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This paper is devoted to the study of the stability of limit cycles of a system of nonlinear
delay differential equations with a discrete delay. The system arises from a model of pop-
ulation dynamics describing the competition between tumor and immune system with
negative immune response. We study the local asymptotic stability of the unique nontriv-
ial equilibrium of the delay equation and we show that its stability can be lost through
a Hopf bifurcation. We establish an explicit algorithm for determining the direction of
the Hopf bifurcation and the stability or instability of the bifurcating branch of periodic
solutions, using the methods presented by Diekmann et al.
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Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We consider in this paper the model which provides a description of tumor cells in com-
petition with the immune system. This description is described by many authors, using
ordinary and delayed differential equations to model the competition between immune
system and tumor, in particular see [20, 24, 25]. Other similar models provide a de-
scription of the modelling, analysis, and control of tumor immune system interaction,
see, [17, 26, 29].

Other authors use kinetic equations to model the competition between immune sys-
tem and tumor. Although they give a complex description in comparison with other
simpler models, they are, for example, needed to model the differences of virulence be-
tween viruses, see [1–5, 10]. Several other fields of biology use kinetic equations, for in-
stance [12, 13] give a kinetic approach to describe population dynamics, [2] deals with
the development of suitable general mathematical structures including a large variety of
Boltzmann-type models.

The reader interested in a more complete bibliography about the evolution of a cell,
and the pertinent role that has cellular phenomena to direct the body towards the recovery
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Figure 2.1. Kinetic scheme describing interactions between ECs and TCs (see [20]).

or towards the illness, is addressed to [6, 21]. A detailed description of virus, antivirus,
body dynamics can be found in the references [8, 14, 27, 28].

The mathematical model with which we are dealing was proposed in a recent paper by
Gałach [20]. In this paper, the author developed a new simple model with one delay of
tumor immune system competition, this idea is inspired from [25] and he recalled some
numerical results in [25] in order to compare them with those obtained in his paper [20].

2. Mathematical model

The model proposed in [25] describes the response of effector cells (ECs) to the growth
of tumor cells (TCs). This model differs from others because it takes into account the
penetration of TCs by ECs, which simultaneously causes the inactivation of ECs. It is
assumed that interactions between ECs and TCs in vitro can be described by the kinetic
scheme shown in Figure 2.1, where E, T , C, E∗, and T∗ are the local concentrations of
ECs, TCs, EC-TC complexes, inactivated ECs, and “lethally hit” TCs, respectively, k1 and
k−1 denote the rates of bindings of ECs to TCs and the detachment of ECs from TCs
without damaging them, k2 is the rate at which EC-TC interactions program TCs for
lysis, and k3 is the rate at which EC-TC interactions inactivate ECs.

Kuznetsov and Taylor model is as follows:

dE

dt
= s+F(C,T)−d1E− k1ET +

(
k−1 + k2

)
C,

dT

dt
= aT(1− bT)− k1ET +

(
k−1 + k3

)
C,

dC

dt
= k1ET −

(
k−1 + k2 + k3

)
C,

dE∗

dt
= k3C−d2E

∗,

dT∗

dt
= k2C−d3T

∗,

(2.1)

where s is the normal (i.e., not increased by the presence of the tumor) rate of the flow
of adult ECs into the tumor site, F(C,T) describes the accumulation of ECs in the tumor
site, d1, d2, and d3 are the coefficients of the processes of destruction and migration for
E, E∗, and T∗, respectively, a is the coefficient of the maximal growth of tumor, and b is
the environment capacity.

In [25], it is claimed that experimental observations motivate the approximation
dC/dt ≈ 0. Therefore, it is assumed that C ≈ KET , where K = k1/(k2 + k3 + k−1), and the
model can be reduced to two equations which describe the behavior of ECs and TCs only.



Radouane Yafia 3

Moreover, in [20], it is suggested that the function F should be in the following form:
F(C,T)= F(E,T)= θET . Therefore, the model (2.1) takes the form

dE

dt
= s+α1ET −dE,

dT

dt
= aT(1− bT)−nET ,

(2.2)

where α1 = θ −m, and a, b, s have the same meaning as in (2.1); n = K/k2, m = K/k3,
d = d1. All coefficients except α1 are positive. The sign of α1 depends on the relation be-
tween θ and m. If the stimulation coefficient of the immune system exceeds the neu-
tralization coefficient of ECs in the process of the formation of EC-TC complexes, then
α1 > 0. We use the dimensionless form of model (2.2):

dx

dt
= σ +ωxy− δx,

dy

dt
= αy(1−βy)− xy,

(2.3)

where x denotes the dimensionless density of ECs, y stands for dimensionless density of
the population of TCs, α = a/Kk2T0, β = bT0, δ = d/Kk2T0, σ = s/nE0T0, and ω = α1/n
is the immune response to the appearance of the tumor cells, E0 and T0 are the initial
conditions. In [20], the author studies the existence, uniqueness, and nonnegativity of
solutions and he shows the nonexistence of nonnegative periodic solution of system (2.3).

For ω < 0, αδ > σ and α2(βδ −ω)2 + 4αβσω > 0, (2.3) has two possible nonnegative
steady states P0 and P2, where the first is unstable and the second is stable (see [20]).

The delayed mathematical model corresponding to (2.3) is given by the following sys-
tem [20]:

dx

dt
= σ +ωx(t− τ)y(t− τ)− δx,

dy

dt
= αy(1−βy)− xy,

(2.4)

where the parameter τ is the time delay which the immune system needs to develop a suit-
able response after the recognition of nonself cells (see [20]). Time delays in connection
with the tumor growth also appear in [6, 7, 9, 18, 19].

The existence and uniqueness of solutions of system (2.4) for every t > 0 are established
in [20], and in the same paper it is shown that

(1) if ω ≥ 0, these solutions are nonnegative for any nonnegative initial conditions
(biologically realistic case),

(2) if ω < 0, there exists nonnegative initial condition such that the solution becomes
negative in a finite-time interval.
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Our goal in this paper is to consider the case (2) when the immune response is nega-
tive (i.e., ω < 0) with the following conditions: αδ > σ and α2(βδ−ω)2 + 4αβσω > 0. We
give some local stability results for the unique nontrivial equilibrium P2 and that it un-
dergoes a Hopf bifurcation (see [32]). We establish a systematic criteria for determining
the direction of Hopf bifurcation and the stability or instability of the bifurcating branch
of periodic solutions. The case (1) when the immune response is positive (i.e., ω > 0) is
treated in [30, 31].

This paper is organized as follows. In Sections 3 and 4, we establish some results on the
stability of the nontrivial steady states of the delayed system (2.4). The existence of a criti-
cal value of the delay in which the non-trivial steady state changes stability is investigated.
Based on the Hopf bifurcation theorem, we show the occurrence of Hopf bifurcation as
the delay crosses some critical value of the parameter delay (see [32]). The main result
of this paper is given in Section 5, we establish a systematic criteria for determining the
direction of Hopf bifurcation and the stability or instability of the bifurcating branch of
periodic solutions.

3. Steady states and stability for positive delays

Consider the system (2.4), and suppose that ω < 0, αδ > σ , and α2(βδ−ω)2 + 4αβσω > 0.
Then, system (2.4) has two equilibrium points P0 = (σ/δ,0) and P2 = (x2, y2), where

x2 = −α(βδ−ω) +
√
Δ

2ω
, y2 = α(βδ +ω)−√Δ

2αβω
(3.1)

with Δ= α2(βδ−ω)2 + 4αβσω.
We will study the stability of the nontrivial equilibrium point P2.
Let u= x− x2 and v = y− y2. By linearizing system (2.4) around the nontrivial equi-

librium point P2, we obtain the following linear system:

du

dt
= ωx2v(t− τ)−ωy2u(t− τ),−δu,

dv

dt
=−y2u+

(
α− 2αβy2− x2

)
v.

(3.2)

The characteristic equation of (3.2) has the form

W(λ,τ)= λ2 + pλ+ r + (sλ+ q)e−λτ = 0, (3.3)

where p = δ +αβy2 > 0, r = δαβy2 > 0, s=−ωy2 > 0, and q = αωy2(1− 2βy2).
The stability of the equilibrium point P2 is a result of the localization of the roots of

the equation

W(λ,τ)= 0, (3.4)

then we have the following theorem.
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Theorem 3.1. Assume αδ > σ , α > 0, and β > 0 are close enough to 0. Then, there exists
τl > 0 such that P2 is asymptotically stable for τ < τl and unstable for τ > τl, where

τl = 1
ζl

arccos

{
q
(
ζ2
l − r

)− psζ2
l

s2ζ2
l + q2

}

,

ζ2
l =

1
2

(
s2− p2 + 2r

)
+

1
2

[(
s2− p2 + 2r

)2− 4(r2− q2)
]1/2

.

(3.5)

For the proof of Theorem 3.1, we need the following lemma.

Lemma 3.2 [11]. Consider the equation

λ2 + pλ+ r + (sλ+ q)e−λτ = 0, (3.6)

where p, r, q, and s are real numbers.
Let the following hypotheses hold:

(H1) p+ s > 0,
(H2) q+ r > 0,
(H3) r2− q2 < 0 or (s2− p2 + 2r > 0, and (s2− p2 + 2r)2 = 4(r2− q2)).

If (H1)–(H3) hold, then when τ ∈ [0,τl), all roots of (3.6) have negative real parts, when
τ = τl, (3.6) has a pair of purely imaginary roots±iζl, and when τ > τl, (3.6) has at least one
root with positive real part, where τl and ζl are defined in Theorem 3.1.

Proof of Theorem 3.1. From the expressions of p, q, s, and r, we have p+ s > 0 and

q+ r =−α(ω+ δβ)y2 + 2(αδ− σ). (3.7)

As β is close enough to 0, we have ω/β <−δ.
From the hypothesis αδ > σ , we deduce that q+ r > 0.
Therefore, the hypotheses (H1), (H2) of Lemma 3.2 are satisfied. Then all roots of the

characteristic (3.3) have negative real parts for τ = 0 and the steady state P2 is asymptoti-
cally stable for τ = 0. By Rouche’s theorem, it follows that the roots of (3.3) have negative
real parts for some critical value of the delay τ.

We want to determine if the real part of some root increases to reach zero and eventu-
ally becomes positive as τ varies. If iζ is a root of (3.3), then

−ζ2 + ipζ + isζ
(

cos(τζ) + isin(τζ)
)

+ r + q
(

cos(τζ) + isin(τζ)
)= 0. (3.8)

Separating the real and imaginary parts, we have

−ζ2 + r =−qcos(τζ) + sζ sin(τζ),

pζ =−sζ cos(τζ)− q sin(τζ).
(3.9)

It follows that ζ satisfies

ζ4− (s2− p2 + 2r
)
ζ2 +

(
r2− q2)= 0. (3.10)
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The two roots of the above equation can be expressed as follows:

ζ2 = 1
2

(
s2− p2 + 2r

)± 1
2

[(
s2− p2 + 2r

)2− 4
(
r2− q2)

]1/2
. (3.11)

As r2 − q2 = α2y2
2(δ2β2 − ω2(1− 2βy2)2), the sign of r2 − q2 is deduced from the sign

of (δβ−ω2(1− 2βy2)) = (2αβδ−√Δ)/α which is negative (because β is very small and
α > 0).

Therefore, r2− q2 < 0 and the hypothesis (H3) of Lemma 3.2 is satisfied.
From Lemma 3.2, the unique solution of (3.10) has the following form:

ζ2
l =

1
2

(
s2− p2 + 2r

)
+

1
2

[(
s2− p2 + 2r

)2− 4
(
r2− q2)

]1/2
(3.12)

and there exists a unique critical value

τl = 1
ζl

arccos

{
q
(
ζ2
l − r

)− psζ2
l

s2ζ2
l + q2

}

(3.13)

such that the equilibrium point P2 is asymptotically stable for τ ∈ [0,τl) and unstable for
τ > τl. For τ = τl, the characteristic (3.3) has a pair of purely imaginary roots ±iζl. �

In Section 4, we will study the occurrence of Hopf bifurcation when the delay passes
through the critical value of the delay τ = τl.

Let z(t)= (u(t),v(t))= (x(t), y(t))− (x2, y2), then the system (2.4) is written as a func-
tional differential equation (FDE) in C := C([−τ,0],R2):

dz(t)
dt

= L(τ)zt + f
(
zt,τ

)
, (3.14)

where L(τ) : C→R2 is a linear operator and f : C×R→R2 are given, respectively, by

L(τ)ϕ=
(
ωy2ϕ1(−τ) +ωx2ϕ2(−τ)− δϕ1(0)
−y2ϕ1(0) +

(
α− 2αβy2− x2

)
ϕ2(0)

)

,

f (ϕ,τ)=
(

σ +ωϕ1(−τ)ϕ2(−τ) +ωx2y2− δx2

−αβϕ2
2(0) +αy2−αβy2

2 −ϕ1(0)ϕ2(0)− x2y2

) (3.15)

for ϕ= (ϕ1,ϕ2)∈ C.

4. Hopf bifurcation occurrence

According to the Hopf bifurcation theorem [22], we come to the main result of this paper.

Theorem 4.1. Assume αδ > σ , α > 0, β > 0, and β are close enough to 0. There exists ε1 > 0
such that for each 0≤ ε < ε1, (3.14) has a family of periodic solutions pl(ε) with period Tl =
Tl(ε), for the parameter values τ = τ(ε) such that pl(0)= P2, Tl(0)= 2π/ζl, and τ(0)= τl,
where τl and ζl are given, respectively, in (3.5).
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Proof. We apply the Hopf bifurcation theorem introduced in [22]. From the expression
of f in (3.14), we have

f (0,τ)= 0,
∂ f (0,τ)
∂ϕ

= 0, ∀τ > 0. (4.1)

From (3.3) and Theorem 3.1, the characteristic equation (3.3) has a pair of simple imag-
inary roots λl = iζl and λl =−iζl at τ = τl.

From (3.3), W(λl,τl) = 0 and (∂/∂λ)W(λl,τl) = 2iζl + p + (s− τ(isζl + q))e−iζlτl �= 0.
According to the implicit function theorem, there exists a complex function λ = λ(τ)
defined in a neighborhood of τl, such that λ(τl)= λl and W(λ(τ),τ)= 0, and

λ′(τ)=−∂W(λ,τ)/∂τ
∂W(λ,τ)/∂λ

for τ in a neighborhood of τl, (4.2)

λ′(τ)= λ(sλ+ q)e−λτ

2λ+ p+ (s− τsλ− τq)e−λτ
. (4.3)

From (3.3), (3.9), and (4.3), we obtain the following expression of λ′(τ) for τ in a neigh-
borhood of τl:

λ′(τ)=−λ sλ3 +
(
s2p+ q

)
λ2 + (sr + pq)λ+ qr

τsλ3 +
(
s+ τ(sp+ q)

)
λ2 +

(
2q+ τ(sr + pq)

)
λ+ pq− sr + qr

. (4.4)

Let λ(τ)= κ(τ) + iζ(τ) (where κ and ζ are the real and imaginary parts of λ, resp.). From
(4.4), we have

κ′(τ)/τ=τl = ζ2
l

s2ζ4
l +

(
sqr(τ − 1) + 2q2

)
ζ2
l + sr2(q− sr) + pq2(p+ r)− qr(2q+ τ(sr + pq)

)

A2 +B2
,

(4.5)

where

A=−(s+ τ(sp+ q)
)
ζ2
l + pq− sr + qr,

B =−τsζ2
l +

(
2q+ τ(sr + pq)

)
ζl.

(4.6)

From the expression of r and as β is close to 0, then r is very small. From (4.5), we con-
clude that

κ′(τ)/τ=τl > 0. (4.7)

Then, the transversality condition is verified, which completes the proof of Theorem 4.1.
�

5. Direction of Hopf bifurcation

For determining the direction of Hopf bifurcation, there exist many formulas, we cite
(1) the formulas using the theory of normal forms, see Hassard et al. [23], (2) Faria and
Magalhães [16], (3) Diekmann [15]. In this section, we follow methods presented in [15],



8 Stability of limit cycle in tumor immune system

where the direction and stability of the bifurcating branch are obtained by the Taylor
expansion of the delay function τ that describes the parameter of bifurcation near the
critical value τl (see Sections 3 and 4). Namely, this direction and stability are determined
by the sign of the first nonzero term of Taylor expansion, that is,

τ(ε)= τl + τ2ε
2 + o

(
ε2) (5.1)

and the sign of τ2 determines either the bifurcation is supercritical (if τ2 > 0) and periodic
orbits exist for τ > τl, or it is subcritical (if τ2 < 0) and periodic orbits exist for τ < τl. The
term τ2 may be calculated, see [15], using the formula

τ2 = Re(c)
Re
(
qD2M

(
iζl,τl

)
p
) , (5.2)

where M is the characteristic matrix of (3.14) given by

M(λ,τ)=
(
λ+ωy2e−λτ + δ −ωx2e−λτ

y2 λ−α+ 2αβy2 + x2

)

, (5.3)

D2M(iζl,τl) denotes the derivative of M with respect to τ at the critical point (iζl,τl), the
constant c is defined as follows:

c = 1
2
qD3

1 f
(
0,τl

)(
P2(θ),P(θ)

)

+ qD2
1 f
(
0,τl

)(
e0.M−1(0,τl

)
D2

1 f
(
0,τl

)(
P(θ),P(θ)

)
,P(θ)

)

+
1
2
qD2

1 f
(
0,τl

)(
e2iζl .M−1(2iζl,τl)D2

1 f
(
0,τl

)(
P(θ),P(θ)

)
,P(θ)

)
,

(5.4)

where f is the nonlinear part of (3.14), Di
1 f , i= 2,3, denotes the ith derivative of f with

respect to ϕ, P(θ) denotes the eigenvector of A, P(θ) denotes the conjugate eigenvector,
and p and q are defined later.

Now, we describe all the above operators and vectors precisely. Let

L := L(τl
)

: C
([− τl,0

]
,R2)−→R2 (5.5)

denote the linear part of (3.14). Using the Riesz representation theorem, one obtains, see
[22],

Lϕ=
∫ 0

−τl
dη(θ)ϕ(θ), (5.6)

where,

dη(θ)=
(
−ωy2δ

(
θ + τl

)− δδ(θ) ωx2δ
(
θ + τl

)

−y2δ(θ)
(
α− 2αβy2− x2

)
δ(θ)

)

, (5.7)

δ(·) denotes the Dirac function.



Radouane Yafia 9

Let A denote the generator of semigroup generated by the linear part of (3.14).
Then,

Aϕ(θ)=
⎧
⎪⎨

⎪⎩

dϕ

dθ
(θ) for θ ∈ [− τl,0

)
,

Lϕ for θ = 0,
(5.8)

where ϕ∈ C([−τl,0],R2).
To study the direction of Hopf bifurcation, one needs to calculate the second and third

derivatives of nonlinear part of (3.14):

D2
1 f
(
0,τl

)
ψχ =

(
ωψ1

(− τl
)
χ2
(− τl

)
+ωψ2

(− τl
)
χ1
(− τl

)

−ψ1(0)χ2(0)−ψ2(0)χ1(0)− 2αβψ2(0)χ2(0)

)

, (5.9)

D3
1 f
(
0,τl

)= 0, (5.10)

ψ = (ψ1,ψ2), χ = (χ1,χ2)∈ C([−τl,0],R2).
As (iζl,τl) is a solution of (3.3), then iζl is an eigenvalue ofA and there is an eigenvector

of the form P(θ)= peiζlθ and pi, i= 1,2 are complex numbers which satisfy the following
system of equations:

M
(
iζl,τl

)
p = 0. (5.11)

Then one may assume that

p2 = 1, (5.12)

and calculate

p1 = α− 2αβy2− x2− iζl
y2

. (5.13)

Now, consider A∗, that is, an operator conjugated to A, A∗ : C([0,1],R2)→ R2, defined
by

A∗ψ(s)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−dψ
ds

(s) for s∈ (0,1],

−
∫ 0

−τl
ψ(−s)dη(s) for s= 0,

(5.14)

ψ = (ψ1,ψ2)∈ C([0,τl],R2).
Let Q(s) = qeiζls be the eigenvector for A∗ associated to eigenvalue iζl, q = (q1,q2)T .

One needs to choose q such that the inner product (see [22])

〈Q,P〉 =Q(0)P(0)−
∫ 0

−1

∫ θ

0
Q(ξ − θ)dη(θ)P(ξ)dξ (5.15)
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is equal to 1. Therefore,

q2 = 0 (5.16)

leads to

q1 = e−ζlτl

X − iY , (5.17)

where

X = α− 2αβy2− x2

y2
cos

(
ζlτl
)

+
ζl
y2

sin
(
ζlτl
)

+ τlω
(−α+ 2αβy2 + 2x2

)
,

Y =−α− 2αβy2− x2

y2
sin
(
ζlτl
)− ζl

y2
cos

(
ζlτl
)

+ ζlτlω.

(5.18)

From (5.9), we have

D2
1 f
(
0,τl

)(
P(θ),P(θ)

)=
(

2ωRe
(
p1
)

−2Re
(
p1
)− 2αβ

)

,

D2
1 f0
(
0,τ0

)(
P(θ),P(θ)

)
(

2ωp1e−2iζlτl

−2p1− 2αβ

)

,

(5.19)

1
2
qD3

1 f
(
0,τl

)(
P2(θ),P(θ)

)= 0. (5.20)

From the expression of M, we have

M−1(0,τl
)=W−1(0,τl

)
(−α+ 2αβy2 + x2 ωx2

−y2 ωy2 + δ

)

,

M−1(2iζl,τl
)=W−1(2iζl,τl

)
(

2iζl −α+ 2αβy2 + x2 ωx2e−2iζlτl

−y2 2iζ0 +ωy2e−2iζlτl + δ

)

.

(5.21)

From (5.19) and (5.21), we have

qD2
1 f
(
0,τl

)(
e0.M−1(0,τl

)
D2

1 f
(
0,τl

)(
P(θ),P(θ)

)
,P(θ)

)

=W(
0,τl

)−1 ω

X2 +Y 2
[X + iY][B+ iC],

(5.22)

where

B = 2ω
(−α+ 2αβy2

)
Re
(
p1
)

− 2ωαβx2−
(
ωy2 + δ

)(
2Re

(
p1
)

+ 2αβ
)

Re
(
p1
)− 2ωy2 Re

(
p1
)2

,
(5.23)

C =−(ωy2 + δ
)(

2Re
(
p1
)

+ 2αβ
)

Im
(
p1
)− 2ωy2 Re

(
p1
)

Im
(
p1
)
. (5.24)
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Then

Re
(
qD2

1 f
(
0,τl

)(
e0.M−1(0,τl

)
D2

1 f
(
0,τl

)(
P(θ),P(θ)

)
,P(θ)

))

=W(
0,τl

)−1 ω

X2 +Y 2
[XB−YC].

(5.25)

1
2
qD2

1 f
(
0,τl

)(
e2iζl .M−1(2iζl,τl

)
D2

1 f
(
0,τl

)(
P(θ),P(θ)

)
,P(θ)

)

= ω

2
(HE−KF) + i(HF +KE)
(
X2 +Y 2

)∣∣W
(
2iζl,τl

)∣∣2 .
(5.26)

Then

Re
(

1
2
qD2

1 f
(
0,τl

)(
e2iζl .M−1(2iζl,τl

)
D2

1 f
(
0,τl

)(
P(θ),P(θ)

)
,P(θ)

))

= ω

2
HE−KF

(
X2 +Y 2

)∣∣W
(
2iζl,τl

)∣∣2 ,
(5.27)

where

H=X(−4ζ2
l + r +qcos

(
2ζlτl

)
+ 2sζl sin

(
2ζlτl

))−Y(2pζl+ 2sζl cos
(
2ζlτl

)− q sin
(
2ζlτl

))
,

K=Y(−4ζ2
l + r + qcos

(
2ζlτl

)
+ 2sζl sin

(
2ζlτl

))
+X

(
2pζl+ 2sζl cos

(
2ζlτl

)− q sin
(
2ζlτl

))
,

E = 2ω
y2

((
α− 2αβy2− x2

)(−α+ 2αβy2
)

+ 2ζ2
l

)

−
(

2
∣
∣p1

∣
∣2

+
2αβ
y2

(
α− 2αβy2− x2

)
)
(
ωy2 cos

(
2ζlτl

)
+ δ
)

− ζl
y2

(
2ζl −ωy2 sin

(
2ζlτl

))− 2ωy2
∣
∣p1

∣
∣2

cos
(
2ζlτl

)− 2αβωx2,

F= 2ωζl
y2

(
3α− 6αβy2− 2x2

)−
(

2
∣
∣p1

∣
∣2

+
2αβ
y2

(
α− 2αβy2− x2

)
)
(
2ζl −ωy2 sin

(
2ζlτl

))

+
ζl
y2

(
ωy2 cos

(
2ζlτl

)
+ δ
)

+ 2ωy2
∣
∣p1

∣
∣2

sin
(
2ζlτl

)
.

(5.28)

From the expressions of M, P, and Q, we have

qD2M
(
iζl,τl

)
p = iωζl X

(−α+ 2αβy2 + 2x1
)− ζlY + i

(
Y
(−α+ 2αβy2 + 2x1

)
+ ζlX)

X2 +Y 2
.

(5.29)
Then

Re
(
qD2M

(
iζl,τl

)
p
)=−ωζl Y

(−α+ 2αβy2 + 2x1
)

+ ζlX
X2 +Y 2

. (5.30)
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Then From (5.20), (5.25), (5.27), and (5.30), the expression of τ2 is given by

τ2 =− (1/2)(HE−KF)/
∣
∣W

(
2iζl,τl

)∣∣2
+W

(
0,τl

)−1
[XB−YC]

ζl
[
Y(−α+ 2αβy2 + 2x1

)− ζlX
] (5.31)

and we deduce the following result.

Theorem 5.1. Let τ2 be given in (5.31). Then,
(a) the Hopf bifurcation occurs as τ crosses τl to the right (supercritical Hopf bifurcation)

if τ2 > 0 and to the left (subcritical Hopf bifurcation) if τ2 < 0;0
(b) the bifurcating periodic solutions are stable if τ2 > 0 and unstable if τ2 < 0.

Note that Theorem 5.1 provides an explicit algorithm for detecting the direction and
stability of Hopf bifurcation.
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sachusetts, 2000.

[5] N. Bellomo and M. Pulvirenti (eds.), Special issue on the modeling in applied sciences by methods
of transport and kinetic theory, Mathematical and Computer Modelling 12 (2002), 909–990.
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