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SUMMARY

The paper adresses the problem of stabilization of a speci"c target position of underactuated Lagrangian or
Hamiltonian systems. We propose to solve the problem in two steps: "rst to stabilize a set with the target
position being a limit point for all trajectories originating in this set and then to switch to a locally stabilizing
controller. We illustrate this approach by the well-known example of inverted pendulum on a cart.
Particularly, we design a controller which makes the upright position of the pendulum and zero displace-
ment of the cart a limit point for almost all trajectories. We derive a family of static feedbacks such that any
solution of the closed loop system except for those originating on some two-dimensional manifold
approaches an arbitrarily small neighbourhood of the target position. The proposed technique is based on
the passivity properties of the inverted pendulum. A possible extension to a more general class of
underactuated mechanical systems is discussed. Copyright ( 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The inverted pendulum is an ubiquitous example of nonlinear control systems analysis and
design [1}8]. It is a popular experiment used for educational purposes, and belongs to a class of
underactuated mechanical systems. In this paper using this example we demonstrate a general
approach to stabilization of such systems.

Mathematical models of mechanical systems are usually described by the Hamiltonian or
Euler}Lagrange equations. These models have a structure that makes them very attractive for the
design of control algorithms based on energy or passivity consideration. This approach has already
proved to be e!ective in the control design for mechanical and electro-mechanical systems [9]. In
this paper this method is utilized to investigate the global properties of the designed controller.
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Figure 1. The cart pendulum system.

The problem of the local stabilization of the inverted pendulum on the cart in the upright
position was solved a long time ago, see [1]. A possible approach is based on the linearization of
the system equation around the desired equilibrium point. However, the problem becomes more
ambitious if one wants to investigate non-local behaviour of the closed-loop system. It can be
shown that there is no continuous time-invariant controller which can solve the stabilization
problem for all initial conditions and hence it is reasonable to look for a globally stabilizing
controller in the class of hybrid systems.

Such a controller can be designed if one "nds a feedback which makes the desired equilibrium
point an u-limit point for all solutions of the closed-loop system. This problem is the subject of
the paper. Loosely speaking, our goal is to design a controller such that all (or almost all)
solutions of the closed-loop system approach an arbitrary vicinity of the target position (zero
displacement of the cart and upright pendulum position(Figure 1)), where such controller can be
switched to any locally stabilizing one.

Although the problem considered in this paper is a kind of &toy example' since any friction and
disturbances are neglected, we hope that a proposed solution gives a deep insight of how to
perform a nonlocal analysis in the complex mechanical underactuated systems. In Section 4 the
possible extension of the main ideas to a class of Lagrange systems, that are invariant with respect
to some group action, is discussed.

The paper is organized as follows. Section 2 contains the description of the problem and some
known material. The main results of the paper are collected in Sections 3 and 4. Simulation of the
obtained results are presented in Section 5 and conclusions are drawn in Section 6.

2. PRELIMINARIES

Under the standard assumptions of a massless rod, point masses, no friction, etc., the equations of
the inverted pendulum motion are

M (q)qK#C(q, qR )qR #G(q)"q (1)
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where q"[x, h]T3R1]S1, x is the horizontal displacement of the cart, h is the angle between the
pendulum rod and the vertical which is zero at the upright position:

M(q)"C
M#m ml cos h
ml cos h ml2 D (2)

m, M are the masses of the pendulum and the cart, respectively; l is the length of the rod;

C(q, qR )"C
0 !ml sin h hQ
0 0 D (3)

G(q)"C
0

!mgl sin hD, q"C
f
0D (4)

where f is the control input to be de"ned.
Consider the following problem: to design a time-invariant static feedback which globally

stabilizes the upright equilibrium of the pendulum with zero displacement of the cart.
It can be shown that this problem has no solution in a class of continuous static feedbacks

which are periodic in h. Indeed, due to time invariance and the periodicity in h of the feedback the
phase space of the closed-loop system remains cylindrical and the closed-loop system always
has at least one more equilibrium point additional to the upright position. On the other
hand, using the linear approximation of the system around the upright equilibrium it is well
known how to construct linear locally stabilizing controller [1]. These facts show that it is natural
to devide the problem into parts: (1), to drive any solution to an arbitrary neighbourhood of the
upright equilibrium with zero displacement of the cart; (2) to stabilize this point by a local
controller.

The "rst subproblem is the main subject of the paper. The following simple statement gives
a foundation for its solution.

Proposition
Consider a subset )

0
of the cylindrical phase space de"ned by equations

E(q, qR )"0, x"0, xR "0

where

E(q, qR )"1
2
q5 TM(q)q5 #mgl (cos h!1) (5)

is the total energy of the unforced (with f"0) inverted pendulum (1). Then for any continuous
time-invariant feedback control, which locally stabilizes the set )

0
, the upright equilibrium of the

pendulum with zero displacement of the cart is an u-limit point of any solution from the basin of
attraction of )

0
.

To prove this fact, one can remark that the constraint x5 "0 obviously implies xK"0, and that the
last relation uniquely de"nes, see (1), the value of the control f on the set )

0
as follows:

f"m sin h ( g cos h!lhQ 2)

285GLOBAL PROPERTIES OF INVERTED PENDULUM

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:283}300



Substituting this control in the hG -part of Equations (1), one has

hG"
(M#m)mgl sin h!m2l2hQ 2 sin h cos h!ml cos h ) f

ml2(M#m sin2 h)

"

g

l
sin h

This is the equation for the motion of the free pendulum with the "xed pivot.
The constraint E (q, qR )"0 singles out three special motions of the simple pendulum: the

upright equilibrium and two homoclinic curves. All of these solutions have the upright position as
the unique u-limit point. Therefore, any solution of the closed-loop system with initial conditions,
lying in the area of attraction of the set )

0
, has this equilibrium as an u-limit point (probably not

unique).
Thus the solution of the "rst subproblem (stabilization of the set )

0
) is important and leads to

the solution of the original problem. Introduce the function

<(q, qR )"
k
E
2

E (q, qR )2#
k
v
2

xR 2#
k
x
2

x2 (6)

where k
E
, k

v
, k

x
are some positive constants. It is obvious that < is non-negative and that the set

M(q, qR ) :<(q, qR )"0N coincides with the desired goal set )
0
. Straightforward computations show

that the derivative of < along any solution of (1) is

<0 "x5 CfAkE E (q, qR )#
k
v

1#sin2 hB#
k
v
sin h(h0 2!g cos h)

1#sin2 h
#k

x
xD (7)

for simplicity it will be assumed that M"m"l"1.
To assure the stabilization of the set )

0
the function< should decrease (not increase) along the

closed-loop system solutions. Particularly, this is true if the feedback control law f satis"es the
relation

f (q, qR )AkEE (q, qR )#
k
v

1#sin2 hB#
k
v
sin h ) (h0 2!g cos h)

1#sin2 h
#k

x
) x"!/ (q, q5 ) (8)

where / is some scalar function forming an acute angle with x5 , i.e.

x5 / (q, qR )'0 ∀ x5 O0, ∀ x, h, hQ

In this case <0 is negative along the closed-loop system solutions.
It is worth mentioning that Equation (8) means that the closed-loop system is passive from / to

x5 and the problem of feedback design in this case is equivalent to the problem of state feedback
passi"cation. We focus our attention to C1-smooth functions / (q, qR ) depending only on x5 , i.e.
/ (q, qR )"/ (x5 ). In particular, one of these regulators, with /(z)"z, was used in Reference [8].
Denote the set

F"M(k
E
, k

v
, k

x
, /())): k

E
'0, k

v
'0, k

x
'0 and / (z) is a C1-smooth function forming

an acute angle with z and such that /Q (0)'0N (9)

Any element in F corresponds to some feedback controller f.
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3. MAIN RESULTS

To establish the global properties of the controller f (q, q5 ) implicitly de"ned in (8), one should
provide the criterion of solvability of Equation (8) with respect to the control variable f. The next
statement contains such a condition.

Proposition 1
Let k

E
, k

v
be any positive constants. The inequality

k
E
E (x

1
, x

2
, h

1
, h

2
)#

k
v

1#sin2 h
1

O0, ∀ x
1
, x

2
, h

1
, h

2
(10)

holds if and only if the constants k
E
, k

v
satisfy the inequality

k
v
'ogk

E
(11)

where

o"
34#14J7

27
(12)

Moreover, inequality (11) guarantees that the left-hand side of (10) is a positive function.

Proof. Denote

E"k
E
E(x

1
, x

2
, h

1
, h

2
)#

k
v

1#sin2 h
1

and consider the equation E"0. This is equivalent to

k
v
!k

E
(1!cos h

1
) (1#sin2 h

1
) g#k

E
(1#sin2 h

1
) (a

1
#a

2
)"0

where

a
1
"(x

2
#1

2
h
2
cos h

1
)2, a

2
"1

2
h2
2
(1!1

2
cos2 h

1
)

De"ne the value of h
1

where the function

F (h
1
)"(1!cos h

1
) (1#sin2 h

1
)

attains its maximal value. Taking the derivative of F, we have

F@(h
1
)"sin h

1
(2#2 cos h

1
!3 cos2 h

1
).

Solving the equation F@(h
1
)"0 we "nd that

h*
1
"argmaxh F (h)"$arccosA

2!J28

6 B and F(h*
1
)"

34#14J7

27

Thus for any x
i
, h

i
, i"1, 2

E](1#sin2 h
1
)"k

v
!k

E
gF (h

1
)#k

E
(1#sin2 h

1
) (a

1
#a

2
)

*k
v
!k

E
gF (h*

1
)

"k
v
!k

E
go
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By (11) the last expression is positive. Thus inequality (11) implies (10). Suppose that (11) is not
valid. Then it is obvious that there exists values of x

i
, h

i
, i"1, 2 which solve the equation E"0.

This ends the proof.

Thus, due to Proposition 1, if inequality (11) holds, Equation (8) is globally solvable and
f (q(t), qR (t)) is bounded provided that (q(t), qR (t)) is bounded. Denote Fo as a subset of elements of
F for which inequality (11) holds. We will write f3Fo having in mind that f is uniquely de"ned by
the controller given by Equation (8), corresponding to some point in Fo. The following simple
statement contains some qualitative result on the system behaviour even for the case when
Equation (8) cannot be solved.

Proposition 2
Let k

E
, k

v
be any positive constants. Suppose that the equality

k
E
E (q(t), q5 (t))#

k
v

1#sin2 h (t)
"0, ∀ t3T (13)

is valid for some time interval T. Then the functions x5 (t), hQ (t) are uniformly bounded on T.

Proof. Indeed, equality (13) is equivalent to

g (cos h!1)#
k
v

k
E
(1#sin2 h)

"!((xR #1
2

hQ cos h)2#1
2
hQ 2 (1!1

2
cos2 h))

This implies that the sum of (xR #1
2
h0 cos h)2 and 1

2
h0 2(1!1

2
cos2 h) is uniformly bounded from

below and above. But both items are positive so the value of h0 2(1!1
2
cos2 h) is bounded from

below and above and, in particular, Dh0 D is uniformly bounded. Therefore, DxR D is also uniformly
bounded. [

One can easily verify that, under the assumption M"m"l"1, the system (1) can be
rewritten in the equivalent form

xK"
1

1#sin2 h
[sin h (h0 2!g cos h)#f ] (14)

hG"
1

1#sin2 h
[!h0 2 sin h cos h#2g sin h!f cos h] (15)

One of the main results of this paper is:

¹heorem 3
Consider the controlled inverted pendulum (1). Take any state feedback controller f3Fo

de"ned by Equation (8) with appropriate parameters Mk
E
, k

v
, k

x
, / ())N. Then

(1) any solution of the closed-loop system is globally well de"ned and bounded;
(2) for any solution [q (t), qR (t)] of the closed-loop system, its u-limit set )

*
consists of either the

equilibrium

[x, h,xR , hQ ]"[0, 0, 0, 0,] (16)
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the equilibrium

[x, h,xR , hQ ]"[0,n, 0, 0] (17)

or the set

)
0
"M[x, h, xR , hQ ]: h0 2"g (1!cos h), xR "0, x"0N; (18)

(3) if, in addition, the initial conditions satisfy the inequality <(q
0
, qR

0
)(< (0,n, 0, 0), then any

solution of the closed-loop system satis"es the following limit relation:

lim
t?=

<(q (t), qR (t))"0 (19)

Proof. Let [q
0
, qR

0
] be any point in the state space. Consider the solution [q(t), qR (t)] of the

closed-loop system with (q(0), qR (0))"(q
0
, qR

0
). From the assumption f3Fo and Proposition 1,

Equation (8) is solvable with respect to f. Then the derivative of< along the solution q (t) takes the
form

<Q (q (t), qR (t))"!xR (t)/(xR (t)) (20)

Therefore, one can conclude that the solution q (t)3R1]S1 is bounded, has a non-empty u-limit
set )

*
, and that < (q(t), qR (t)) tends to some constant value as tP#R. Indeed, this follows from

the facts that < is proper with respect to R3]S1, nonnegative and nonincreasing along the
solution q(t). Moreover, the value of xR (t) tends to zero as tP#R. Indeed, due to (20) the value of
the integral

P
`=

0

xR (q)/ (xR (q)) dq

is bounded. Obviously the function [q (t), qR (t)] is di!erentiable and its derivative is uniformly
bounded. Thus by Barbalat lemma the value of

xR (t)/(xR (t))

tends to zero as tP#R. This implies that xR (t)P0 as tP#R.
Thus one can conclude that on the set )

*
, which is non-empty and consists of the whole

trajectories of the closed-loop system, the function < is constant, xR "0 and

f (q, qR )AkEE(q, qR )#
k
v

1#sin2 hB#
k
v
sin h (hQ 2!g cos h)

1#sin2 h
#k

x
x"!/ (0)"0 (21)

The relation xR "0 immediately implies that x is some constant and xK"0 on )
*
. The last, due to

Equation (14), is equivalent to

f (q, qR )"sin h(g cos h!hQ 2) (22)

on )
*
.

Substituting (22) into (15) one obtains that any motion of the closed-loop system subjected to
the above-mentioned constraints is: x equals to a constant, h is some trajectory of the unforced
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pendulum. Indeed, due to (15) one has

hG"
1

1#sin2 h
[!h0 2 sin h cos h#2g sin h!f cos h]

"

1

1#sin2 h
[!hQ 2 sin h cos h#2g sin h!sin h(g cos h!hQ 2) cos h]

"g sin h. (23)

Substituting the value (22) of f into (21), one has

0"f (q, qR )AkEE (q, qR )#
k
v

1#sin2 hB#
k
v
sin h (hQ 2!g cos h)

1#sin2 h
#k

x
x

"f (q, qR )k
E
E (q, qR )#k

x
x#

k
v
( f (q, qR )#sin h (hQ 2!g cos h))

1#sin2 h

"f (q, qR )k
E
E (q, qR )#k

x
x (24)

Here x is constant. Moreover, the value of the function<(q, qR ) on the set )
*

is constant. Therefore
due to relation (6) and xR "0, the value of E(q, qR ) on the set )

*
is also constant. The last arguments

and relation (24) result in two possible cases.
First, for any closed-loop system trajectory [q

*
(t), qR

*
(t)] in )

*
the constant value of

E (q
*
(t), qR

*
(t)) is equal to zero. Moreover, by equality (24) the constant value of x is also zero. Thus,

the set )
*

is set (18).
Second, if for any trajectory [q

*
(t), qR

*
(t)] of the closed-loop system in )

*
the value of

E (q
*
(t), qR

*
(t)) is not zero then due to (24) the following relation

f (q
*
(t), qR

*
(t))"sin h

*
(t) (g cos h

*
(t)!hQ 2

*
(t))"const (25)

holds for all t*0. Now, it is worth to point out that for any trajectory of system (23), except the
upright position, there exists a moment of time ¹

*
*0 such that h

*
(¹

*
)"n. In particular, this

means that the constant in (25) is always zero, i.e. t*0

f (q
*
(t), qR

*
(t))"sin h

*
(t) (g cos h

*
(t)!hQ 2

*
(t))"0. (26)

In turn, due to relation (24) and the positiveness of k
x
, it immediately implies that x"0.

To complete the proof of part (2) one should determine all motions of system (23), which satisfy
constraint (26). System (23) describes the motions of a simple pendulum and has the conserved
quantity

H
0
(h, hQ )"1

2
hQ 2#g (cos h!1)

Suppose that there exists a trajectory [h
*
(t), hQ

*
(t)] of system (23), which di!ers from the upright

and downward equilibria, [0, 0] and [n, 0], and such that relation (26) is valid for all t*0. Thus
there exist e'0 and a time interval T"(¹

*
!e,¹

*
#e) such that sin h

*
(t)O0 ∀ t3T. Due to

(26) this implies that

g cos h
*
(t)!h0 2

*
(t)"0, ∀ t3T (27)
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Then for this special trajectory one has that ∀ t3T

H
0
(h

*
(0), hQ

*
(0))"1

2
hQ 2
*
(t)#g cos h

*
(t)!g

"1
2
hQ 2
*
(t)#hQ 2

*
(t)!g (28)

In particular, this implies that hG
*
(t),0 for all t3T. Coming back to Equation (23) one concludes

that sin h
*
(t),0 on the interval T. This obviously corresponds to only one of the equilibriums

of pendulum (23) : [0, 0] and [n, 0]. Thus it is shown that the assumption E (q
*
(t), qR

*
(t))O0 for

any closed-loop system trajectory lying in )
*

implies that [q
*
(t), qR

*
(t)] is either equilibrium

(16) or (17).
To prove part (3) of Theorem 3 let us suppose that <(q

0
, qR

0
)(<(0, n, 0, 0). Consider the

solution [q(t), qR (t)] of the closed-loop system starting from the point [q
0
, qR

0
]. As it is shown above,

"rst, along this trajectory the function < is not increasing, and, second, its u-limit set consists of
either equilibrium (16) or equilibrium (17) or is contained in the union of set (18) and equilibrium
(17). Then the downward equilibrium (16) is strictly separated from the trajectory [q (t), qR (t)].
Therefore along this solution the limit relation (19) is valid. [

Remark 4
Essentially the proof of Theorem 3 can be divided into two parts. The "rst part contains

standard arguments based on the properties of some appropriate storage function and Barbalat's
lemma. To complete the second part of the proof one should analyse motions of the closed-loop
system subject to some constraints (equalities) with respect to state variables. Such an analysis
corresponds to the veri"cation of <-detectability of the system with some suitable output, see
[10, De"nition 2.2]. In our case such an output is y (q, qR )"x5 .

Remark 5
Theorem 3 is partly reproduced the results developed in Reference [8], where it was shown that

if the initial conditions are close enough to the set )
0

then for any controller f3F the limit
relation (19) is valid. The simulations made in the Section 5 show that the controllers introduced
in Reference [8] do not work globally and the closed-loop system may have singularities for some
initial conditions.

Theorem 3 singles out three sets in the state space of the inverted pendulum, which serve as
u-limit sets for the closed-loop system solutions. But Theorem 3 does not re#ect the global
properties of the closed-loop system in a sense that it does not say which of these three sets are
&generically' attractive sets, i.e. which of these three sets attract almost all trajectories of the
closed-loop system. This problem is discussed in the next statements.

Proposition 6
Consider the controlled inverted pendulum (1). For any controller f3F the upright equilib-

rium (17) is hyperbolic. Moreover, the dimension of its stable manifold is 3 and the dimension of
its unstable manifold is 1.

Proposition 7
Consider the controlled inverted pendulum (1). For any controller f3Fo the downward

equilibrium (16) has at least a two-dimensional stable manifold. If the parameters of the controller
f satisfy the inequality

4g2 k
E
'gk

v
#k

x
(29)
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then the downward equilibrium (16) is a hyperbolic stationary point of the closed-loop system.
Moreover, the dimension of its stable manifold is 2 and the dimension of its unstable manifold
is 2.

The proofs of Propositions 6 and 7 are given in the appendix. These statements make it possible
to formulate the next theorem.

¹heorem 8
Consider the controlled inverted pendulum (1). Take any state feedback controller f3Fo

de"ned by (8). Suppose that the parameters of the controller f satisfy inequality (29). Then the set
)

0
, de"ned by (18), is the &generic' attractive set, i.e. for all initial conditions [q

0
, qR

0
] (except

a stable two-dimensional manifold of the downward equilibrium with zero displacement of the
cart) the solution [q (t), qR (t)] of the closed-loop system, starting at this point, tends to the set
)

0
and satis"es the limit relation

lim
t?`=

< (q(t), qR (t))"0

4. SET STABILIZATION FOR UNDERACTUATED LAGRANGE SYSTEMS WITH
CYCLIC CO-ORDINATES

The main ideas of the presented results are applicable for the control of a class of Lagrangian
systems being invariant with respect to some group action. Suppose that the system has
a con"guration space Q"#]X, q"(h, x), and the equations of motion are

d

dt
+hQL!+hL"0 (30)

d

dt
+

x0L"u (31)

Here L is the Lagrangian of the unforced system

L(q, qR )"1
2

SqR , qR T!%(q)

with S), )T being a Riemannian metric on Q and % being a potential energy; u is a control action. It
is assumed that L is cyclic in the X-variables, i.e. the Lagrangian does not depend on these
co-ordinates. This implies that the corresponding generalized momenta are conserved quantities
of the unforced system, see (31). Introduce the total energy E (q, qR ) of the unforced system (30)}(31)

E (q, qR )"qR i+
q5 i
L(q, qR )!L

Due to standard assumptions (the compatibility of the Riemannian metric and the geometric
connection) the total energy satis"es the passivity relation

d

dt
E (q(t), qR (t))"xR (t)Tu(t)

Given a constant E
0

and a vector a, the problem is to de"ne the feedback control such that
along the closed-loop system solutions (q(t), qR (t)) the limit relations

lim
t?`=

E (q (t)qR (t))"E
0

(32)
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lim
t?`=

x ((t))"a (33)

are valid. Such problem includes the main subject of the paper, i.e. the swinging up of the inverted
pendulum, with a"0 and E

0
being equal to the energy corresponding to the upright equilibrium.

If one changes the value of E
0

it will correspond to the stabilization of the rotations of the
pendulum with zero displacement of the cart. Another examples come from the consideration of
the spherical pendulum on the cart or the Furuta pendulum.

Consider the storage function

<(q, qR )"
k
E
2

[E!E
0
]2#

k
v
2

Dx5 D2#1
2
Dx!aD2

its derivative along the solutions of (30) and (31) has the form

d

dt
<"xR T[k

E
[E!E

0
]u#k

v
xK#[x!a]]

Using (31), one has

d

dt
<"xR TCAkE[E!E

0
]#k

v
[0 I]M(q)~1C

0

IDB u#g(q, qR )D
where M(q) is a metric tensor associated with the Riemannian metric and g (q, qR ) is some function
which depends on L and parameters k

E
, k

v
, a.

Take any smooth function /(x) , such that xT/ (x)'0 for any xO0, and consider the equation

AkE[E!E
0
]#k

v
[0 I]M(q)~1C

0

ID Bu#g (q, qR )"!/ (xR ) (34)

It is worth to mention that we have already seen Equation (34) for the inverted pendulum, (cf. (8)).
To solve this equation with respect to u one should invert the matrix

k
E
[E!E

0
]I#k

v
[0 I]M(q)~1C

0

ID (35)

It can be shown that if the energy function E is bounded from below (this is the standard
situation), then there exist positive parameters kE, k

v
such that this matrix is globally

strictly positive de"nite, i.e. globally invertible. For the case of the inverted pendulum E is
bounded from below and the conditions of the invertability of matrix (35) are stated in Proposi-
tion 1.

Thus Equation (34) can be solved and for such de"ned control variable u one has

d

dt
< (q(t), qR (t))"!xR (t)T/ (xR (t)))0

To prove the validity of the limit relations (32) and (33) for the closed-loop system one should
verify the <-detectability of the set M(q, qR ) :E (q, qR )"E

0
, x"a, xR "0N.
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Figure 2. Local asymptotic stability.

AMatlab/SIMULINK is a trademark of The Math Works, Inc.

5. SIMULATION RESULTS

In order to observe the performance di!erence compared with the result in Reference [8], we have
done simulations Matlab 5/SIMULINK.A

We have considered the system with the same parameters as in Reference [8]: M"1, m"1,
l"1, g"9.8 m/s2. For the initial conditions:

x (0)"!10, v(0)"1

h(0)"
n
4
, u(0)"0

and the controller parameters k
v
"10, k

x
"0.1 and k

E
"1 we get the same as shown in Reference

[8], reproduced in Figure (2).
These controller parameters do not satisfy the conditions for global existence of the controller

given in Proposition 1, see (11). This means that there might exist initial conditions for which the
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Figure 3. Singularity in the controller.

system does not converge. The initial conditions

x (0)"100, v(0)"1

h(0)"
n
4
, u(0)"0

is outside the estimated region of attraction given in Reference [8], and Figure 3 shows that the
controller indeed has a singularity. By changing the controller parameters to k

v
"30, k

x
"0.1,

k
E
"1, the controller is globally de"ned, and Figure 4 shows that the system again converges to

the desired set.
Figure 5 shows that for large initial conditions, outside the estimated region given in Reference

[8], the system still converges to the desired set.

6. CONCLUSIONS

Using the &toy example' of the inverted pendulum we have demonstrated a general approach to
stabilization of some target positions of undeructuated mechanical systems. The approach is
based on the passivity properties of Lagrangian or Hamiltonian systems and allows one to "nd
a family of static feedback controllers. Using a storage function which has the term corresponding
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Figure 4. Convergence with new controller parameters.

to the total energy of the system it is possible to stabilize the set corresponding to the desired
energy level with a prespeci"ed value of some variables (zero displacement of the cart). For the
example considered in this paper it turns out that this set is a union of homoclinic solutions and
therefore any solution which starts inside this set tends to the target point. Moreover, using the
storage function as a Lyapunov function candidate it is possible to estimate the region of
attraction of this set*the set of all initial data for which the corresponding solution has a target
position as an u-limit point. For the inverted pendulum example the region of attraction is the
whole phase space except for some two-dimensional manifold.

Thus, we found a family of feedbacks which make the target position a limit point for almost
any solution of the closed-loop system. In other words, almost any solution approaches an
arbitrarily neighbourhood of the target position. Hence to solve the initial problem of stabiliz-
ation at the target position it is su$cient to design a locally stabilizing controller with a switching
rule between the controllers. In a more general situation we propose to design step-by-step
controllers which stabilize the sets corresponding to the desired values of the "rst integrals of the
free system. The main advantage of this approach is that the Lyapunov functions rely on
Hamiltonian or Lagrangian structure of the system and therefore have clear physical sense.
However, one can see some drawbacks as well: "rst, all dissipative forces are assumed to be
neglectable and, second, one has to carefully design the switching rules between controllers. We
will continue our study in this direction.
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Figure 5. Convergence to the desired set with large initial conditions.
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APPENDIX

Proofs of Propositions 6 and 7. Consider the linear approximation of the closed-loop system in
the equilibrium points (16) and (17). It has the form

d

dt C
y
1

y
2

y
3

y
3
D"AC

y
1

y
2

y
3

y
3
D"

LF
1

LxR
LF

1
Lx

LF
1

LhQ
LF

1
Lh

1 0 0 0
LF

2
LxR

LF
2

Lx

LF
2

LhQ
LF

2
Lh

0 0 1 0
K
(0,n,0,0) or (0,0,0,0)

C
y
1

y
2

y
3

y
3
D (A1)

297GLOBAL PROPERTIES OF INVERTED PENDULUM

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:283}300



where

F
1
(q, qR )"

1

1#sin2 h
[sin h(hQ 2!g cos h)#f ]

F
2
(q, qR )"

1

1#sin2 h
[!hQ 2 sin h cos h#2g sin h!f cos h].

Straightforward calculations show that for these equilibriums

LF
1

LhQ
"0,

LF
2

LhQ
"0

LF
1

Lh
"

k
v
g

k
v
#k

E
g (cos h!1)

!g,
LF

2
Lh

"cos hA2g!
k
v
g

k
v
#k

E
g (cos h!1)B

LF
1

LxR
"!

/Q (0)

k
v
#k

E
g (cos h!1)

,
LF

2
LxR

"cos h
/Q (0)

k
v
#k

E
g (cos h!1)

LF
1

Lx
"!

k
x

k
v
#k

E
g (cos h!1)

,
LF

2
Lx

"cos h
k
x

k
v
#k

E
g (cos h!1)

where h is either 0 or n. Due to zeros on the "rst line of the last formulas the characteristic
polynomial of the matrix A, see (A1), is

det (jI
4
!A)"j4#j3A!

LF
1

LxR B#j2A!
LF

1
Lx

!

LF
2

Lh B
#jA

LF
1

LxR
LF

2
Lh

!

LF
2

LxR
LF

1
Lh B#

LF
1

Lx

LF
2

Lh
!

LF
2

Lx

LF
1

Lh
(A2)

Consider ,rst the downward equilibrium (16). For this point polynomial (A2) takes the form

p (j)"j4#a
1
j3#a

2
j2#a

3
j#a

4
(A3)

where

a
1
"

/Q (0)

k
v
!2g k

E

, a
2
"

k
x
#g k

v
!4g2 k

E
k
v
!2g k

E

a
3
"

g/Q (0)

k
v
!2g k

E

, a
4
"

g k
x

k
v
!2gk

E

Due to the assumptions one can easily verify that for any controller f3Fo
a
1
'0, a

3
'0, a

4
'0

Let j
1
, j

2
, j

3
, j

4
be the roots of polynomial (A3). If all j

i
, i"1,2, 4, are complex then j

1
"j1

2
,

j
3
"j1

4
and

2 Rej
1
#2 Rej

3
"!a

1
(0
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Therefore at least two of j
i
, i"1,2, 4, have negative real parts. Suppose that two of j

i
,

i"1,2, 4, for example j
1

and j
2
, are real constants. Then j

3
"j1

4
and

j
1
#j

2
#2Re j

3
"!a

1
(0

If Re j
3
*0, otherwise one has two complex roots j

3
, j

4
with negative real parts, then at least one

of j
1
, j

2
is negative. But due to the inequality

j
1
j
2
Dj

3
D2"a

4
'0 (A4)

another real root should be also negative. Suppose that all j
i
, i"1,2, 4 are real. By the

inequality

j
1
#j

2
#j

3
#j

4
"!a

1
(0

at least one of them is negative. Due to the inequality

j
1
j
2
j
3
j
4
"a

4
'0 (A5)

the polynomial (A3) should have at least two negative roots. Thus, it is shown that the linear
approximation of the closed-loop system with any f3Fo in the downward equilibrium (16) always
has at least two eigenvalues with negative real part. This implies that the stable manifold of this
equilibrium is at least two dimensional.

Suppose now that the parameters of the controller f3F in addition satisfy inequality (29),
which means that the value of the constant a

2
is negative, a

2
(0. We are going to check in the

previous manner that under this condition polynomial (A3) always has two roots with positive
real part.

Indeed, if all roots, j
1
, j

2
, j

3
, j

4
, are complex, in particular, j

1
"j1

2
, j

3
"j1

4
. It follows from the

inequality

Dj
1
D2#Dj

3
D2#4Re j

1
Re j

3
"a

2
(0

that Re j
1

and Re j
2

have di!erent signs, i.e. two roots of (A3) have positive real parts.
Suppose that polynomial (A3) has two real roots, for example j

1
, j

2
. By inequality (A4) they

have the same sign, i.e. j
1
j
2
'0. Then due to the relation

Dj
3
D2#j

1
j
2
#(j

1
#j

2
)2Re j

3
"a

2
(0

the constants j
1
#j

2
and Re j

3
have di!erent signs, i.e. two roots of (A3) have positive real parts.

Suppose that all roots are real. Due to (A5) the number of negative roots is even. If one
supposes that all roots are negative then it contradicts the inequality

j
1
j
2
#j

1
j
3
#j

1
j
4
#j

2
j
3
#j

2
j
4
#j

3
j
4
"a

2
(0

Proposition (7) is proved. K

Consider the upright equilibrium (17). For this point polynomial (A2) takes the form (A3) with
the following coe$cients:

a
1
"

/Q (0)

k
v

, a
2
"

k
x

k
v

!g, a
3
"!

g/Q (0)

k
v

, a
4
"!

g k
x

k
v
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Due to assumptions one has

a
1
'0, a

3
(0, a

4
(0

The value of a
4

is negative. Hence polynomial (A3) has at least one positive j
1

and one negative
j
2

roots. Suppose that another two roots j
3
, j

4
are complex, j

3
"j1

4
. Then one has

(j
1
#j

2
)#2Re j

3
"!a

1
(0 (A6)

(j
1
#j

2
) ) Dj

3
D2#j

1
j
2
2Re j

3
"!a

3
'0 (A7)

If one assumes that Re j
3
*0 then by (A6) the value of j

1
#j

2
is negative. Moreover, the value of

j
1
j
2

is also negative. Thus the left-hand side of (A7) should be non-positive, but it is positive.
Therefore, Re j

3
(0.

Suppose that all roots are real. Then j
1
'0, j

2
(0, j

1
j
2
j
3
j
4
"a

4
(0, j

1
#j

2
#j

3
#j

4
"

!a
1
(0 and

(j
1
#j

2
)j

3
j
4
#(j

3
#j

4
) j

1
j
2
"!a

3
'0 (A8)

Obviously j
3
j
4
'0. The assumption (j

3
#j

4
)'0 implies that (j

1
#j

2
)(0 and that

(j
1
#j

2
) j

3
j
4
#(j

3
#j

4
) j

1
j
2
(0.

This contradicts (A8). Proposition 6 is proved. K

REFERENCES

1. Kwakernaak H, Sivan R. ¸inear Optimal Control Systems. Wiley: New York, 1972.
2. Wei Q, Dayawansa WP, Levine WS. Nonlinear controller for an inverted pendulum having restricted travel.

Automatica 1995; 31:841}850.
3. Chung CC, Hauser J. Nonlinear control of a swinging pendulum. Automatica 1995; 31:851}862.
4. As stroK m KJ, Furuta K. Swinging up a pendulum by energy control. Proceedings of the 13th IFAC=orld Congress, vol.

E, San Francisco, 1996; 37}42.
5. Fradkov AL. Swinging control of nonlinear oscillations. International Journal of Control 1996; 64(6):1189}1202.
6. Lin Z, Saberi A, Gutmann M, Shamash YA. Linear controller for an inverted pendulum having restricted travel:

a high-and-low gain approach. Automatica 1996; 32:933}937.
7. Spong MW, Praly L. Control of underactuated mechanical systems using switching and saturation. ¸ecture Notes in

Control and Information Sciences, vol. 222, Springer: Berlin, 1997; 162}172.
8. Lozano R, Fantoni I. Passivity based control of the inverted pendulum. Proceedings of the 4th IFAC Symposium on

Nonlinear Control Systems Design, vol. 1, Enschede, The Netherlands, July 1998; 145}150.
9. Ortega R, Loria A, Nicklasson PJ, Sira-Ramirez H. Passivity-based control of Euler}¸agrange Systems: Mechanical,

Electrical and Electromechanical Applications, Communications and Control Engg. Series. Springer: Berlin, 1998.
10. Shiriaev AS. The notion of <-detectability and stabilization of invariant sets of nonlinear systems. Proceedings of the

37th CDC, Tampa, 1998; 2509}2514.

300 A. SHIRIAEV E¹ A¸.

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:283}300


