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ABSTRACT
In this paper we investigate the benefits that accrue
from the use of multiple paths by a session coupled
with rate control over those paths. In particular, we
study data transfers under two classes of multipath con-
trol, coordinated control where the rates over the paths
are determined as a function of all paths, and unco-
ordinated control where the rates are determined inde-
pendently over each path. We show that coordinated
control exhibits desirable load balancing properties; for
a homogeneous static random paths scenario, we show
that the worst-case throughput performance of uncoor-
dinated control behaves as if each user has but a single
path (scaling like log(log(N))/ log(N) where N is the
system size, measured in number of resources). Whereas
coordinated control yields a worst-case throughput al-
location bounded away from zero. We then allow users
to change their set of paths and introduce the notion
of a Nash equilibrium. We show that both coordinated
and uncoordinated control lead to Nash equilibria cor-
responding to desirable welfare maximizing states, pro-
vided in the latter case, the rate controllers over each
path do not exhibit any RTT bias (as in TCP Reno).
Finally, we show in the case of coordinated control that
more paths are better, leading to greater welfare states
and throughput capacity, and that simple path reselec-
tion polices that shift to paths with higher net benefit
can achieve these states.

1. INTRODUCTION
Multipath routing has received attention recently [2,

6, 14, 5, 21]. Furthermore, combining multipath routing
with rate control is implicitly used by several Peer-to-
peer (P2P) applications. Most relevant to us is Bittor-
rent [4], which maintains a number of, typically four, ac-
tive connections to other peers with an additional path
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periodically chosen at random together with a mecha-
nism that retains the best paths (as measured by through-
put).

The basic setting of multipath coupled with rate con-
trol is as follows. A source and destination pair in a
network is given a set of possibly overlapping paths
connecting them. The pair then chooses a subset to
use and the rates at which to transfer data over those
paths. This scenario is illustrated in Figure 1(a). Note
that the P2P example described above falls into this
formulation once one includes a fictitious source feed-
ing data through peers to the intended receiver, as in
Figure 1(b). Some natural questions arise:

• How many paths are required? And does it suf-
fice, as with the above P2P application, to use a
subset of the paths? Opening multitudinous TCP
connections has negative systems performance im-
plications, hence there are incentives to keep the
number of connections small.

• P2P applications use independent uncoordinated
TCP rate control mechanisms over each active
path as this is straightforward to implement and
requires no change to the network. However, start-
ing from first principles, mechanism design pro-
duces a coordinated control mechanism where the
rates over each path are determined as a func-
tion of all of the paths. How does an uncoor-
dinated control mechanism perform relative to a
coordinated control mechanism? This is impor-
tant because the latter requires a revised trans-
port layer protocol or a careful application layer
solution whereas the former is easily implemented
using TCP.

The motivating application scenario is of data trans-
fers over a network, where the transfers are long enough
to allow performance benefits for multipath routing, al-
though our results apply more generally to situations
where there are alternative resources which can help
service a demand, and where the demand is serviced us-
ing some form of rate control. We assume that demand
is fixed, and each user† attempts to optimize its perfor-
mance by choosing appropriate paths (resources), where

†We use the term ‘user’ as a convenient shorthand for a
user, or the software or algorithm a user or end-system
employs.
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Figure 1: (a) A canonical multipath example.
(b) A BiTorrent example where a receiving peer
receives data from four peers. A virtual sender
has been included to show the relationship to
canonical multipath.

the rate control algorithm is fixed. More precisely, we
assume that the rate control is implicitly characterized
by a utility maximization problem [20], where a partic-
ular rate control algorithm (e.g. TCP Reno) maps to a
particular (user) utility function [9], and users selfishly
seek to choose paths in such a way as to maximize their
net utility. Within this optimization framework, a coor-
dinated controller is modeled by a single utility function
per user, whose argument is the aggregate rate summed
over paths, whereas an uncoordinated controller has a
utility function per path and the aggregation is over all
of the utility functions.

Key to the usefulness of multipath rate control is its
ability in the hands of users operating independently
of each other to balance the load throughout the net-
work. We illustrate this for a particular scenario, where
the paths chosen are fixed and static, but chosen at
random from a set of size N . We focus on the worst-
case allocation, which is a measure of the fairness of the
scheme. In the uncoordinated case, the worst case allo-
cation scales as log(log(N))/ log(N) independent of the
number b of paths chosen. In contrast, in the coordi-
nated case where each user can balance its load across
theb paths available to it, provided there are two or
more, the worst-case allocation is bounded away from
zero. This demonstrates that

1. coordinated control balances loads significantly bet-
ter than uncoordinated when paths are fixed;

2. coordinated improves on greedy least-loaded re-
source selection, as in Mitzenmacher [16], where
the least-loaded selection of b resources scales as
1/ log(log(N)) for b > 1.

Effectively, coordinated control is able to shift the load
amongst the resources, and with each user indepen-
dently balancing loads over no more than two paths,
able to utilize the resources as if global load balancing
was being performed.

This raises the question of how users should be as-
signed a set of paths to use. One natural path selec-
tion mechanism is to allow users to make their own
choices. We study this as a game between users and
consider a natural notion of a Nash equilibrium in this
context, where users seek to selfishly maximize their
own net utilities. We find that when users use coor-
dinated controllers, the Nash equilibria coincide with

welfare-maximizing social optima. When we consider
uncoordinated controllers, then the results depend on
whether or not the controllers exhibit RTT bias (like
TCP) or not. When they do not exhibit RTT bias, the
Nash equilibria also coincide with welfare-maximizing
social optima. Otherwise they need not.

We show that increasing the number of paths avail-
able to a source destination pair is desirable from a per-
formance perspective. However, the simultaneous use
of a large number of paths may not be possible. We
show that this does not pose a problem as simple path
selection policies which combine random path resam-
pling with moving to paths with higher net benefit lead
to welfare maximizing equilibria and also increase the
throughput capacity of the network. In fact such a pol-
icy does as well as if each user uses all of the available
paths simultaneously.

In summary, we shall provide some partial answers to
our initial questions.

• In a large system, provided users re-select ran-
domly from the sets of paths and shift to paths
with higher net benefit, they rely on a small num-
ber of paths and do as well as if they were fully
using all available paths.

• Coordinated control has better fairness properties
than uncoordinated in the static case. When com-
bined with path reselection, uncoordinated control
only does as well as a coordinated control if there
is no RTT bias in the controllers.

We conclude the paper with some thoughts on how
multipath rate control might be deployed.

2. THE MULTIPATH FRAMEWORK
The standard model of the network is as a capaci-

tated graph G = (V,E,C) where V represents a set of
end-hosts or routers, E is a set of communication links
and each link has a capacity, say in bits per second, Cl,
l ∈ E. In addition a large population of sessions perform
data transfers over the network. These sessions are par-
titioned into a set of session classes S with Ns sessions
in class s ∈ S. Associated with class s is a source σs, a
destination ds, and a set of one or more, possibly over-
lapping paths, R(s) between the source and destination
that is made available to all class s sessions. Finally,
we associate an increasing, concave function with each
session class, Us(x), which is the utility that a class s
session receives when it sends data at rate x > 0 from
source to destination. Now, exactly how this utility is
used and the meaning of x depends on whether we are
concerned with coordinated or uncoordinated control.
We will shortly describe each of these in turn.

A discussion of how utility functions can be used to
model standard TCP Reno is given in [15]. The so-
called weighted alpha-fair utility functions given by

Ur(x) =

{
wr

x1−α

1−α if α 6= 1

wr log(x) if α = 1
(1)

were introduced in [17], and are linked to different no-
tions of fairness. For example, α = 1 corresponds to



(weighted) proportional fairness [8], and limα → ∞
to max-min fairness. TCP’s behavior is well approxi-
mated by taking α = 2 and wr = 1/T 2

r , where Tr is
the round trip time for path r, in the following sense:
TCP achieves the maximum aggregate utility, for given
paths and link capacities, for the corresponding utility
functions Ur.

The set of paths available to a class s session can
potentially be very large. Hence a session will likely
use only a small subset of these paths. We assume for
now that every class s session uses exactly bs paths.
Let c denote a subset of R(s) that contains bs paths
and C(s) the set of all such subsets of paths, C(s) =
{c : c ⊂ R(s) ∧ |c| = bs}. Let Nc denote the number
of class s sessions that use the set of paths c ∈ C(s),
s ∈ S, and hence Ns =

∑
c∈C(s)Nc. Last, let Nr denote

the number of sessions that use path r ∈ R(s), Nr =∑
c∈C(s) 1(r ∈ c))Nc.
Associated with each class s session is a congestion

controller (rate controller) that determines the rates at
which to send data over each of the bs paths available
to it. We now distinguish between coordinated and un-
coordinated control.

Coordinated control. Given a set of paths c, a coor-
dinated controller actively balances loads over all paths
in c, taking into account the states of the paths. Our
understanding of and ability to design such controllers
relies on a significant advance made by Kelly [8], which
maps this problem into one of utility optimization. In
the case of coordinated congestion control, the objective
is to maximize the ‘social welfare’, that is to

Maximize
∑
s∈S

∑
c∈C(s)

NcUs
(∑
r∈c

λcr
)

(2)

over (λcr ≥ 0) subject to the capacity constraints∑
r3l

∑
c3r

Ncλcr ≤ Cl, l ∈ E (3)

where λcr is the sending rate of a class s session that
is using path r in c ∈ C(s). We will find it useful to
represent the total rate contributed by class s sessions
that use path r ∈ R(s) as Λr = Nc

∑
c3r λcr, and the

aggregate rate achieved by a single s session over all
paths in c as λc =

∑
r∈c λcr.

Note that in the absence of restrictions on the number
of paths used, C(s) = R(s), and the optimization can
be written

Maximize
∑
s∈S

NsUs
( ∑
r∈R(S)

λr
)

(4)

subject to the capacity constraints. We shall see later
in Section 5 that by using random path reselection the
solution to (2) actually solves (4), and hence give condi-
tions for when the restriction to using a subset of paths
of limited size imposes no performance penalties.

More generally, we can replace the hard capacity con-
straints‡ by a convex non-decreasing penalty function

‡The hard constraints in (3) can be written as the sum
of penalty functions, each of which is a step function
Γl(x), with Γl(x) = 0 if x ≤ Cl and ∞ otherwise

Γ. In the context of TCP, this penalty function can
be thought of as capturing the signaling conveyed by
packet losses or packet marking (ECN, [19]) by the net-
work to the sessions when link capacities are violated.
Under this extension, the coordinated control problem
transforms to

Maximize
∑
s∈S

∑
c∈C(s)

NcUs
(∑
r∈c

λcr
)
− Γ({Λr}). (5)

There are many ways to approach the problem of de-
signing controllers that solve these problems, but a very
natural one is suggested by the TCP congestion control,
which solves this variation of the above problem when
each session is restricted to a single path (see [11]).

Uncoordinated control. As mentioned earlier, unco-
ordinated control corresponds to a session with path
set c executing independent rate controllers over each
path in c. This is easily done in the current Internet by
establishing separate TCP connections over each path.
The ease in which uncoordinated control can be imple-
mented motivates our study of it. In Kelly’s optimiza-
tion formulation this corresponds to solving the follow-
ing problem,

Maximize
∑
s∈S

∑
c∈C(s)

Nc
∑
r∈c

Ur(λcr) (6)

over non-negative λcr subject to the capacity constraints
(3). As above, by analogy with (5) the constraints can
be generalized to reflect the signaling used by a con-
troller such as TCP. Note the difference between this
formulation and that for coordinated control. In the
case of the latter, the utility is applied to the aggregate
sending rate whereas in the case of the former, the util-
ity is evaluated on each path and then summed over all
paths. Note also that really we have written Ur instead
of Us for the uncoordinated controller, to reflect the
fact that the congestion control may differ across dif-
ferent paths (as is the case with TCP whose allocation
depends on the RTT of the path).

The functions above are strictly concave and are be-
ing optimized over a convex feasible region. Hence the
problems admit to unique solutions in terms of aggre-
gate per class rates, even though distinct solutions may
exit

3. LOAD BALANCING PROPERTIES OF
MULTIPATH

Multipath has been put forward as a mechanism that,
when used by all sessions can balance traffic loads in the
Internet. It is impossible to determine whether this is
universally true. However, we present in this section
a simple scenario where this issue can be definitively
resolved. We consider a simple scenario where there are
N resources with unit capacity (Cl ≡ 1).

To provide a concrete interpretation, the resources
can be interpreted as servers, or as relay or access nodes
— see Figure 2. There are aN users. Each user selects
b resources at random from the N available, where b is
an integer larger than one (the same resource may be
sampled several times). We shall look at the worst case



Figure 2: Load balancing example: there are N
servers, aN users and each selects b > 1 servers
at random.

rate allocation of users in two scenarios. In the first sce-
nario, users implement uncoordinated multipath con-
gestion control where there is no coordination between
the b distinct connections of each user. Thus, a connec-
tion sharing a resource handling X connections overall
achieves a rate allocation of exactly 1/X. In the second
scenario, each user implements coordinated multipath
congestion control.

We take the worst-case user rate allocation (or through-
put), as the load balance metric. One can show [13]
that the more ‘unfair’ the allocation, the greater the
expected time to download a unit of data.

3.1 Uncoordinated congestion control
Denote by λi the total rate that user i obtains from

all its connections. In the case of uncoordinated con-
gestion control, we can show that the worst case rate
allocation, minλi decreases like b2 log(logN)/ logN as
N increases. This is to be compared with the worst case
rate allocation that one gets when b = 1, that is when a
single path is used: from classical balls and bins models
[16], this also decreases as log(log(N))/ log(N) as N in-
creases. It should come as no surprise that using more
than two paths exhibits the same asymptotic perfor-
mance as using only one path; there is no potential for
balancing load within the network when all connections
operate independent of each other. A formal statement
and proof of this result can be found in [11].

3.2 Coordinated congestion control
Here we assume as before that there are aN users,

each selecting b resources at random, from a collection
of N available resources. Denote by λij the rate that
user i obtains from resource j, and let R(i) denote the
set of resources that user i accesses. In contrast with
the previous situation, we now assume that the rates
λij are chosen to maximize:

aN∑
i=1

U
( ∑
j∈R(i)

λij
)

subject to
∑
i

λij ≤ 1 for all j,=

for some concave utility function U .
An interesting property of this problem is that the

set of {λ∗ij} that solves the above optimization is in-
sensitive to the choice of utility function U so long as
it is concave and increasing. Moreover, this insensitiv-
ity implies that the optimal aggregate user rates (λ∗i )
correspond to the max-min fair rate allocations [3, Sec.
6.5.2]. Simply stated a rate allocation (λ∗i ) is said to

be max-min fair if and only if an increase of any rate
λ∗i0 must result in the decrease of some already smaller
rate. Formally, for any other feasible allocation (xi), if
xi > λi then there must exist some j such that λ∗j < λ∗i
and xj < λj . The above statements are easily verified
by checking that the max-min fair allocation satisfies
the Karush-Kuhn-Tucker conditions associated with the
above optimization problem.

This leads to the following result:

Theorem 3.1. Assume there are N resources, and
aN users each connecting to b resources selected at ran-
dom. Denote by {λ∗i } the optimal allocations that result.
Then there exists x > 0, that depends only on a and b,
such that:

lim
N→∞

P
(

min
i
λ∗i ≥ x

)
= 1. (7)

The style of the proof has wide applicability and we
outline it here: first, an application of Hall’s celebrated
marriage theorem shows that the minimum allocation
will be at least x provided that any set of users (of size
n say) connect to at least x times as many servers (nx
servers). If this condition is satisfied, the allocation (λ∗i )
will exceed x; hence it is sufficient to ensure that Hall’s
condition is met with high probability for all non-empty
subsets of 1, . . . , aN . Using the binomial theorem and
the union bound yields an upper bound on the prob-
ability the condition fails to hold, and then Stirling’s
approximation is used to approximate this bound.

This result says that the worst case rate allocation is
bounded away from zero as N tends to infinity, i.e., it is
O(1) in the number of resources N . Thus coordinated
control exhibits significantly better load balancing prop-
erties than does uncoordinated control. It is also inter-
esting to compare this result to the result quoted by
Mitzenmacher et al. [16], which says that if users ar-
rive in some random order, and choose among their b
candidate resources one with the lowest load, then the
worst case rate scales like 1/ log(log(N)), which unlike
the allocation under coordinated control, goes to zero as
N increases. The difference between the two schemes is
that in Mitzenmacher’s scheme a choice has to be made
immediately at arrival, which cannot be changed after-
wards, whereas a coordinated controller actively and
adaptively balances load over the b paths reacting to
changes that may occur to the loads on the resources.

4. A PATH SELECTION GAME
In this section we address the following question. Sup-

pose that each session is restricted to using exactly b
paths each, taken from a much larger set of possible
paths: what is the effect of allowing each user to choose
its b paths so as to maximize the benefit that it re-
ceives? To answer this question, we study a path selec-
tion game. Here each session is a player that greedily
searches for throughput-optimal paths. We characterize
the equilibrium allocations that ensue. We show that
the same equilibria arise with coordinated congestion
control and uncoordinated congestion control provided
that the latter does not introduce RTT biases on the
different paths. Moreover, these equilibria correspond



to the optimal set of rates that solve problems (2) and
(6), i.e., achieve welfare maximization. We shall use the
models and notation of Section 2.

We shall restrict attention to when Ns is large, so that
a change of paths by an individual player (session) does
not significantly change the network performance. In
game theory terms we are only considering non-atomic
games.

4.1 Coordinated congestion control
For coordinated control, we use the model of Sec-

tion 2, where the number of sessions Ns is fixed for all
s, and introduce the following notion of a Nash equilib-
rium:
Definition 4.1: The non-negative variables Nc, c ∈ C(s),
s ∈ S, are a Nash equilibrium for the coordinated con-
gestion control allocation if they satisfy the constraints∑
cNc = Ns, and moreover, for all s ∈ S, all c ∈ C(s),

if Nc > 0, then the corresponding coordinated rate al-
locations satisfy∑

r∈c

λcr = max
c′∈C(s)

∑
r∈c′

λc′r· (8)

In other words, for each session (player), weight is only
given to sets c that maximize the throughput for s. 3

We then have the following:

Theorem 4.1. At a Nash equilibrium as in Defini-
tion 4.1, the path allocations λr solve the welfare maxi-
mization problem (4).

The proof follows since at a Nash equilibrium, type s
players only use minimum ‘cost’ paths, which can be
shown to coincide with the Kuhn-Tucker conditions of
(4). This result says that a selfish choice of path-sets by
end-users results in a solution that is socially optimal.

4.2 Uncoordinated control
We introduce the following notion of Nash equilib-

rium:
Definition 4.2: The collection of per path connection
numbers Nr is a Nash equilibrium for selfish through-
put maximization if it satisfies

∑
r Nr = Ns, and fur-

thermore, the allocations (6) are such that for all s ∈ S,
all r ∈ R(s), if Nr > 0, then

λr = max
r′∈R(s)

Λr′ . (9)

3

The intuition for this definition is as follows: any class
s session maintains a connection along path r only if
it cannot find an alternative path r′ along which the
default congestion control mechanism would allocate a
larger rate.

We then have the following result, whose proof is sim-
ilar to that of Theorem 4.1.

Theorem 4.2. Assume that for each s ∈ S, there is
a class utility function Us such that Ur(x) ≡ Us(x/b)
for all r ∈ R(s). Then for a Nash equilibrium (Nr),
the corresponding rate allocations (λr) solve the general
optimization problem (4).

To summarize: if i) the utility functions associated
with the congestion control mechanism are path-independent,
ii) users agree to concurrently use a fixed number b of
paths, and iii) they manage to find throughput-optimal
paths, that is they achieve a Nash equilibrium, then at
the macroscopic level, the per-class allocations solve the
coordinated optimization problem (4).

It is well known that the bandwidth shares achieved
by TCP Reno are affected by the path round trip times.
Thus the underlying utility functions are necessarily
path dependent and the above result does not apply
as i) fails to hold. As a consequence ‘bad’ Nash equilib-
ria can exist. Indeed, a specific example is given in [11]
where the preference of TCP for ‘short-thin links’ over
‘fat-long-links’ gives rise to a Nash equilibrium where
the throughput is half of what could be achieved. If (ii)
is relaxed, different uses have different ‘market power’,
where those with larger bs gain a large share, thus also
creating ‘bad’ Nash equilibria in general.

5. MULTIPATH ROUTING WITH RAN-
DOM PATH RESELECTION

In the previous section we explored the effect of al-
lowing users to greedily select their set of paths (b in
number) out of the set of all possible paths that are
available to them. In this section we focus on two ques-
tions. The first regards how many paths, bs, to allow
each class s user so as to enhance its performance and
that of the system. We establish a monotonicity result
for coordinated control in order to address this ques-
tion. The second question regards how to manage the
overhead that may ensue due to the need for a user
to balance load actively over a large number of paths.
Possibly surprisingly, we will show that it suffices for a
user to maintain a small set of paths, say two (b = 2),
provided that it repeatedly selects new paths at random
and replaces the old paths with these paths when the
latter provide higher throughput. It is interesting to
point out that BitTorrent uses a strategy much like this
where it ‘unchokes’ a peer (tries out a new peer) and
replaces the lowest performing of its existing four con-
nections with this new connection if the latter exhibits
higher throughput.

We will examine the above questions for both coor-
dinated control and uncoordinated control. We begin
with coordinated control.

5.1 Coordinated control
We begin by addressing the first question, namely

how many paths are needed. Consider a network G that
supports a set of flow classes S with populations {Ns},
and utility functions {Us} . Let {R(s)} and {R′(s)} be
two collections of paths for S that satisfy R(s) ⊆ R′(s)
for s ∈ S and suppose that each session applies coordi-
nated control over these paths. Then for the problem
(4) ∑

s∈S

NsUs(
∑

r∈R(s)

λsr) ≤
∑
s∈S

NsUs(
∑

r∈R′(s)

λsr)

and hence performance increases when the path-sets in-
crease, with performance measured by the optimal wel-



fare under the capacity constraints. This follows from
the fact that a solution honoring the constraints on path
sets {R} remains a feasible solution when the set of
paths increases.

Remark 5.1. Although we have not shown strict in-
equality, it is easy to construct examples where aggre-
gate utility strictly increases as more and more paths
are provided.

The above result suggests that we would like to pro-
vide each user with as large a set of paths possible to
perform active load balancing on. However, this comes
with the overhead of having to maintain these paths.
We examine this issue next by considering a simple pol-
icy where a session is given a set of possible paths to
draw from, say R(s) for a class s session, and allows the
session to actively use a small subset of these paths, say
two of them, while at the same time constantly trying
out new paths and replacing poorly performing paths
in the old set with better performing paths in the new
set. More specifically we consider the following path se-
lection mechanism. Assume a user is using path set c.
This user is offered a new path set c′ at some fixed rate
Acc′ . This new path set is accepted under the condition
that the user receives a higher aggregate rate than it
was receiving under c. This process then repeats.

We use the model of Section 2, where the class s users,
Ns in number, are divided according to the set of paths
they are currently using, Nc(t) denoting the number of
class s-users actively using paths in c ⊂ R(s) at time t.
Class s users actively using the set c of paths consider
replacing their path set c with path set c′ according to
a Poisson process with intensity Acc′ . We shall assume
that |c| = |c′| = b, i.e., the number of paths in an active
set is fixed at b. Finally, assume that for each class s,
any r ∈ R(s), any given set c ∈ C(s), there is some c′

such that r ∈ c′ and Acc′ is positive (recall that C(s)
is defined as the collection of size b subsets of R(s)) .
This assumption states that all paths available to a class
s session should be tried no matter what set of initial
paths is given to that session.

We also have to concern ourselves with the sending
rates of the different users as path reselection proceeds
over time. Let λc(t) denote the data transfer rate for
a user actively using path set c, λc(t) =

∑
r∈c λc,r(t)

where λc,r(t) is the sending rate along path r at time
t. We have described in [11] a dynamic process where
the vectors {Nc(t), λc,r(t)} change over time. This pro-
cess is stochastic in nature and consequently difficult
to model. However, if we assume that the population
of users in each class is large, which is reasonable for
the Internet, then we can model this process over time
by a set of ordinary differential equations, represent-
ing the path reselection and rate adaptation dynamics
of users over their active path sets. Under the condi-
tion that the utility functions and penalty functions are
well behaved, we can show that Nc(t) converges to a
limit Nc and λcr(t) converges to λcr as t tends to infin-
ity. Remarkably, we can show that these limits are the

maximizers of

W(λ,N) :=
∑
s∈S

∑
c⊂R(s)

NcUs(λc)− Γ(Λr) (10)

subject to
∑
c∈C(s)Nc = Ns. In other words, this re-

sampling process allows the system to converge to a
state where the proportion of class s sessions using ac-
tive path set c ∈ R(s) and the aggregate rates at which
they use these paths maximize the aggregate sum of
utilities. This is more precisely stated in the following
theorem.

Theorem 5.1. Assume that the utility functions Us
and the penalty function Γ are continuously differen-
tiable on their domain, that the former are strictly con-
cave increasing, and the latter convex increasing. As-
sume further that U ′s(x)→ 0 as x→∞. Then (Nc, λc,r)
converges to the set of maximizers of the welfare func-
tion (10) under the constraints

∑
c∈C(s)Nc = Ns. The

corresponding equilibrium rates (λr) are solutions of the
coordinated welfare maximization problem (2).

The proof proceeds by showing that trajectories of the
limiting ordinary differential equation are bounded, that
welfare increases over time, and then using Lasalle’s in-
variance theorem to prove that the limiting points of
these dynamics coincide with equilibrium points of the
ordinary differential equation; showing that the equilib-
rium points coincide with the maximum of (10) com-
pletes the proof.

What makes this result especially useful is that bene-
fit maximization on the part of a user conforms exactly
to the user trying to maximize its rate through the path
reselection process. Thus, this path reselection policy is
easy to implement: at random times the session initiates
data transfer using the coordinated rate controller over
a new set of paths and measures the achieved through-
put dropping either the old path set or new path set
depending on which achieves lower throughput. This
equivalence is a consequence of the assumption that the
utility U is strictly concave and continuously differen-
tiable.

5.2 Uncoordinated congestion control
As one might expect by now, the story is not as clean

in the case of uncoordinated control, and no monotonic-
ity result exists. Indeed, for a symmetric triangle net-
work described in [11], with three source-destination
session types, allowing each session to use the two-link
path as well as the direct path decreases throughput.
However random resampling is still beneficial provided
that the uncoordinated control exhibits no RTT bias.
If a session is given a set of paths to draw from, then
the random resampling strategy described earlier max-
imizes welfare without the need to use all paths. More-
over, it suffices for sessions to use a greedy rate opti-
mization strategy to determine which set of paths to
keep in order to ensure welfare maximization. The
reader is referred to [11] for further details.

6. DISCUSSION AND DEPLOYMENT



Till now, we have focused on networks supporting
workloads consisting of persistent or infinite backlog flows.
Moreover, the emphasis has been on the effect that mul-
tipath has on aggregate utility. In this section we con-
sider workloads consisting of finite length flows that ar-
rive randomly to the network. Our metric will be the
capacity of the network to handle such flows. We will
observe that several results from previous sections have
their counterparts we focus on finite flows.

As before, we represent a network as a capacitated
undirected graph G = (V,E,C) supporting a finite set
of flow classes, S with attendant sets of paths {R(s)}.
We assume that class s sessions arrive at rate αs ac-
cording to a Poisson process and that they introduce
independently and identical exponentially distributed
workloads with a mean number of bits 1/µs. We intro-
duce the notion of a capacity region for this network,
namely the sets of {αs} and {µs} for which there ex-
ists some rate allocation over the paths available to the
sessions such that the time required for sessions to com-
plete their downloads are finite.

In the case of coordinated control, it is possible to
derive the following monotonicity result with respect
to the capacity region of the network. Consider a net-
work G that supports a set S of flow classes with arrival
rates {αs} and loads {µs}. Let {R(s)} and {R′(s)} be
two collections of paths for these classes that satisfies
R(s) ⊆ R′(s) for each s ∈ S and suppose that each
session applies coordinated rate and path control over
these paths. Then if {αs}, {µs}, lie within the capac-
ity region of the network with path sets {R(s)}, they
lie in the capacity region of the network with path sets
{R′(s)} as well.

Remark 6.1. It is easy to find examples where the
capacity region strictly increases with the addition of
morel paths.

Remark 6.2. Although this result is stated for the
case of exponentially distributed workloads, it is straight-
forward to show that it holds for any workload whose
distribution is characterized by a decreasing failure rate.
This includes heavy-tailed distributions such as Pareto.

It is interesting to ask the same question about the
capacity region when uncoordinated control is used by
all flows. Unfortunately, similar to the infinite session
workload case, no such monotonicity property exists.

It is also interesting to ask the question as to which
controller yields the larger capacity region. As in the
case for finite flows, we can show that for a given net-
work configuration (G,S and R fixed), if {αs : s ∈ S},
{µs : s ∈ S} lies within the capacity region of the net-
work when operating with an uncoordinated control,
then they lie within the capacity region of the network
when operating under coordinated control as well.

Remark 6.3. It is easy to construct cases where the
converse is not true. For instance, the symmetric trian-
gle with single and two-link routing mentioned for fixed
flows is such an example (see [12]).

We conclude from this monotonicity property for co-
ordinated control that more is better. However, im-

Figure 3: Capacity region under multipath with
and without resampling.

proved capacity comes at the cost of increased complex-
ity at the end host, namely maintenance of state for each
path and executing rate controllers over each path. For-
tunately, as in the case of infinite backlogged sessions,
this is not necessary. It suffices for a session to main-
tain a small set of paths, say two paths, and continually
try out random paths from the set of paths available to
it, and drop the path which provides it with the poor-
est performance, say throughput. Note the similarity
of this process to that of BitTorrent, which periodically
drops the connection providing the lowest throughput
and replacing it with a random new connection. Inter-
estingly enough, this multipath algorithm coupled with
random resampling achieves the same capacity region
as one that requires flows to utilize all paths. Indeed,
we can prove the analogy of 5.1:

Theorem 6.1. Assume that class s sessions use all
paths from R(s). Assume the set of loads {αs} and
{µs} lies within the network capacity region. Consider
an approach where a class s session uses a subset of
paths from R(s), randomly samples a new path set ac-
cording to a Poisson process with rate γs and drops the
worst of the two path sets. Then {αk} and {µk} also lie
within the capacity region when flows use this resam-
pling approach in the limit as γs →∞.

Figure 6 illustrates and summarizes our capacity re-
sults.

As before it is also interesting to ask about the ef-
fect of uncoordinated control coupled with random sam-
pling on capacity. Surprisingly enough, uncoordinated
control on a small set of paths coupled with random
resampling can often increase capacity over uncoordi-
nated control over the entire set of paths.

6.1 Deployment
To effectively deploy multipath, key ingredients are

first, diversity, which is achieved through a combina-
tion of multi-homing and random path sampling, and
second, path selection and multipath streaming using
a congestion controller that actively streams along the



best paths from a working set. Although home-users
are currently often limited in their choice of ISP and
hence cannot multihome, in contrast campus or corpo-
rate nodes often have diverse connections, via differ-
ent ISPs or through 3G wireless and wired connectiv-
ity. Moreover the growth of wireless hotspots, wireless
mesh and broadband wireless in certain parts of the
globe means that even home users may become multi-
homed in the future. Recent figures [1] suggest that
60% of stub-ASes (those which do not transit traffic)
are multihomed, and [5] claims that with IPv6 type
multihoming there are at least two disjoint paths be-
tween such stub-ASes.

The multipath controllers we have outlined need to
be put into practice. Some high-level algorithms de-
signs are considered in [10] and [7], and practical ques-
tions are addressed in [18]. Translating from algorithms
derived from fluid models to practical packet-based im-
plementations does require care, however we believe this
to be perfectly feasible in practice. Indeed, the IETF
has a current Multipath TCP working group, which is
looking into adding multipath into TCP.

7. SUMMARY
There are potentially significant gains from combin-

ing multipath routing with congestion control. Two
different flavors of control are possible: one which co-
ordinates transfers across the multiple paths; and an-
other uncoordinated control with sets up parallel con-
nections. The uncoordinated approach is simpler to im-
plement, however it can suffer from poorer performance
while coordinated control is better performing and in-
trinsically ‘fairer’. We have contrasted the two types of
control, and shown that with fixed path choices uncoor-
dinated control can yield inferior performance, halving
throughput in one example.

If path-choices are allowed to be chosen optimally or
‘selfishly’ by the end-system, then coordinated control
reaches the best system-wide optimum; as indeed does
uncoordinated control, but only if the control objective
is the same for all paths (unlike current TCP), and also
only if all users agree to use the the same number of
parallel paths (connections). This optimum can also be
reached by limiting each session to a small number of
path choices (e.g. 2) but allowing paths to be resampled
and better paths to replace existing ones.

This suggests that good design choices for multipath
controllers are coordinated controllers or uncoordinated
controllers with the RTT bias removed.
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