irregularities will not agree

Fig. 2 Illustration of the SVDD method for two-dimensional training data. The training
data depicted in (a) are implicitly mapped to (b), an N-D feature space where a hyper-
sphere is a good representation of the population members. The hypersphere is defined
by a centroid b and radius r. Equation (9) is a test to determine whether a new point z is
inside the domain description. This test defines the boundary illustrated in (c).

Fig. 3 Comparison of SVM and SVDD on a simple classification problem, where the sam-
pling is balanced (a) and imbalanced (b). The shading indicates the true classification,
and the points are the training data.

Fig. 4 Illustrative example depicting a possible step size and
resulting endpoint from a given initial point along the boundary
of the SVDD M. An aim in selecting a step size is to cross the
boundary of the satisfactory region.

011401-6 / Vol. 139, JANUARY 2017 Transactions of the ASME

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



with experimental data, they complicate the search space and can
give better insight into the performance.

6.2 Results and Analysis. The proposed algorithm is
motivated by the GIPSP, which is typically multidimensional
and features response discontinuities that are problematic for
gradient-based search techniques. To evaluate the performance
of the proposed algorithm on this class of problem, we compare
to EDSD, which is intended for constraint satisfaction problems
with similar characteristics. The principal difference is that the
proposed algorithm is intended to address the case where the sat-
isfactory region is undersampled (as we expect is the case with
most GIPSPs).

In both algorithms, performance is dependent on the initial
training data. To account for this, each case was tested for 30 trials
with random initial training data. For each trial (in either test
case), we randomly sampled the domain D to find ten feasible and
ten infeasible sites. The same data are used to initialize each algo-
rithm. These initializing functions are not counted toward the
overall function count of either algorithm.

Since both EDSD and the GIPSP algorithm use binary classi-
fiers, we evaluate solution quality using the precision and recall
metrics commonly used in pattern recognition [57]. We generate a
set X of 106 random samples in the design space domain D
defined by Eq. (15). We then find X0 � X, the subset that satisfies
the user-specified conditions, C, in Eq. (16) for test case 1 and Eq.
(17) for test case 2. Next, we find X00 � X the subset that is classi-
fied as belonging to the satisfactory set, according to the classifier
(SVM for EDSD and SVDD for the GIPSP algorithm). We com-
pute the true positives, true negatives, false positives, and false
negatives as

Positive Negative

True Ntp ¼ jX0 [ X00j Ntn ¼ jXnX0 [ XnX00j
False Nfp ¼ jX0 [ XnX00j Nfn ¼ jXnX0 [ X00j

where j � j denotes cardinality. The terms positive and negative
refer to the classifier’s prediction and true and false refer to how
that prediction corresponds to the actual classification. Taking
these terms into account, we can compute the precision and recall
measures as

Precision ¼ Ntp

Ntp þ Nfp

Recall ¼ Ntp

Ntp þ Nfn

(18)

If we consider the positive classifier predictions to be the
“solution set,” precision can be interpreted as the probability that
a randomly selected alternative in the solution set will be truly sat-
isfactory. Recall is the probability that a randomly selected true
solution will be represented in the solution set. Thus, higher val-
ues of precision and recall are preferred. We also consider the
misclassification rate of the classifier as a performance metric

Misclassification rate ¼ Nfp þ Nfn

Nfp þ Nfn þ Ntp þ Ntn

(19)

Lower values of misclassification rate are preferred, however, one
must be cautions when interpreting this measure. For example, in
a case where the satisfactory region is very small, classifying the
entire region as “unsatisfactory” will have a low misclassification
rate.

We calculate each performance metric at several intervals for
each algorithm. We report the mean values and 95% confidence
interval of 30 trials for both test cases in Figs. 6 and 7, respec-
tively. In test case 1, the GIPSP algorithm produces a higher

precision approximation for any given number of function evalua-
tions. This is not unexpected since the SVDD is more conserva-
tive than the SVM technique. Both algorithms converge to a
similar measure of recall and a low level of misclassification error.
In test case 2, the GIPSP algorithm generates high-precision solu-
tions and converges to a solution with high recall and low misclas-
sification rate. However, the precision of the EDSD solution does
not improve significantly after 100 iterations, and the recall mea-
sure becomes worse. Further, the solution quality is highly vari-
able across each iteration, resulting in large confidence intervals.

For illustrative purposes, we include Figs. 8 and 9, which depict
the progression of each algorithm at the (a) 100, (b) 250, and (c)
400, function evaluations for each test case. The shaded region
represents the true solution to each CCSP found through an
exhaustive search. An attempt was made to illustrate trials that are
representative of the mean values in 6 and 7. However, we should
not that in both test cases (but especially for test case 2), the per-
formance of the EDSD algorithm varied significantly. Therefore,
no illustration of a single result can be truly illustrative of the typi-
cal results. Taking these limitations into account, the illustrations
still provide some valuable insight into the performance of each
algorithm.

As can be seen in Fig. 8, the GIPSP algorithm maintains high
precision during its progression, including few false positives.
The EDSD, on the other hand, produces more optimistic estima-
tions of the satisfactory region, initially. The higher precision of
the GIPSP solution is reflected in the “tighter” classifier boundary.
The precision at (c) 400 function evaluations for the EDSD algo-
rithm is considerably higher than the med.

Note that Fig. 9 is focused on the solution space (which is quite
small), the search space for this test problem is defined by Eq.
(15) and depicted in Fig. 5. Test case 2 is intended to highlight the
limitations of EDSD method on problems where the satisfactory
region is small relative to the search space. In such cases, the
SVM technique used in EDSD tends to overestimate the satisfac-
tory region. In Fig. 9, the overestimation occurs near the true solu-
tion (shaded portions), however, this is not always the case.
Figure 10 is an illustration of the results from another trial of the
EDSD algorithm in test case 2.

Fig. 5 Phase diagram for Fe–Ti binary alloy system. The
shaded regions correspond to the solution sets for test cases 1
and 2.
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Fig. 6 Algorithmic performance on test case 1 as measured by (a) precision, (b) recall,
and (c) misclassification. Error bars indicate the mean values and 95% confidence inter-
val of 30 trials.

Fig. 7 Algorithmic performance on test case 2 as measured by (a) precision, (b) recall,
and (c) misclassification. Error bars indicate the mean values and 95% confidence inter-
val of 30 trials.

Fig. 8 Illustration of the progression of each algorithm at the function evaluations for test
case 1. The top row corresponds to the progression of the GIPSP algorithm, and the bottom
row corresponds to the EDSD algorithm. The satisfactory region is shaded, the samples are
the points, and the classification boundaries are the outlines.
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7 Discussion and Summary

In this paper, we have presented a novel algorithm for approxi-
mating all the solutions to a CCSP with nonisolated solution
where the satisfactory region is small relative to the search space.
The algorithm uses the SVDD technique combined with a sam-
pling strategy to gradually develop the solution. The motivation
for the algorithm is the general inverse phase stability problem of
mapping user-specified regions in multidimensional phase consti-
tution space to ranges in values of thermodynamic conditions,
which we term the GIPSP. In the GIPSP, one class (the

satisfactory region) is small relative to the other (unsatisfactory
region). For scalability, it is desirable to undersample the unsatis-
factory region, since it comprises the vast majority of the space.
This motivates the use of the SVDD method in the algorithm since
it is able to more accurately (in terms of precision and recall)
model scenarios with imbalanced training data.

We investigated the performance of the algorithm on Fe–Ti
binary alloy system using ThermoCalc with the TCFE7 database.
Using this system, we formulated two test cases. In the first test
case, the solution set is nonconvex; in the second, the solution set
is small relative to the search space. We compare the performance
of the GIPSP algorithm to the EDSD algorithm, which uses a
related classification scheme, namely, SVM. The performance of
each algorithm on the test problems was measured as the preci-
sion, recall, and misclassification rate. In both test problems, the
GIPSP algorithm is able to converge to a solution with high preci-
sion and recall. The EDSD algorithm, however, had significant
difficulty in approximating the solution to test case 2. This is
likely the result of the limitations of the SVM technique used in
EDSD. The SVM technique is known to underperform in cases
with imbalanced training data sets. In test case 2, the satisfactory
region is small relative to the search space, resulting in an imbal-
anced training data set.

Future work should also investigate the performance of the
algorithm on problems of higher dimensionality that are more rep-
resentative of real-world materials design problems.
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Nomenclature

a ¼ centroid of hypersphere
b ¼ centroid of feature space hypersphere

Fig. 9 Illustration of the progression of each algorithm at the (a) 100, (b) 250, and (c) 400,
function evaluations for test case 2. The top row corresponds to the progression of the
GIPSP algorithm, and the bottom row corresponds to the EDSD algorithm. The satisfac-
tory region is shaded, the samples are the points, and the classification boundaries are
the outlines.

Fig. 10 Illustration of a single trial of the EDSD algorithm at
the 400 function evaluations for test case 2. The satisfactory
region is shaded, the samples are the points, and the classifica-
tion boundaries are the outlines. The results in this trial illus-
trate a possible overestimation of the EDSD algorithm in
regions of the search space far from the true solution.
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c ¼ SVDD parameter
Cj ¼ constraint
d ¼ direction perpendicular to SVDD boundary
f ¼ thermodynamic conditions! phase constitution

fX ¼ random parameter joint pdf
g ¼ performance function
Ib ¼ set of indices corresponding to boundary points
Ii ¼ real interval
K ¼ kernel function
n ¼ number of data points
N ¼ dimensionality of thermodynamic conditions space

Nfn ¼ number of false negatives
Nfp ¼ number of false positives
Ntn ¼ number of true negatives
Ntp ¼ number of true positives

q ¼ Gaussian kernel parameter
r ¼ hypersphere radius
R ¼ reliability
Rj ¼ relation on the variables involved in constraint Cj

Sj ¼ scope of the constraint Cj

SV ¼ set of support vectors
t ¼ dummy variable

X ¼ training data set
xi ¼ design variable
xi ¼ a vector in the design variable space X
Y ¼ set of training data labels
yi ¼ training data label
z ¼ test point
bi ¼ Lagrangian multiplier
c ¼ step size
e ¼ error tolerance

e0 ¼ maximum interval length
ni ¼ slack variable
U ¼ data space! feature space
A ¼ n-tuple solution to P
C ¼ t-tuple of constraints
D ¼ search space
M¼ classification model
P ¼ constraint satisfaction problem
X ¼ n-tuple of variables
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