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ABSTRACT
The United States electric grid is a complex structure that

requires high precision control of frequency and tieline power
flows among different generation areas. Highly varying loads
introduce a major challenge for the present automatic genera-
tion control systems. Arc furnaces, rolling mills and other large
motors can create large demands on the system which result in
an unsatisfactory area control error (ACE). Recent studies have
shown that very-short term load prediction can be incorporated
into control schemes which are then able to compensate for the
highly varying demand. Using a neural network prediction of
the area load a new fuzzy logic controller has been developed
that adjusts the set point of the area generation to attempt to
match the upcoming changes on the system. Performance of
the neural-fuzzy controller in a two-area tie-line model with ac-
tual load data from a collaborating utility is demonstrated and
compared with the present AGC system through simulations.

1 INTRODUCTION

Interconnection of the electric grid in the United States
and Canada began in 1962 when seven interconnections
were closed to form the largest synchronized system in the
world. When a blackout occured in the northeast in 1965
the U.S. Federal Power Commission recommended that an
organization be formed to coordinate the policies of all re-
gional coordinating councils. In 1968, after the passing of
the Electric Power Reliability Act (1967), the North Amer-
ican Electric Reliability Council (NERC) was formed to co-
ordinate regional operating strategies so that the reliability
ctor of the Colorado School of Mines Power System Engineer-
arch Center and author for all future correspondence
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Figure 1. NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL

of the interconnected system could be improved.
The nonprofit organization is comprised of nine regional

coordinating councils, as shown in Figure 1, that promote
the reliability of the electricity supply in North America by
instituting guidelines and criteria for utilities to follow that
ensure proper control of their systems and their interaction
with surrounding systems. The areas that comprise the nine
regional councils are called control areas and the entities
that operate them are control area operators. Not every
utility, power producer or system operates a control area,
but every energy supplier must be included in a control area.

A mechanism for modeling the surpluses or deficiencies
of generation in a control area is called the area control error
Copyright c© 2002 by ASME
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(ACE). ACE is a numeric value, in megawatts (MW), that
relates the deviation from scheduled tie-line flow and the
deviation from scheduled frequency to the generation sup-
plied to the system. Many AGC algorithms in service today
use the integral of ACE to regulate the supplementary con-
trol for units on AGC. Classical Proportional-Integral (PI)
controllers and the filters associated with them, developed
in the 1960’s, use the ACE value to regulate the supply of
generation in a control area. While this mechanism of con-
trol has shown ease of use, there is an inherent time delay
in its operation which causes generation to lag the changing
demand.

Researchers have investigated the use of very short-term
load forecasting in an attempt to enhance dispatch of local
area generation. Using short-term predictions, a control
area operator can respond to changing loads before they
occur, and maintain the error between generation and load
on their system more accurately. Methods that attempt
to perform this operation are called intelligent automatic
generation control systems (IAGC)

Very short-term load forecasting has been performed by
Charytoniuk and Chen (2). The authors use several ANN’s
to perform very short-term load prediction from 20 to 60
minutes ahead. Liu et al (3) use a four layer feedforward
neural network that incorporates net interchange, frequency
deviation and ACE along with 30 previous load values are
used to predict the load change out to thirty minutes in one
minute intervals. Longer prediction horizons were used by
(4; 5; 6; 7; 8).

Fuzzy logic has also recently been used to enhance the
control of power systems, Chang and Fu (9) use fuzzy gain
scheduling of the PI controller in a common AGC system to
try and adapt the controller as time and conditions change.
Other research has gone into reducing the movement of gen-
eration units to short-term deviations in ACE. Chown and
Hartman (10) detail the purpose and development of a
fuzzy logic controller that was integrated into the AGC sys-
tem of Eskom in South Africa. The fuzzy controller uses
ACE and its derivative as the inputs into the system and
outputs a new ACE value which is fed to the conventional
AGC algorithm. Shoureshi and Hoffner et al (11) reduce
the generator movement with a fuzzy controller that com-
pletely replaces the conventional AGC controller.

A mechanism for modeling the surpluses or deficiencies
of generation in a control area is called the area control error
(ACE). ACE is a numeric value, in megawatts (MW), that
relates the deviation from scheduled tie-line flow and the
deviation from scheduled frequency to the generation sup-
plied to the system. Many AGC algorithms in service today
use the integral of ACE to regulate the supplementary con-
trol for units on AGC. Classical Proportional-Integral (PI)
controllers and the filters associated with them, developed
2
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Figure 2. BLOCK DIAGRAM OF PROPOSED IAGC SYSTEM

in the 1960’s, use the ACE value to regulate the supply of
generation in a control area. While this mechanism of con-
trol has shown ease of use, there is an inherent time delay
in its operation which causes generation to lag the changing
demand.

2 INTELLIGENT AUTOMATED GENERATION CONTROL

The development of IAGC systems has recently be-
come feasible with the advances in technologies such as high
speed telecommunications and the availability of high com-
putational power to solve high speed numerical algorithms.
IAGC systems have the ability to regulate system perfor-
mance even during load changes that cause large deviations
in frequency and tie line flow. Figure 2 illustrates the differ-
ent components of an IAGC system and their interactions.

By applying IAGC techniques to the control system
utilities will be able to better meet the changing nature
of the electric industry. The IAGC system developed in
this paper can be broken down in to three main parts,
Very short-term load prediction, fuzzy logic, and neural
networks. Together they are applied to lower the effects of
non-conforming loads such as arc furnaces and rolling mills
on the electric grid. To complete this IAGC system a load-
scheduling algorithm is being developed. This algorithm
will form a feedback loop with the customer load and in so
doing minimize the disturbance produced by simultaneous
highly varying loads.
Copyright c© 2002 by ASME
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3 TWO-AREA TIE-LINE MODEL

The most widely used mathematical model for AGC is
a two-area interconnected linear tie-line model. This model
is still commonly used to analyze and simulate the intercon-
nected power generation system in the electrical utility com-
munity. Figure 1 shows an illustration of the model with a
proportional-integral supplementary controller in areas one
and two.

Figure 3. TWO-AREA TIE-LINE MODEL

The new neuro-fuzzy controller was simulated in this
system by replacing the supplementary controller in area 1.
The actual load data from the sponsoring utility was used
for the load disturbance in area 1, and a separate load pro-
file was used as the load disturbance in area 2. The model
used a standard governor and reheat turbine model with
parameters found in (14), 5% speed droop, and inertia,
damping, frequency bias and tie-line stiffness developed by
(12) for the sponsoring utility. Each area in the model was
simulated with the same parameters for simplicity, and sim-
ulations were performed on three systems, the neuro-fuzzy
controller, a two-input fuzzy controller and a PI controller,
which was used as the benchmark.

4 NEURAL-BASED SHORT-TERM LOAD FORECASTING

The growing acceptance of Artifical Neural Networks
(ANN) for non-linear system identification in industry has
prompted researchers to investigate applications of ANN for
load forecasting. Because of the random nature of loads
in most control areas, the task of predicting the future
response of the system has proven to be a difficult and
3
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Figure 4. TSUKAMOTO-TYPE NEURAL FUZZY INFERENCE NETWORK

complicated. Moreover, utilities that serve customers that
have highly varying loads (HVL), such as arc furnaces and
rolling mills, are confronted with an even more challenging
problem of modeling loads that can change by hundreds of
megawatts in a matter of minutes. The development of a
new ANN to face and resolve these challenges was initiated
by the Power Research Center at the Colorado School of
Mines. The challenge of this problem was to develop a net-
work that was reliable and accurate but which was able to
adapt quickly, meaning it had to be able to retrain itself
very quickly. The Tsukamoto-type neural fuzzy inference
network (TNFIN) was developed to serve this purpose. The
TNFIN is a multi-layer feedforward network that uses the
generality of fuzzy logic in its architecture.

Work initially performed by Hu (15) produced a four
layer ANN that exhibited desirable features such as fast
training times, reduced number of parameters to learn, the
ability to avoid falling into local minima, and the adaptabil-
ity to change the number of inputs and outputs associated
with the network. Figure 4 shows a two input-two out-
put model of the TNFIN. However, the architecture can be
extended to any number of inputs and outputs. The para-
meters adapted during training are the function parameters
in layers one and three.

The details of the layer architecture and training can be
found in the June 2000 proceedings of the American Control
Conference (13).
Copyright c© 2002 by ASME
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Figure 5. ORGANIZATION OF TNFIN INPUTS AND OUTPUTS

The TNFIN structure and training developed by Hu
was applied to load forecasting in this research. The de-
velopment of a set of inputs to the network is imperative
for predicting the dynamics of the actual load. In order to
attempt to predict the load of the host utility, the initial
simulations of the network used 15 inputs:

• Ten minutes of total load values
• Area Control Error
• Frequency
• Tie Line Flow
• Total Generation
• Current Time

and 6 outputs:

• Future 10, 20, 30, 40, 50 and 60 minutes of load predic-
tions

Figure 5 illustrates how these system variables were incor-
porated to predict the future demand on the system.

Because of the nature of the electric grid, high fre-
quency deviations of the load from its general trend are very
common. A deviation of 100 MW is a large amount of power
that needs to be tracked, but smaller deviations represent-
ing 10-30MW, were deemed to be too random in nature
to predict. It was also assumed that trying to track these
smaller loads would cause more maintenance problems for
the utility than the realizable economical gains from track-
ing this load. Therefore, the actual load values were filtered
to eliminate the very high frequency load deviations. Ini-
tially a large amount of filtering was used to validate that
4
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Figure 6. TEN MINUTE TNFIN PREDICTION

the TNFIN was able to track this load. Figure 6, shows
the load prediction result by using TNFIN.

5 FUZZY CONTROL DEVELOPMENT

The ACE is the main input into the normal regula-
tion component of AGC. With the selection of, ACE and∫

ACE, as control inputs, a set of control rules were ex-
tracted from operator experience based on these two vari-
ables. The neural network prediction, NNOut, was then
used as an additional input to incorporate a feedforward
control loop into the system.

In the design of this controller, both ACE and
∫

ACE
are partitioned into 5 linguistic values which are Negative
Large (NL), Negative Small (NS), Zero (Z), Positive Small
(PS), and Positive Large (PL), respectively. The neural
network prediction is partitioned into 3 linguistic values,
Negative Large (NL), Zero (Z), Positive Large (PL). The
control signal u is partitioned into 9 linguistic values which
are Negative Very Large (NVL), Negative Large (NL), Neg-
ative Medium (NM), Negative Small (NS), Zero (Z), Pos-
itive Small (PS), Positive Medium (PM), Positive Large
(LP), and Positive Very Large (PVL), respectively. Trian-
gular membership functions are assigned to each linguistic
value of the three fuzzy input variables, ACE,

∫
ACE and

NNOut, and the fuzzy output variable, (u), and each one
overlaps the adjacent functions by 50%. Figure 7 shows the
outlined membership functions for the four fuzzy variables:
ACE,

∫
ACE, NNOut and u, respectively.

Figure 8 shows the fuzzy control rule matrix. Given the
Copyright c© 2002 by ASME
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Figure 7. MEMGERSHIP FUNCTIONS FOR ACE,
∫

ACE, NNOut
and u

number of linguistic values for our fuzzy variables, the total
number of fuzzy rules should be 25 (5 times 5) for each value
of NNOut. Based on interviewing the system dispatchers
of the collaborating utility and using an understanding of
power system dynamics, only 17 fuzzy rules out of the 25 are
selected for the zero (Z) membership function of NNOut.
The reason for not using the remaining eight rules is accept-
able if we consider

∫
ACE as error, then ACE should be

d(error)
dt and the antecedent part of the remaining eight rules

may be represented by either ‘error is positive and d(error)
dt

is negative’ or ‘error is negative and d(error)
dt is positive’.

Even without any control efforts, the remaining eight rules
automatically drive error to zero because the sign of error

is always opposite to that of d(error)
dt . If any of above eight

rules are fired, no control effort is produced.
The addition of the two remaining NNOut member-

ship functions creates a tensor of fuzzy control rules. The
firing of a PL or NL NNOut membership function causes
a shifting of the fuzzy rule base diagonally up or down. If a
PL membership function is fired the controller has a greater
tendency to create a positive output signal even though the
5
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ACE and
∫

ACE membership function may not have war-
ranted the larger output. A similar tendency occurs for the
firing of a NL membership function.

The fuzzy inference used for this controller is Mam-
dani’s minimum implication and a center of area (COA)
strategy is used to defuzzify the linguistic values of the con-
troller to the crisp values of the control signal.

6 SIMULATION AND RESULTS

Simulation was carried out on the two-area model with
the matrix software, Simulink. Because of the nature of the
electric grid, high frequency deviations of the load from its
general trend are very common. A deviation of 100 MW
is a large amount of power that needs to be tracked, but
smaller deviations representing 10-30MW, were deemed to
be to random in nature to predict. It was also assumed that
trying to track these smaller loads would cause more main-
tenance problems for the utility than the realizable gains
from tracking this load, therefore, the actual load values
were filtered to eliminate the very high frequency devia-
tions.

Figures 9 and 10 show a section of the actual load data
compared to the two filtered load data sets, Load Data 1
and Load Data 2, respectfully. These two sets of filtered
load data were used to simulate the neural-fuzzy controller.
The initial simulations used the highly filtered load data,
Load Data 1, as the load disturbance in area 1 and as the
input into the neural network prediction.

The system was simulated using 45 days of load data
sampled at one minute intervals. ACE, the change in tie-line
flow and the change in frequency were monitored for three
systems, the feedforward fuzzy controller, a fuzzy controller
Copyright c© 2002 by ASME
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Figure 9. ACTUAL LOAD AND LOAD DATA

Figure 10. ACTUAL LOAD AND LOAD DATA

without a neural network prediction and a PI controlled
system. The ACE values simulated on the three systems
were used for comparison by comparing the numerical inte-
gration of their absolute values:

Improvement(%) =
(

1 −
∫ tf

0 |ACEFuzzy |∫ tf

0
|ACEPI |

)
× 100 (1)
6
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Figure 11. AREA CONTROL ERROR COMPARISON WITH LOAD DATA

and also by comparing the standard deviations of their his-
tograms:

Improvement(%) =
(

1 − σFuzzy

σPI

)
× 100 (2)

Figure 11 shows a section of the ACE values from the
feedforward fuzzy controlled system versus that of the PI
controlled system. The overall improvement of the area 1
ACE value over that of the PI controlled area 1 ACE is
83.96% and 84.42% using the numerical integration (NI)
and sigma (σ) criterion, respectfully. The change in tie-line
flow also shows a significant improvement of 86%.

The feedforward fuzzy controller also shows an improve-
ment over that of the fuzzy controlled system by 8.05% (NI)
and 9.28% (σ). Figure 12 shows a histogram of the ACE
values for the two controllers.

Usually improvements such as these are at the cost of
the change in frequency, therefore, another goal of the sim-
ulation was to maintain or improve the change in frequency
between all simulations. Figure 13 is a histogram of ∆ωPI

and ∆ωFF which shows that the frequency of the feedfor-
ward fuzzy controller maintained better frequency control
than did the PI controller.

In order to incorporate a load profile that showed more
variations, Load Data 2 was used as the load disturbance
in area 1. Figure 14 shows the same section of ACE values
as shown for the previous simulations. A 28.48% (NI) and
28.18% (σ) ACE improvement and a 36% change in tie-line
Copyright c© 2002 by ASME
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Figure 12. HISTOGRAMS OF ACE USING LOAD DATA

Figure 13. CHANGE IN FREQUENCY DIFFERENCE WITH LOAD DATA

improvement was shown by the feedforward fuzzy controlled
system. Figure 15 shows that there is still an improve-
ment made by the feedforward fuzzy controller over that of
the fuzzy controlled system, and Figure 16 shows that the
change in frequency was still similar between the two sys-
tems. While this improvement was substantially less than
that of the highly filtered simulations, the control gained
7
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Figure 14. AREA CONTROL ERROR COMPARISON WITH LOAD DATA

Figure 15. HISTOGRAMS OF ACE USING LOAD DATA

over the system is evident.

A summary of the improvements shown with the two-
input fuzzy controller and the feedforward fuzzy controller
over that of the PI controlled system are shown in Table 1
Copyright c© 2002 by ASME
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Figure 16. CHANGE IN FREQUENCY DIFFERENCE WITH LOAD DATA

Table 1. SUMMARY OF FUZZY LOGIC CONTROLLER IMPROVE-

MENTS(%)

Data Set Load Data 1 Load Data 2

Fuzzy(σ) 75.14 23.96

Feedforward
Fuzzy(σ)

84.42 28.18

Fuzzy(NI) 75.91 21.00

Feedforward
Fuzzy(NI)

83.96 28.48

7 CONCLUSIONS

In this paper, portions of a new IAGC system were
developed that feature a neural fuzzy controller. This con-
troller uses ACE,

∫
ACE and a neural network prediction

of future load NNOut to control a two-area tie line model
using actual utility load disturbances. Simulations were run
on three systems, the feedforward fuzzy controller, a fuzzy
controller and a PI controlled system. Both of the fuzzy sys-
tems show significant improvement over the current method
of load-frequency control. A controller that incorporates
the knowledge of a feedforward loop is able to improve sys-
tem response significantly over that of pure feedback sys-
tems. This is a major portion of a true IAGC system. In
the future load scheduling will be preformed via a optimal
dispatch algorithm that will further increase the ability of
the controller to match changing demand accurately. Com-
bined the feedforward controller and the optimal dispatch
8
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will form a fully functional IAGC system.
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