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ABSTRACT 

This paper deals with the development of simulation-based 
design models under uncertainty, and presents an approach for 
building surrogate models and validating them for their efficacy 
and relevance from a design decision perspective. Specifically, 
this work addresses the fundamental research issue of how to 
build such surrogate models that are computationally efficient 
and sufficiently accurate, and meaningful from the viewpoint of 
its subsequent use in design. Towards this goal, this work 
presents a Bayesian analysis based iterative model building and 
model validation process leading to reliable and accurate 
surrogate models, which can then be invoked in the final design 
optimization phase. The resulting surrogate models can be 
expected to act as abstractions or idealizations of the 
engineering analysis models and can mimic system 
performance in a computationally efficient manner to facilitate 
design decisions under uncertainty. This is accomplished by 
first building initial models, and then refining and validating 
them over many stages, in line with the iterative nature of the 
engineering design process. Salient features of this work 
include the introduction of a novel preference-based design 
screening strategy nested in an optimally-selected prior 
information set for validation purposes; and the use of a 
Bayesian evaluation based model-updating technique to capture 
new information and enhance model’s value and effectiveness. 
A case study of the design of a windshield wiper arm is used to 
demonstrate the overall methodology and the results are 
discussed.  
Keywords: Simulation-based Design under Uncertainty, 
Surrogate Models, Model Validation, Preferential Screening, 
and Bayesian Updating. 
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INTRODUCTION 

This work identifies a programmatic structured approach that 
can act as the basis for establishing necessary and sufficiency 
conditions to choose optimal size and type of predictive models 
that would be of use in simulation-based design under 
uncertainty. A main motivation for this work is the recognition 
that any system or process is hard to understand completely in 
reality.   

In the context of engineering design, analysis models play the 
role of providing structure to the design problem. Typically, 
models are simplified representations of reality, primarily 
because reality is very hard to model precisely due to a lack of 
sufficient knowledge about the system.  Secondly, it may be 
practically impossible to build an elaborate model and use it in 
the design optimization cycle simply because of the high 
computation and the expense involved. Furthermore, even data 
collection to build such elaborate models may be prohibitively 
expensive. It is then apparent that some type models, be it 
iconic, symbolic, or surrogate meta-models become necessary 
to achieve design decisions [1]. The fundamental question then 
is how to build such engineering models that are 
computationally efficient, sufficiently accurate, and 
meaningful, especially from the viewpoint of its utilization in 
the subsequent engineering design phase. To start with, physics 
based engineering analysis models can often be difficult to 
build and validate, and the problem becomes more complicated 
and computationally intensive in the case of predictive models 
that can enable reliable and accurate design mapping of the 
system. This is particularly true in numerically generated 
analysis models such as the engineering mechanics models 
using finite element analysis, the empirically constructed 
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process models in manufacturing, and the models of fluid flow 
used in computational fluid mechanics. Therefore, a preferred 
approach is to build and use surrogate models, that are 
interpolation models like regression or kriging functions, 
constructed with results from only a few such expensive runs of 
the simulation models. These interpolation models, which are 
models of models or metamodels, can then act as predictive 
models in design situations in lieu of the actual simulation 
models.  

As the use of computer simulations in engineering design 
decision-making is growing in importance, surrogate models 
have become more popular. Though easiest to handle among all 
models, predictive surrogate models can be granular and 
approximate. Recognizing that models are built and used to 
predict the system performance and then make design decisions 
accordingly, use of such models has to take into account the 
many causes for the uncertainty in the prediction of system 
performance. Therefore, a major source of error in the building 
and the subsequent use of surrogate models is that they can 
only be expected to be as accurate as the set of data available to 
build them. A fundamental challenge to building such models 
then lies in gathering information, its encoding, and its 
subsequent use in building that can yield most efficient and 
effective predictive models with least effort.  However, though 
it has been very common to acknowledge the parameter 
uncertainty through noise arrays and Monte Carlo Simulations 
(MCS), it is not so common to account for the uncertainty 
caused due by such structural assumptions done while building 
the model [2,3]. 

Often, model validation is the only way of ensuring accuracy 
and reliability and avoiding possible errors due to simplified, 
inaccurate, or inappropriate models. Literature on verification 
and validation of simulation models can be found in [3-7].  A 
model validation process will need to address the basic 
questions of: 1) how to initiate the information gathering phase 
and initial model building; 2) how to incorporate preference 
information that will ensure that resulting design decisions 
using such models will be robust, reliable, and accurate; 3) how 
to select optimally informative sample points to test the model, 
recognizing that the model cannot be tested at every location in 
the design set; and 4) how to capture new information and use 
it to update model fidelity.  
 
ENGINEERING MODEL BUILDING 

Towards model building, designers routinely resort to 
regression analysis or kriging models to estimate the system 
performance by interpolation [8,9], where interpolation models 
using some form of optimization are constructed to capture the 
basic trend in the performance [10]. However, though 
statistical experimentation-based design methods like central 
composite design explore the input space effectively, research 
has shown such surrogate models can tend to be coarse owing 
to sparse data used in creating the response surfaces. These 
interpolation models are constructed to capture the basic trend 
in the performance space. Any ‘noise’ throughout the 
performance space in the surrogate models can lead to a very 
inefficient the optimization process. Moreover, constructions of 
such models are typically independent of the preference 
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information, which can further affect the performance of the 
resulting decision making.  

Alternatively, one can adopt an iterative model building 
strategy, where existing information in the form of input-output 
relationship can be used to choose optimal samples for 
conducting future simulations [8,9]. Here, proven techniques 
such as entropy criteria can be used for choosing such optimal 
samples or experiments. Related literature in this area can be 
found in the works by Sacks and associates [11]. While these 
criteria are now being used in building surrogates extracting 
spatially optimal information, they still do not take into account 
the preference information. This may result in spending time 
and effort in building and refining a surrogate in regions of 
design space that are not relevant to any decision-making 
process. Addressing these critical issues, this paper introduces a 
preference-information based sampling strategy that can be 
expected to be optimally informative for model validation 
purposes.  

ENGINEERING MODEL VALIDATION 

Models are built and used to predict the system performance 
and then make design decisions accordingly. However, many 
causes can lead to errors in the prediction of system 
performance using models. While it is common to acknowledge 
parametric impreciseness and the incomplete information on 
design parameters such as material properties, geometric 
parameters, the modeling errors are rarely acknowledged and 
dealt with in a comprehensive manner [2]. Errors in the 
performance estimation caused due to simulation-based 
predictive modeling approximations is referred to as model 
uncertainty in this work. As stated before, a model is realistic 
with least number of assumptions and at the same time it is 
more complicated with a large number of model parameters 
that monitor its performance. A fundamental dilemma is then if 
and when to use more complicated models, or to get more 
information about a system, or if it is sufficient to take the risk 
of designing the system using a simplified model that may or 
may not give accurate results. Naturally, the logical step of 
model validation becomes essential in the engineering decision 
making process. 

Model validation is usually defined to mean ‘substantiation that 
a computerized model within its domain of applicability 
possesses a satisfactory range of accuracy consistent with the 
intended application of the model [3]. Published works related 
to model validation from a risk and reliability perspective can 
be found in [12-14].  A model is usually developed for a 
specific purpose or application, and its validity should therefore 
be determined with respect to that goal. It then becomes 
apparent that if a simulation-based predictive model is used to 
obtain results for evaluating the value of a particular design, 
then that model should be validated with regards to its ability to 
evaluate the values of all potential design solutions with 
sufficient reliability and accuracy. The accuracy and reliability 
here will refer to the ability of the model/surrogate to mimic the 
expected reality closely. More data used in the construction of 
the surrogate model implies larger validity and higher accuracy 
for the model. However, this also implies higher cost for the 
designer and thus there is a clear ‘trade-off’ between cost and 
accuracy in a model-building and validation process [Figure 1].  
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Figure 1: Cost and Accuracy trade-offs 

Validation of simulation models is usually through the 
application of statistical techniques and the type of technique 
usually depends on the availability of data from the real system. 
In the case of surrogates, computer simulations need to be 
performed to validate the accuracy of the interpolating 
functions. Smooth algebraic approximations of response 
surfaces may become necessary to help eliminate the wrinkles 
on the performance space. Recognizing the complexities 
involved in the data acquisition process and that models cannot 
be checked at all locations in the entire design space, this work 
process for constructing surrogate functions with only a few 
scattered data points, yet one that can lead to models with 
sufficient reliability and accuracy from a design perspective. 
The validated models will thus focus on the regions of design 
interest, and using them in optimization or sensitivity analysis 
will lead to a better understanding of the resulting solutions. 

BAYESIAN EVALUATION OF ENGINEERING 
MODELS 

Development of surrogate models has been proven useful to 
deal with problems with high computational complexities. In a 
general sense, such models can be considered as a mapping of 
the set of analysis codes and an associated vector of model 
parameters or variables on the performance measures, such that 
the cost and estimation uncertainty are minimized. The 
fundamental research issue is then how to build such simulation 
based surrogate models that are computationally efficient, 
sufficiently accurate, and meaningful from a design 
perspective.  

Previous sections have highlighted the limitations associated 
with the straightforward application of statistical experiments in 
surrogate model building process, such as granularity, lack of a 
preferential sampling strategy and the absence of a validation 
scheme from a design perspective. From a practical 
implementation point of view, validated models should be 
computationally efficient, sufficiently accurate, and meaningful 
from a design perspective. For example, selecting high fidelity 
analysis models early in the design process or for variables that 
have high variance associated with them is clearly not optimal. 
Whereas, the use of coarse grained models in the final design 
induces significant design error in performance estimation. 
Addressing these issues, this paper attempts to improvise on 
proven methods such as Bayesian analysis by introducing a 
combined model building and validation framework, which can 
then be invoked in the final decision making phase.  

Research on the applicability of Bayesian analysis to 
engineering design focusing on the reliability problems in the 
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context of selecting an optimal number of experiments can be 
found in the works by Howard  [15,16]. Recently, Amon and 
associates [8,9] have discussed the use of Bayesian analysis in 
the development of surrogate response surfaces that can replace 
expensive computer simulations in an iterative design 
optimization process.  Application of Bayesian predictive 
models in deterministic functions with applications to 
computer-aided experimental designs can be found in the works 
by Currin [17] and Welch [18]. Recognizing the parallel to 
decision making in engineering model selection, Doraiswamy 
and Krishnamurty [19] have studied the Bayesian network in 
the context of finite element analysis as a means of evaluating 
the value of information. Here, models were designed by 
attempting the best trade-off between the quest for more 
accurate results and reduction of analysis costs under 
conditions of uncertainty, while considering the expected 
payoffs from the resulting design using such a model. Their 
results indicate that an engineering model assessment 
framework based on Bayesian evaluation can offer a unique 
approach to handle stochastic problems from a decision based 
design perspective enabling identification of most optimal 
model selection. Building on these results, this paper presents 
the development of a Bayesian analysis based model validation 
strategy to understand and deal with the uncertainty inherent in 
simulation and model based design process. Furthermore, it 
will be used to better understand the value and influence of 
engineering models in design decision making. The basic tasks 
are to develop a rigorous framework for designing simulation 
experiments, and to integrate the new information gathered 
with existing information to build and enhance the computer-
simulated surrogate predictive models. In this scenario, such 
data sampling has to be coupled with judicial screening of 
design space using preference information to ensure surrogate 
accuracy and fineness in the regions of useful design space. In 
this context, an engineering model building process can be 
viewed as an information-gathering strategy, using which 
predictive information regarding the performance of a design 
can be acquired by means of mathematical simulation studies.  
An overview of the proposed procedure for building and 
validating models is shown in Figure 2. 

The three major tasks of this methodology include information 
gathering, optimal sampling with preferential screening, and 
evaluation and model updating strategies. In this work, 
intelligent data gathering is identified as a prime need to ensure 
that useful information can occur with minimal computational 
effort. An experimental design setup is used to act as an 
information gathering system to extract initial information and 
to map it mathematically in the form of response surface 
models. This approach includes a preferential screening process 
to generate Pareto-optimal validation grid locations, and a 
screening strategy using only the informatively optimal points 
from such validation grids for model evaluation. Model 
assessment at any stage of data collection and its updating with 
new information are achieved through a Bayesian evaluation-
based systematic procedure.  

Information Gathering 
Prior information: Current state of knowledge about the 
performance of the system is known as prior information. Prior 
information refers to the information obtained before data 
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collection begins and this can be obtained from first principles, 
application of physical laws to simplified systems, or empirical 
correlation obtained from previous experiments on the system. 
Designer’s decisions are based on his current state of 
knowledge of the system thus it is imperative that the prior 
information be captured mathematically in the form of models. 
In an iterative model building process, models are built by 
designing experiments that make best use of the current state 
information, and then seeking new information and using it in 
an optimal manner to further improve model fidelity. As such, 
system performance can be treated as a nuisance parameter 
over the entire design space, and the current state of the system 
can be modeled as a prior distribution, p(µ, σ2). This is 
supposed to express the state of information about the mean 
and variance of the system performance. In this work, 
normality is hypothesized for convenience and the response is 
assumed to be the realization of a Gaussian stochastic process 
at all times. 

Figure 2: Surrogate Model Building and its Evaluation  
DOE Setup: An experimental design setup is used to obtain 
initial information about the dynamics of the system by 
simulating the system performance at a few selected 
combinations of the input design variables. It is assumed that 
the designer has a good feel for the design variables and has a 
design space within which he would like to understand the 
system better as a function of the design variables he has 
chosen. In this work, a fractional design of experiment setup is 
suggested for the gathering of information through computer 
simulations. This forms initial information base for the 
designer, which is then be used to construct standard response 
surface models. 

Response surface model: Most experimental designs, including 
those mentioned above, are based on an algebraic regression-
model assumption about the way the input factors affect the 
outputs.  For instance, if there are two factors (X1 and X2, say) 
that are thought to affect an output response Y, one may 
approximate this relationship by the regression model, 
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where βy coefficients are unknown and is to be estimated, and ε 
is a random error term representing whatever inaccuracy such a 
model might have in approximating the actual simulation-
model response Y.  The parameters of the model are estimated 
by making simulation runs at various input values for the Xj’s, 
recording the corresponding responses, and then using standard 
least-squares regression to estimate the coefficients.  Exactly 
which sets of input values are used is itself an experimental 
design question, and a more comprehensive reference on this 
subject can be found in the works by Box and Draper [20]. The 
prior information about the system now locked in the form of a 
mathematical response surface model is used in the next step 
described below. 

Preferential screening:  

The methodology concentrates on design decision making with 
multiple attributes and thus the performance space is expected 
to consist of a set of non-inferior design alternatives. Note that 
this view is simply to identify a spectrum of non-inferior 
solutions for the purposes of evaluating the appropriateness of 
engineering models. Therefore, the ongoing debate on the 
merits of single-criterion and multi-criteria formulation in 
reaching the best design decision is not relevant here. However, 
what is important is that the approach is internally consistent 
and is within the limits of multi-criteria formulation. 

In such a scenario, a preferential screening of design candidates 
can be performed within the design space and the surrogate 
model can be validated and enhanced in these targeted regions 
of the design space. This would ensure that the model would be 
accurate and would predict with great resolution in the region 
of the design space, which is of interest to the designer. The 
Pareto Efficient Frontier (PEF) methodology based on Data 
Envelopment Analysis (DEA) is a very efficient technique to 
generate Pareto-optimal design candidates within the design 
space. As part of his graduate research work, Krishnamoorthy 
[21] has successfully developed and illustrated the PEF 
algorithm to engineering design problems. Using this 
algorithm, preference information can be gathered and encoded 
with standard single attribute utility models for each of the 
multiple attributes involved. Specifically, attribute preferences 
can be quantified by means of lottery questions using standard 
forms such as exponential utility functions to generically scale 
the values of all the design attributes between zero and one 
[22,23]. At this point, PEF and the cross-evaluation matrix can 
be used to rate and rank each design alternative using an 
efficiency criterion as follows: 

kyWy syxfksE ∑= )(  

where Eks is the rating for alternative s, using multipliers of the 
‘test’ alternative k; f (x)sy is the value of maximizing criteria y 
for alternative s; Wky the multiplier assigned to alternative k for 
the maximizing criteria y. Note that f(x)sy in this work will be 
the regression model developed in the first stage and the 
updated models based on posterior prediction equations in the 
later stages. In this setup, the objective of finding the design 
space of interest can be achieved by maximizing the rating Ekk 
of a test alternative k, from among a reference set of 
alternatives ‘s’, and by selecting the optimal multipliers 
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associated with that maximizing criteria.  Mathematically, this 
can be formulated as: 
Max kyW

y kyxfkkE ∑= )(  

subject to Eks  <= 1   ∀ alternatives s, Wky  >= 0 

The result of such a formation is an optimal efficiency value 
Ekk that is at most equal to 1. In the event Ekk =1 (which 
corresponds to the best rating), it can be concluded that no 
other alternative is more efficient (dominates) than alternative k 
for its selected optimal multipliers. That is, if Ekk < 1, then 
alternative k does not lie on the optimal frontier and there is at 
least one other alternative that is more efficient for the optimal 
set of weights.   

The ratings assessed by the PEF methodology for each 
alternative by itself and the other alternatives in the design 
space are conveniently arranged in Cross-Evaluation Matrix 
(Table 1). This average CEM rating can be interpreted as the 
fitness value of the alternative and can be read into a parallel 
processing scheme such as genetic algorithm for further 
selection and crossover operations, resulting in highly ‘fit’ 
alternatives with fitness values greater than a predetermined 
cutoff value.  

Optimal Sampling:  

The crux of the methodology lies in sampling points within the 
design space for further data collection (simulation) at points 
where information is most needed. For this purpose, the Pareto-
optimal validation set generated in the last section needs to be 
subjected to an optimal sampling criterion to determine which 
of those design candidates if analyzed with a computer 
simulation would yield maximum information from a design 
perspective. Most optimal sampling methods seek to minimize 
metrics of the posterior correlation matrix. For example, Sacks 
[10] have proposed an integrated mean square error (IMSE) 
criterion that essentially minimizes the trace of the posterior 
correlation matrix. Another criterion is the minimization of the 
maximum mean square error (MMSE), which is equivalent to 
the entropy based optimality criterion that minimizes the 
determinant of the posterior correlation matrix and maximizes 
the determinant of the prior correlation matrix.  
 

Rated alternative     Ranking 
Alternative 1 2 3 …… …st. n 

1 E11 E12 E13 …… …… E1n 
2 E21 E22 E23 …… …… E2n 
3 E31 E32 E33 …… …… E3n 
: : : :   : 

kth : : :  Eks : 
: : : :   : 
N En1 En2 En3 …… …… Enn 

Aver. CEM Rating e1 e2 e3  es en 
Table 1:Cross Evaluation Matrix 

The criterion considered here for optimal sampling uses the 
product correlation matrix that accounts for multi-dimensional 
design space. The correlation matrix for any design variable is 
constructed as a square matrix with spatial correlations between 
different points in the design space for that variable. The 
principal diagonal of this matrix refers to the correlation 
between the same points for the design variable and thus will 
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always have a value of one. The cross correlations are 
calculated using the spatial correlation function, which 
exponentially decreases, as the distance between two points in 
the design space increases. Mathematically, this correlation 
function can be expressed as follows: 

( ) ( )βθθ )(*exp, dabsdR −=         
where, β=2 (for Gaussian correlation); θ>0 to be updated every 
stage after new addition of data, and ‘d’ is simply represents the 
distance between two design sites. The product correlation 
matrix is thus generated by multiplying corresponding elements 
of each of the individual correlation matrices from different 
dimensions. 
where: ),,( θ

rrr stc  represents the product correlation 

This ensures that a small correlation is assigned between two 
design points, which are spatially far away at least in one 
dimension. The correlation parameters (θ) in the function are 
updated at every stage of data collection so that sampled points 
always reflect a Gaussian process with redefined parameters for 
the process. This new process, the posterior process, must now 
reflect the current updated state of information, and should 
have a better predictive capability than the one before the data 
collection. To ensure this, criterion based on Maximum 
Likelihood Estimate (MLE) is used, which is equivalent to 
minimizing the predictive deficiency. This is equivalent to 
maximizing the log likelihood function numerically [8]:  

))}(1(1))(1(2/1

|)log(|)12log()2log({2/1)(

pDppyCT
pDppy

CppmpmMLE

−−−
−−

++−+Π=⋅

µµσ

σ  

where: 
mp represents the m sampling sites of each data collection 
stage p 
σ2

p-1: represents the data variance pth stage data collection 
C: prior correlation matrix 
(yp-µp-1(Dp)): error vector, which represents the error of 
prediction at points Dp  using (p-1) stage surrogate from 
actual computer simulation, yp 

MLE a function of the parameter vector (θj) and the data 
collected, and it is sufficient to update the parameter vector and 
the correlation matrices just once at every stage.  A key 
distinction in this work is that this optimal sampling criterion is 
applied only at the preferentially screened validation set. Thus, 
the top Informatively Optimal solutions are identified from the 
validation set, the actual computer simulations are then run at 
these design points, and the results are used to further refine 
and assess model fidelity. 

Bayesian Evaluation: 
Bayesian analysis provides a rational basis for making 
inferences and projections using current state of information. 
Combining prior experience about a system with the likelihood 
of system behavior, it enables prediction of system behavior at 
instances without any prior experience. For completion 
purposes, a brief overview of Bayesian methods is listed below. 
The heart of Bayesian techniques lies in the celebrated 

)|,(|
1

)|,(|
1

),,( jjdR
k

j
jjsjtR

k

j
stc θθθ

=
Π=−

=
Π=

rrr
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inversion formula which states that the belief we accord in a 
hypothesis H upon obtaining evidence e [probability that a 
hypothesis H is true, given evidence ‘e’] can be computed by 
multiplying our previous belief P(H) by the likelihood P(e|H) 
that e will materialize if H is true.  P(H|e) is sometimes called 
the posterior probability (or simply posterior), and P(H) is 
called the prior probability (or prior). Mathematically, this can 
be shown as follows: 

)(

)()|(
)|(

eP

HPHeP
eHP =   

One of the attractive features of Bayes’ updating rule is its 
amenability to recursive and incremental computation schemes. 
Let H denote a hypothesis, en=e1, e2…en denote a sequence of 
data observed in the past, and e denote a new fact/evidence.  A 
brute-force way to calculate the belief in H given past data and 
the new evidence e, P(H|en,e), would be to append the new 
datum e to the past data en   and perform a global computation 
of the impact on H of the entire data set en+1 ={en, e}.  Such a 
computation would be uneconomical for several reasons.  First, 
the entire stream of past data must be available at all times.  In 
addition, as time goes on and the set en increases, the 
computation of P(H|en,e) becomes increasingly complex.  
Alternatively, this computation can be significantly curtailed 
under certain conditions by incremental updating that will 
enable discarding of the past data once P (H|en) has been 
computed, will result in the following expression for the 
computing of the impact of the new datum: 

)|(

),|(
)|(),|(

neeP

HneeP
neHPeneHP =            

Under this setup, the old belief P(H|en) assumes the role of the 
prior probability in the computation of new impact. This 
representation completely summarizes the past experience, and 
for updating it only need to be multiplied by the likelihood 
function P(e|en,H) that measures the probability of the new 
datum e, given the hypothesis and the past observations.  Using 
this model for information updating, this work combines 
Gaussian likelihood functions with the design data from 
computer simulations in an iterative setup to revise and refine 
model accuracy and reliability by comparing simulated 
performance and the predicted performance results. Accuracy 
and resolution, which are two basic aspects that we expect from 
any model, are explained. 

Accuracy: There have been many suggested ways of measuring 
the accuracy of any model. A simple measure of accuracy 
would be percentage errors of the prediction (model) from the 
actual computer simulation. Standard error metrics used 
extensively include the Mean Squared Error of the prediction 
(MSE). The squared error in this case is averaged over a set of 
validation data and its magnitude is minimized as more data is 
collected from simulations. 

Resolution: Resolution is the ability of a model to distinguish 
between 2 design alternatives. Resolution of the model in the 
context of our methodology is captured in the uncertainty band 
for the prediction of the design performance from the model. 
Different design alternatives are well resolved by the model if it 
can predict the performance of each with less uncertainty 
[Figure 3]. 
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The standard deviation of the prediction in this case is high, 
thus rendering the resolution low. Therefore, the model is not 
able to clearly predict whether performance at 1 is better than 
the performance at 2 or vice-versa. 1* and 2* may represent the 
actual/true performance and thus this may lead to optimization 
problems.  The inverse of the uncertainty bandwidth is the 
resolution. Higher this quantity, higher is the resolution. For 
example, for a 95% confidence interval, this can be expressed 
in terms of standard deviation (σ) as follows: 

 [ ]σ*96.1*2

1
=R  

Thus, accuracy and resolution criteria can be generated for the 
evaluation of the surrogate models at any stage of information 
collection and updating. 

Figure 3: Model Resolution 

Surrogate Model Updating:  

In this methodology, we are modeling the system performance 
(as simulated by computer models) as a Gaussian stochastic 
process with the system performance as a nuisance parameter 
over the entire design space. The parameters of this process 
(which manifest as the surrogate parameters) can be predicted 
better as we have more data characterizing the process. The 
sequential information updating is done by making use of 
statistical techniques of Bayesian Inference, where the prior 
information is taken as the initial response surface in the first 
iteration. Accordingly, the prior information is described as: 

( )[ ] )(ttYE
rr

µ=  |    [ ] ),()(),(cov stKsYtY rrrr
=   

where Y (t) is a vector with finite collection of computer 
simulations; and [ ])(),(cov sYtY rr

 represents the covariance for 
any two points t and s. The resulting Gaussian posterior 
process, obtained once the new data (pth stage data) is collected, 
will have the mean function: 

[ ] )(1(1
1**)()(1)()( pDppyptktptpYEtp −−∑−

−+−== µµµ rrrrr
 

where: 
[ ])(tpYE

r
is the expected value of the design process given 

information Yp 
Σp−1: Covariance matrix for p-1 stage (prior covariance 
matrix) 
(yp-µp-1(Dp)): error vector representing the error of prediction 
at points Dp  using (p-1) stage surrogate from actual 
computer simulation, yp 

Design 
performance

2 

1

1* 
2* 

1*, 2*: Probable design performance
1, 2:  Predicted design performance
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Corresponding posterior covariance can be expressed as: 
)(1

1
1**)(1),(1),( spkptpkstpKstpK rrrrrr

−∑−
−−−−=  

where: Kp (t, s): covariance for 2-design sites t and s after pth 
stage data collection 
Kp-1 (t, s): Prior covariance for same two sites t and s 
kp-1: prior correlation vector  
Σp−1: covariance matrix for p-1 stage (prior covariance 
matrix) 

Thus at any stage of data collection, there will be a posterior 
mean and a posterior standard deviation (See Equations above) 
describing the surrogate model’s fidelity as a measure of its 
error in prediction.  That can be used to build new response 
surfaces (new model parameters) at each stage. These model 
parameters will approach their final values as more and more 
data is collected and the Gaussian process to model becomes 
more refined.  

CASE STUDY: WINDSHIELD WIPER BLADE 
MECHANISM 
The application of the proposed methodology is illustrated with 
the Finite Element Analysis of the primary arm of a windshield 
wiper blade mechanism [Figure 4].  For simplicity, the arm is 
subject to only a horizontal force about the hole in the center, 
and the two holes at the ends are treated as held fixed and the 
maximum deflection and maximum stress are considered the 
design performance parameters of interest. 

Figure 4: Finite element model of windshield wiper arm 
 

The design constraints on the parameters are: 
Stressmax < 90 MPa 
Deflectionmax < 0.2 mm 

In this process, the first step is to identify the design space.  
Three design variables identified as important for the 
windshield wiper redesign are: 

1. Radius of the hole in the center (3-4mm)-‘r’ 
2. The separation between the trapezoidal cutouts on the 

top (4-6mm)-‘s’ 
3. Thickness of the entire part (0.8-1.2mm)-‘t’ 

In the absence of real-world data, the most realistic model (a 
finite element model with solid elements) is used for populating 
the output columns of the DOE array.  
 
RESULTS AND DISCUSSION 

Initially, 18 points were selected throughout the design space 
[fractional DOE] to collect the performance data. In the 
presented work this is the prior information, and this 
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information is used to scan the design space for collecting 
further information at points in the design space which promise 
to increase the knowledge about the system the most. 
Considering the size of the design space from the constraints on 
the design variables, two levels for thickness is considered 
sufficient [Table 2].  

The surrogate models for the individual attributes are 
constructed using standard regression models. The regression 
equations that represent the prior information of the designer 
are the following: 

The response surfaces now represent the meta-model of the 
computer simulated finite element model while offering 
computationally easy evaluation of the design at various points.  
 

 r s t Stress Deflection Weight 
1 3.0 4.0 0.8 82.700 0.164 40.45 

2 3.0 4.0 1.2 31.600 0.053 61.28 

3 3.0 5.0 0.8 83.300 0.151 41.00 

4 3.0 5.0 1.2 35.000 0.048 62.16 

5 3.0 6.0 0.8 78.300 0.140 41.55 

6 3.0 6.0 1.2 31.600 0.045 63.04 

7 3.5 4.0 0.8 84.600 0.166 40.31 

8 3.5 4.0 1.2 30.100 0.054 61.08 

9 3.5 5.0 0.8 83.700 0.152 40.86 

10 3.5 5.0 1.2 34.600 0.049 61.95 

11 3.5 6.0 0.8 78.400 0.141 41.41 

12 3.5 6.0 1.2 32.100 0.045 62.83 

13 4.0 4.0 0.8 82.600 0.167 40.15 

14 4.0 4.0 1.2 33.800 0.054 60.84 

15 4.0 5.0 0.8 83.600 0.153 40.70 

16 4.0 5.0 1.2 33.000 0.049 61.71 

17 4.0 6.0 0.8 78.600 0.142 41.25 

18 4.0 6.0 1.2 27.800 0.046 62.59 
Table 2: Initial knowledge; DOE 

Preferential Validation:  For illustrative purposes, an utility 
independent model for the stress, deflection and weight 
attributes are assumed and a lottery elicitation process for the 
individual attributes are assumed to result in the following 
single attribute models [23]:  

)*04621.0(*033.0033.1 wtewtU −+=  

)*863.13(*0666.00666.1 defedefU −+=  
)2(*)1()1(*)( strUkstrUkstrU −+=                      

)1*1000/657.34(*09695.009695.0)1( strestrU +−=  
2*13862.0)2( strestrU −=  

It is expected that such a mapping of design performance space 
on to the utility space will help the designer to pick the model 

Str = 141.394 + 22.533*s-146.027*t  + 4.416s*t-2.85*s2

Def =  0.5086 + 0.006 *r-0.039 *s-0.347*t - 0.004* r*t + 
0.021*s*t + 0.001*s2 

Wt =  -1.428 + 0.366*r-0.103*s + 49.922*t-0.3666*r*t + 
0.816*s*t- 0.053*r2 
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that is of most interest that can then be used to subsequently 
find the most optimal design. The surrogate model, which 
represents the current state of knowledge about the system 
performance, is used in the PEF algorithm to scan the design 
space for non-dominated designs [Pareto optimal designs]. The 
Pareto-optimal candidate designs now form the design space 
grid within which optimal sampling is performed [Table 3].   
 

 r s t  r s t 
1 3.857 5.905 0.851 6 3.397 5.238 0.851 
2 3.619 5.746 0.902 7 3.048 5.968 1.181 
3 3.492 5.048 0.927 8 3.889 5.556 1.060 
4 3.143 5.556 0.800 9 3.429 5.587 1.016 
5 3.397 5.651 0.838 10 3.379 5.124 1.126 

Table 3: validation grid: subset 

Optimal Sampling: The sampling is done purely based on the 
spatial correlation among the sampling sites. In accordance 
with the optimality criterion, a criterion that minimizes the 
trace of the inverse correlation matrix is identified. The optimal 
sample set of the designs among the Pareto-optimal designs 
preferentially screened is listed in Table 4.  
 

  r s t 
1 3.492 5.048 0.927 
2 3.429 5.587 1.016 
3 3.397 5.238 0.851 
4 3.619 5.746 0.902 
5 3.889 5.556 1.060 

Table 4: Optimal Validation points 

Model Evaluation: These design points form the validation 
points for the current surrogate. The current surrogate is used to 
predict the performance of the system at the optimal sample of 
design sites, and the actual computer simulation of the system 
is performed at these same design sites. The prediction of the 
first stage surrogate and the actual system performance (values 
are measured as performance) at these three validation design 
sites are shown in Tables 5-7. 
 

     Prediction-Stress 
Utility Str U  

 r s t stdev UB Mean LB actual sq 
error 

1 3.492 5.048 0.927 0.014 0.947 0.920 0.894 0.655 0.0700
2 3.429 5.587 1.016 0.030 0.615 0.556 0.498 0.373 0.0337
3 3.397 5.238 0.851 0.024 0.444 0.397 0.349 0.834 0.1918
4 3.619 5.746 0.902 0.026 0.978 0.926 0.875 0.708 0.0478
5 3.889 5.556 1.060 0.031 0.508 0.448 0.388 0.301 0.0214

         0.3646
Average resolution for stress prediction model: 10.25 [should not be 

interpreted since stresses fall out of prediction bounds] 
Table 5: Stress surrogate evaluation 

It is apparent from the results that not only does the actual 
performance of the system falls outside the bounds of 
prediction by the stress surrogate model, but also the bounds 
are large. This is a clear indication of a bad surrogate (a highly 
coarse model) due to the lack of knowledge about the system 
performance in the whole of the design space. However, this 
new information about the system performance at the validation 
points can now be integrated with the existing model to 
improve our overall fidelity of the resulting model. This 
construction of the posterior from the prior is ‘updating’ the 
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information in a Bayesian sense. This will ensure that the 
information now obtained with computer simulations at the 
validation points is locked, and that the error from the 
prediction equation is correctly interpolated irrespective of any 
error from the regression analysis. 

 

     Prediction-Deflection 
Utility Def U  

 r s t stdev UB Mean LB actual 
sq 

error 
1 3.492 5.048 0.927 0.058 0.843 0.729 0.616 0.795 0.0044
2 3.429 5.587 1.016 0.128 1.086 0.836 0.585 0.886 0.0025
3 3.397 5.238 0.851 0.104 0.841 0.638 0.435 0.679 0.0017
4 3.619 5.746 0.902 0.112 0.950 0.730 0.510 0.785 0.0031
5 3.889 5.556 1.060 0.131 1.122 0.866 0.609 0.906 0.0016
         0.0132

Average resolution for deflection prediction model: 2.5 
 

Table 6: Deflection surrogate evaluation 
 

     Prediction-weight 
utility 

Weight 
U  

 r s t stdev UB Mean LB actual sq error 
1 3.492 5.048 0.927 0.048 0.828 0.733 0.638 0.734 0.000000
2 3.429 5.587 1.016 0.107 0.862 0.653 0.444 0.654 0.000001
3 3.397 5.238 0.851 0.086 0.952 0.782 0.613 0.782 0.000000
4 3.619 5.746 0.902 0.094 0.929 0.746 0.562 0.746 0.000000
5 3.889 5.556 1.060 0.109 0.828 0.613 0.399 0.614 0.000001
         0.000002

Average resolution for weight prediction model: 2.9 

Table 7: weight surrogate evaluation 

Successive surrogates: The new surrogate is then used in the 
PEF methodology to obtain Pareto-Optimal candidates and the 
process is continued by comparing surrogate’s resolution and 
accuracy with the computer-simulated performance of the 
system at the optimally sampled sites [Tables 8-10].  
 

 Second Stage Third Stage 
 r s t  r s t 
1 3.683 5.746 0.863 1 3.603 5.619 0.825 
2 3.476 5.206 1.016 2 3.746 5.651 0.984 
3 3.603 5.365 0.952 3 3.238 5.429 0.914 
4 3.698 5.841 1.048 4 3.333 5.556 1.048 
5 3.333 5.746 1.101 5 3.492 5.302 1.168 

Table 8: Optimal sampling: successive stages 

The surrogate staging with prior, simulation and posterior is 
continued until the evaluation criteria are met. As before, the 
accuracy and resolution of the model are checked after the 
validation points have been used in the computer simulations. 
In this case, the accuracy of the third stage surrogate has 
improved (stress attribute has less than 0.003 average error and 
deflection, weight attribute have prediction errors less than 
0.00001 and the resolution (>5) among the validation points are 
better and more uniform). Accordingly, the process is 
terminated and the new surrogate models for the stress, 
deflection and the weight are identified from the third iteration 
as follows: 

 

Str =  349.09+16.309*s-543.996*t + 4.247*s*t-2.264*s2 +199.26*t2 
Def = 0.991 + 0.005*r-0.039*s-1.354*t-0.004*r*t + 0.0203*s*t + 

0.001*s2 + 0.503*t2 
Wt = -0.263 + 0.385*r-0.102*s + 47.422*t-0.367*r*t + 

0.815*s*t-0.055*r2 + 1.252*t2 
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   Attribute  Stress  Average
  stdev UB Mean LB actual Error Resoluti

on 
1 0.053 1.036 0.933 0.830 0.910  0.00054 
2 0.072 0.562 0.422 0.281 0.391  0.00092 
3 0.099 0.774 0.580 0.385 0.543  0.00135 

4 0.091 0.500 0.322 0.143 0.308  0.00019 

5 0.100 0.458 0.262 0.067 0.246  0.00026 

3.08 

St
re

ss
 

      0.00326  
1 0.033 0.787 0.722 0.656 0.726  0.00002 
2 0.045 0.966 0.877 0.788 0.879  0.00000 
3 0.063 0.953 0.830 0.707 0.832  0.00000 
4 0.058 1.016 0.903 0.790 0.904  0.00000 
5 0.063 1.046 0.922 0.798 0.924  0.00001 

4.86 

D
ef

le
ct

io
n 

      0.00003  
1 0.030 0.830 0.7722 0.714 0.7721 0.00000 
2 0.040 0.738 0.6592 0.580 0.6591 0.00000 
3 0.056 0.821 0.7121 0.603 0.7120 0.00000 
4 0.051 0.722 0.6217 0.521 0.6215 0.00000 
5 0.056 0.672 0.5620 0.452 0.5618 0.00000 

5.48 

W
ei

gh
t 

      0.00000  
Table 9:  Second stage Surrogate Results 

   Attribute  Stress  Average
  stdev UB Mean LB actual Error Resoluti

on 
1 0.050 0.594 0.497 0.399 0.505 0.0001 
2 0.051 0.562 0.462 0.361 0.438 0.0006 
3 0.072 0.859 0.719 0.578 0.678 0.0017 

4 0.043 0.428 0.343 0.258 0.320 0.0005 

5 0.046 0.316 0.226 0.136 0.207 0.0004 

4.87 

St
re

ss
 

      0.0032  
1 0.045 0.719 0.631 0.543 0.634 0.0000 
2 0.046 0.955 0.865 0.775 0.863 0.0000 
3 0.065 0.921 0.794 0.668 0.792 0.0000 
4 0.039 0.979 0.902 0.826 0.901 0.0000 
5 0.041 1.016 0.935 0.854 0.932 0.0000 

5.41 

D
ef

le
ct

io
n 

      0.00002  
1 0.037 0.868 0.796 0.724 0.796 0.0000 
2 0.038 0.757 0.684 0.610 0.684 0.0000 
3 0.053 0.842 0.738 0.635 0.738 0.0000 
4 0.032 0.686 0.623 0.560 0.623 0.0000 
5 0.034 0.554 0.487 0.421 0.488 0.0000 

6.61 

W
ei

gh
t 

      0.00000  
Table 10:  Third stage Surrogate Results 

The final values of regression coefficients after the third stage 
are listed in Table 11. 

Some Observations: Since the design performance is viewed 
as a stochastic process, it is possible to estimate the error in 
performance prediction at any point in the design space. The 
uncertainty/variance of prediction is larger in the design space 
where actual data is absent and prediction is purely based on 
interpolation. Note that the process is not well known and the 
entire knowledge about the system is based on the simulation 
information obtained from the initial 18 points. Naturally, the 
errors due to model granularity will increase as we move away 
from region of present information. Since we target regions in 
the design space preferentially, more data is progressively 
gathered in these select regions yielding a final model that is 
fine in those regions of design space. 
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Table 11: Final stage surrogate regression coefficients  

One final step that is needed is to make sure that the regression 
equations fit all the data collected so far with as little error as 
possible, so that the equations can be used in optimization or 
sensitivity analysis directly.  One important observation from 
the results is that the methodology forces us to collect more 
data for design candidates with thickness values in-between the 
two levels of thickness initially assumed, thus indicating 
possible nonlinear stress response with change in thickness 
which is consistent with the inherent understanding of the stress 
dependency on thickness. In addition to information capture, 
the error by the surrogate performance estimation can also be 
identified in this approach.  

The design performance is estimated differently during 
iterations, and the regression itself may have error, as it is 
merely an approximate mapping of the data. The error captured 
in the error vector at any stage p given by (Yp-µp-1 (Dp)), and 
this error vector updates itself whenever the interpolation 
equation changes (Yp). This ‘memory-less’ property of the error 
vector corresponds to the relative ‘insensitivity’ of the surrogate 
prediction to small errors from interpolation. Furthermore, 
many other methods that do not incorporate preference 
information in the optimal sampling selection process rely upon 
standard design of experiment grids to start and propagate data 
collection. This operation could require thousands of design 
points, as opposed to a few select points in the Pareto-optimal 
validation grid used in this work. This process also ensures that 
the grid is dense in regions of design space of interest and 
where more accuracy from the model is desired. Finally, this 
approach overcomes a serious limitation with methods that use 

Results for str
Actual 

Variable Coefficient p Interpret
Constant 349.0910 5.9E-34
s 16.3089 3.3E-08 Significant
t -543.9964 2.5E-34 Significant
s*t 4.2470 1.5E-02 Significant
s^2 -2.2650 3.9E-04 Significant
t^2 199.2597 7.7E-14 Significant
Statistics
Std Err 12.273 
R-sq 99.70% 
R-sq(adj) 99.65% 
R-sq(pred) 99.50% 
Press 6583.424 

Results for def
Actual

Var. Coeff. p Interpret 
Const. 0.9912 1.6E-53
r 0.0054 2.3E-13 Significant 
s -0.0388 4.1E-37 Significant 
t -1.3537 1.0E-56 Significant 
r*t -0.0037 7.7E-06 Significant 
s*t 0.0203 3.8E-28 Significant 
s^2 0.0010 1.5E-09 Significant 
t^2 0.5032 3.1E-39 Significant 
Statistics
Std Err 0.002
R-sq 100.00%
R-sq(adj) 100.00%
R-sq(pred)100.00%
Press 0

Results for wt
Actual

Var. Coeff. p Interpret
Const. -0.2627 9.9E-98
r 0.3846 4.0E-44Significant
s -0.1024 1.0E-58Significant
t 47.4223 3.6E-87Significant
r*t -0.3668 6.2E-26Significant
s*t 0.8153 1.2E-41Significant
r^2 -0.0557 1.1E-11Significant
t^2 1.2527 2.2E-23Significant
Statistic
sStd Err 0.003
R-sq 100.00%
R-sq(adj) 100.00%
R-sq(pred) 100.00%
Press 0
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no prior information to start their surrogate building process, 
and thus avoid any potential chance of exhausting the resources 
kept aside for analysis even before getting the surrogate fine 
enough in the regions of desirable performance. 

SUMMARY 

This paper addresses issues related to predictive models in 
engineering design, and presents a robust model building and 
preferential screening methodology using Bayesian analysis for 
the assessment of computer-simulated surrogate models. The 
three major tasks of the proposed methodology including 
information gathering, preferential screening, and evaluation 
and model updating strategies are detailed. Special features of 
the work includes an experimental design setup to extract initial 
information using surrogate response surface models; the 
mapping of system performance as a nuisance parameter over 
the entire design space represented by prior normal distribution; 
and the employment of a preferential screening based optimal 
sampling technique in model validation that enables targeting 
of model refinement to limited, yet most valuable regions of the 
performance space. Through an engineering case study, this 
paper shows how this work can be effectively implemented in a 
computationally viable environment to recursively and 
incrementally use Bayesian updating rule to develop 
probabilistic predictive models that can act as surrogate models 
in simulation-based design under uncertainty.  
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