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ABSTRACT 
Many of today’s manufacturing companies are using 

platform-based product development to realize families of 
products with sufficient variety to meet customers’ demands 
while keeping costs relatively low.  The challenge when 
designing or redesigning a product family is in resolving the 
tradeoff between product commonality and distinctiveness.  
Several methodologies have been proposed to redesign existing 
product families; however, a problem with most of these 
methods is that they require a considerable amount of 
information that is not often readily available, and hence their 
use has been limited.  In this research, we propose a 
methodology to help designers during product family redesign.  
This methodology is based on the use of a genetic algorithm 
and commonality indices - metrics to assess the level of 
commonality within a product family.  Unlike most other 
research in which the redesign of a product family is the result 
of many human computations, the proposed methodology 
reduces human intervention and improves accuracy, 
repeatability, and robustness of the results.  Moreover, it is 
based on data that is relatively easy to acquire.  As an example, 
a family of computer mice is analyzed using the Product Line 
Commonality Index.  Recommendations are given at the 
product family level (assessment of the overall design of the 
product family), and at the component level (which components 
to redesign and how to redesign them).  The methodology 
provides a systematic methodology for product family redesign.   

Keywords: Product Family Redesign, Commonality Indices, 
Genetic Algorithm 

 
1. INTRODUCTION 

Today’s marketplace is highly competitive, global and 
volatile: customer demands are constantly changing, and they 
seek wider varieties of products at the same price as mass-
produced goods.  A common approach for providing variety 
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without losing commonality is to develop product platforms 
and product families. There are two recognized approaches to 
product family design [1].  The first is a top-down (proactive 
platform) approach, wherein the company’s strategy is to 
develop a family of products based on a product platform and 
its derivatives.  Examples include Sony Walkmans [2] and 
Kodak one-time-use cameras [3].  The second is a bottom-up 
(reactive design) approach, wherein a company redesigns 
and/or consolidates a group of distinct products to standardize 
components and thus reduce costs.  For example, Black & 
Decker redesigned their products to reduce variety in their 
motors [4], and Lutron redesigned its product line of lighting 
control systems around 15-20 standard components that can be 
configured into more than 100 models specified by the 
customers [5].  A recent review of several examples of product 
families can be found in Ref. [6].  In this work, the focus is on 
supporting a bottom-up approach to platform redesign, starting 
from an existing product family. 

Two common approaches to product family redesign are 
commonality and modularity.  To assess the degree of 
commonality within a product family, several commonality 
indices have been developed (see Section 2.3).  An extensive 
comparison between many of these commonality indices and 
their usefulness for product family design or redesign can be 
found in Ref. [7]; the work in this paper comes as an extension 
of this research.  Modularity arises from the decomposition of a 
product family into modules.  Several studies regarding the 
measure of product modularity and methods to achieve 
modularity in product redesign can be found in the literature: a 
recent overview of modularity and its benefits can be found in 
Ref. [8], and a comparison of existing measures of product 
modularity is documented in Ref. [9].  The issue with all of 
these proposed methods is that they are currently not 
systematic, i.e, most of the methods requiring a lot of human 
computation and a considerable amount of information that is 
not always readily available.  There is also a lack of 
1  Copyright © 2005 by ASME 
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methodologies to evaluate the impact of each component within 
a product family on the degree of commonality within the 
family or to determine the optimal level of commonality.  
Consequently, there is a need for less information-intensive 
measures that are useful during concept development and 
layout design [9].   

In this paper, a methodology for using commonality 
indices to support product family redesign is introduced.  The 
proposed methodology uses simple data as inputs: a list of 
components in each product with related information (cost, 
component connection, manufacturing process, etc.).  The list 
of components is either obtained from a bill of materials, or, if 
not available, a dissection of the product family is performed.  
Using this data, commonality indices are evaluated to assess the 
commonality of the whole family, and a genetic algorithm is 
then implemented to maximize the value of these commonality 
indices.  The methodology provides recommendations on how 
to improve the redesign of a product family.  In Section 2, the 
methodology is described and is then applied to a family of 
computer mice in Section 3.  Closing remarks and future work 
are given in Section 4. 

 
2. SUPPORTING PRODUCT FAMILY REDESIGN 

USING COMMONALITY INDICES 
 
2.1. Methodology For Redesign 
In this paper, the methodology shown in Figure 1 is 

implemented.  Details about the methodology follow.  
 

 

Figure 1. Proposed methodology for product family 
redesign 
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The first phase is to ask the user to enter basic information 
about the product family being studied.  Either the information 
is readily available, or the designer can dissect the products in 
the family to obtain the necessary data.  In the second phase, 
the assessment of the level of commonality in the family is 
realized through the computation of commonality indices.  The 
third phase is the use of a genetic algorithm to maximize the 
level of commonality in the family subject to specific 
constraints. The fourth phase is the generation of 
recommendations based on these results. 

 
2.2. Phase 1: Data Input 
The first phase in this methodology is to obtain the 

necessary data for the product family concerned.  If the 
information is already available through a bill of materials, for 
example, the user enters the appropriate data.  If the 
information is not available, a dissection of the product family 
is required.  To ensure consistency in the dissection, each 
product within the family is dissected to the lowest level 
possible, i.e., the parts cannot be further divided into 
subassemblies.  However, some assemblies can be difficult, if 
not impossible, to dissect to that extent, such as electronic 
printed circuit boards, which are taken as a single part for 
analysis. For each part, the data collected are the following: 
  - Size and geometry: this information is used to compare 
wheter parts are common, variant or unique throughout the 
product family.  A unique part is a part only used by one 
product in the family.  A variant part has the same function 
between some or all the products in the family, but the design, 
shape and/or material differ slightly from one product to the 
next.  A common part is the exact same part shared by some or 
all of the products in the family.   
  - Material: the material of each part is stored. 
  - Manufacturing process: the way the part is produced is also 
recorded, to see if manufacturing processes can be standardized 
between the variant parts in a product. 
  - Assembly and fastening scheme: the way the parts are 
assembled and fastened together is stored. 
  - Production volume: this value enables the designer to 
“weight” the products in the family, depending on the quantity 
produced. 
  - Unit cost: the cost of each part aims at giving more weight to 
the variant parts that are expensive to produce, parts that will 
first be considered during product family redesign. 
 

For the type of material, the manufacturing process and the 
assembly scheme, a list of possible choices is given to the 
designer (see Appendix A for materials, Appendix B for 
manufacturing processes, and Appendix C for assembly and 
fastening schemes) based on Ref. [10].  Note that this list is not 
exhaustive, and the designer can add any data if desired.  For 
the production volume and the unit cost, the data can be either 
very easy to obtain, but if not available, costs should be 
estimated using appropriate methods (such as the one found in 
Ref. [11]). 

 

2.3. Phase 2: Commonality Assessment 
To measure the commonality within a product family, 

several commonality indices have been proposed in the 
literature.  A commonality index is a metric to assess the degree 
2  Copyright © 2005 by ASME 
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of commonality within a product family.  It is based on 
different parameters such as the number of common 
components, the component costs, the manufacturing processes, 
etc.  These indices are often the starting point when designing a 
new family of products or when analyzing an existing family.  
They are intended to provide valuable information about the 
degree of commonality achieved within a family and how to 
improve a product’s design to increase commonality in the 
family and reduce costs.  Table 1 gives a list of five indices that 
could be used in this research, based the data described in 
Section 2.2; a complete description and detailed comparison of 
each index can be found in Ref. [12].  These indices are chosen 
as they are component-based, and they can be easily computed 
with relatively limited information, such as the parts in the 
products, their materials, etc.  The indices can be computed 
using the data collected in Phase 1.  Ref. [7,12,13] gives more 
details about these computations. 

 
Table 1.  Commonality indices 

 
 

In this research, the commonality indices are not 
categorized; rather, a set of guidelines is provided to the 
designer to help him/her choose the appropriate indices based 
on the company’s strategy.  These guidelines are given in Table 
2.  This paper focuses on one of the index, namely, the Product 
Line Commonality Index (PCI).  Details on its computation are 
given in Section 3.2.   This index is chosen as extensive study is 
being conducted on this index to minimize its variability during 
computation [21,22].  However, the methodology can be easily 
extended to any of the five indices presented in Table 1.   Note 
that not all of the data proposed in Section 2.2 is used; the 
component costs and the production volume are not necessary 
for this index.   

 

Table 2. Criteria for the choice of commonality indices 

 
 

 

2.4. Phase 3. Product Family Design Optimization 
using Genetic Algorithm 

 

In this paper, a Genetic Algorithm (GA) is used to 
maximize the PCI.  GAs are adaptive stochastic optimization 
algorithms involving search and optimization.  Instead of 
working with a single solution at each iteration, a GA works 
 3
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with a number of solutions (collectively known as a 
population).  GAs are based on the notion of the “survival of 
the fittest”, and they operate by searching for and choosing 
optimal solutions in much the same way that natural selection 
occurs.  GAs only use the objective function while searching 
for optimized result and not the derivatives, therefore it is a 
direct search method.  GAs work with a coding of the 
parameter set (set of strings/individual chromosomes), and not 
the parameters themselves and use probabilistic transition rules 
[23].  GA method of optimizing product family redesign 
utilizes the stochastic search nature of genetic algorithms to 
find combinatorial designs within the search space.  GAs 
appear well suited for solving combinatorial problems typical 
in product family redesign . 

 
Usually there are only two main components of most GAs 

that are problem-dependent: (1) the problem encoding and (2) 
the evaluation function.  When the GA is implemented, it is 
usually done in a manner that involves the following cycle: 
 - Evaluate the fitness of all of the individuals in the population. 
 - Create a new population by reproduction.  The reproduction 
process for a pair of chromosomes involves duplicating the two 
individual chromosomes (the “parents”) and then choosing a 
place (site) on the chromosomes to crossover (or switch) 
information between them.  This results in two new “children” 
chromosomes in the population, which could have higher 
fitness values than their "parents".  Mutation can also occur 
when decision variable values in a chromosome are randomly 
changed. 
 - The old population is then discarded, and a new iteration is 
started using the new population. 

 
Every iteration of the GA is referred to as a generation. 

The exchange of information between chromosomes during 
crossover allows the algorithm to converge to a global, rather 
than a local, optimum [23].  Even though the operators are 
simple, GAs are highly nonlinear, massively multifaceted, 
stochastic, and complex.  In this paper, each attribute of a 
component is encoded as an integer, which is later converted 
into a binary representation for the GA. The algorithm 
maximizes the PCI, subject to the following additional 
constraints to facilitate the selection of components to be 
redesigned.   

 
 

Constraint 1: external/ differentiating parts: the parts that 
are external on a product usually differentiate the product; these 
parts should not be modified during redesign.  For example, the 
button shown in Figure 2 should not be modified since it 
differentiates each mouse. 

    

Figure 2.  Example of differentiating parts 
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Constraint 2: the parts that are unique to one product will 
not be modified.  The unique components are defined as either 
(1) external and/or differentiating components or (2) for a 
specific function that is present in only one product.  These 
components are used to keep each product different 
aesthetically and functionally.  Hence, it is desired not to 
modify these unique components. 

Constraint 3: if a part is already common throughout the 
whole family, the optimizer should not modify the part.  We are 
only looking here at the degree of commonality within a 
product family.  Other parameters, such as the performance of 
each product, are not considered yet.  Hence, the parts that are 
common through the whole are considered ‘best’ for the 
commonality and should not be modified, although the 
individual performances of each product may not be optimized. 

Constraint 4: maximum number of components allowable 
to change: there is a restriction on the number of parameters to 
change between the original design and the redesigned family.  
If this constraint is not added, the optimizer will find the “best” 
commonality when all the parts are common.  By adding this 
constraint, the designer specifies a maximum number of 
allowable changes. 

 
Based on these four constraints, the design variables are 

chosen: only the variant parts are considered.  Within this set of 
parts, four attributes are considered: (1) size and geometry, (2) 
material, (3) manufacturing process, and (4) materials.  For a 
given part, if an attribute is common between all the products 
using this part, then this attribute is not considered during 
optimization.  

 

2.5. Phase 4. Data Output and Redesign 
Recommendations 

Once the optimization is complete, the optimizer proposes 
a redesign sequence that can be compared to the original 
redesign.  Note that the optimizer does not currently check the 
feasibility of the solution into account; rather, the optimizer 
provides the designer with a ranked list of parameters that most 
influences the degree of commonality in the product family.  
This can be viewed as a reduction of the redesign space, where 
the designer checks the feasibility of the solution a posteriori in 
the list of proposed recommendations, rather than checking the 
feasibility of a redesign solution a priori in a much wider space.  
Two main types of information are given using the GAs: (1) at 
the product family level, if there exists more than one design for 
a particular family, then the algorithm assesses each design and 
classifies them; (2) at the component level, a list of components 
to redesign is proposed to achieve the highest commonality 
with a minimum number of changes. 

Recommendations at the product family level: if the 
designer wishes to assess more than one design for a product 
family, the algorithm is also run without the fourth constraint 
proposed in Section 2.4 (i.e, no limitation on the number of 
changes in the parameters); hence, once the design is 
optimized, the “ideal” commonality is reached, i.e., all the parts 
are common in the product family.  An offline analysis of the 
values obtained after optimization enables the assessment of the 
different design strategies.  To do so, a graph similar to the one 
shown in Figure 3 is plotted for each design.  This graph aims 
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at evaluating different design strategies of the concerned 
product family, based on how the factors that are changed 
influence the selected commonality index. 

 
Figure 3.  PCI versus number of changes in Design 

Strategies 1 and 2 
 

The graph is obtained by first categorizing the values 
obtained for the commonality index based on the number of 
changes in the parameters.  If we consider the example shown 
in Table 3, we have a product family consisting of three 
products, each product having two parts.  Each part is used in 
each product. Two different design strategies need to be 
assessed.  In Design Strategy 1 (DS1), the parts are variant in 
each product (i.e., no commonality).  This is represented by 
attributing three different numbers to each part, one for each 
product (1, 2 and 3).  In Design Strategy 2 (DS2), there are two 
variants for each part, one variant being used by two products 
(some level of commonality), represented by having the same 
number for Part 1 – Product 1 and Part 1 – Product 2, and Part 
2 – Product 1 and Part 2 – Product 3.  The best design (relative 
to the concerned commonality indices, in this case the PCI) 
with the minimum number of changes is achieved through 
Design Strategy 3 (DS3): the parts are common between all the 
products in the family (complete commonality; in fact, the three 
products are identical with regard to these two parts).  
Depending on the commonality index chosen, this may not 
always be the best design.  For example, if we consider the 
CI(C), which takes the cost of each component into account, and 
if component 2 is cheaper to produce than component 1 
(provided they both achieve the same function), then the 
“ideal” design should consist of having only variant 2 of both 
components.  Cost is not captured with the PCI. 

Table 3. Three different design strategies for two parts in a 
product family 
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By running a GA without constraints on DS1 and DS2, the 
optimal value of the PCI is the one obtained in Design 3 
(complete commonality).  This value will be identical for both 
designs, as shown in Figure 3; however, the minimum number 
of changes to achieve this complete commonality is different.  
In DS1, a minimum of 4 changes are necessary to achieve DS3, 
while only 2 changes are required in DS2, as shown in Figure 
3.  For any number of changes, the PCI in DS1 is higher or 
equal to the one in DS2.  Hence, we can conclude that DS1 is a 
“dominated” design relative to the PCI: DS2 achieves higher 
PCI (hence higher commonality) than DS1, for any given 
number of changes. 

 

Recommendations at the component level: the algorithm 
provides a set of possible changes that could be implemented to 
maximize the commonality of the product family for a given 
number of changes.  The best combination(s) of parts to 
redesign is proposed; additionally, the algorithm provides a 
ranked list of possible combinations.  For a given number of 
changes, the designer can then choose the feasible combination 
of parameters that results in the highest PCI (highest increase in 
commonality).  If we consider the example shown in Table 3 
for DS2, with a maximum number of changes set to 2, the 
algorithm will return the following information (only the first 
two recommendations are shown): 
  - First recommendation: {change Part 1 – Product 3 from 
variant 2 to variant 1, change Part 2 – Product 2 from variant 2 
to variant 1}. This results in a PCI of 100. 
  - Second recommendation: {change Part 1 – Product 1 from 
variant 1 to variant 2, change Part 1 – Product 2 from variant 1 
to variant 2}.  This results in a PCI of 63.5. 
 

By giving a list of ranked solutions for possible redesign, 
the algorithm has reduced the redesign space, which helps 
focus the designer on the components that influence 
commonality the most in the family. 

 
3. EXAMPLE REDESIGN: COMPUTER MICE 

A complete example of the redesign of a product family is 
provided, describing the application of each phase step-by-step.  

3.1. Phase 1: Data Input 
The product family analyzed consists of a set of six 

computer mice, all from the same manufacturer, as shown in 
Table 4.  The Bills of Materials were not available for these 
products; hence, a dissection was conducted.  More details on 
the dissection can be found in Ref. [13]. 

 

Table 4.  The computer mice family 

 
 

The family is dissected, and the data is stored in an Excel 
spreadsheet, as shown in Table 5.  The first two columns are 
 5
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the name of the parts, and the corresponding product 
(p1,…,p6), as shown in Table 4.  In the next column, Size and 
Geometry, the designer enters a number indicating if the part is 
common between different products.  For example, for a given 
part, if two products share the same number, then they share the 
same component.  If the number is different in each column for 
a given part, then all the products use different variants of the 
part.  If there is no number, then the corresponding product 
does not contain the corresponding part.  In Table 5, the AC 
adapter is unique, while the Back panel has 5 variants, one 
being shared between p1 and p2.  In the next three columns, the 
designer enters a number corresponding to the material, the 
manufacturing process, and the assembly/fastening scheme.  
These numbers correspond to those found in Appendices A, B 
and C.  Depending on the level of detail desired, the designer 
can enter either very specific information (e.g., Aluminum 
6061) or less detailed information (e.g., non-ferrous alloy).  In 
any case, the designer should be consistent within the different 
parts, i.e., the level of detail should be the same for all the parts 
in the family. 

 

Table 5. Example of data entered for the family 

 
 

 
3.2. Phase 2: Commonality Assessment 
Using Microsoft Excel, the computation of the PCI is 

automated;  more details on the computation can be found in 
Refs. [7,12,13].  Contrary to the indices that simply measure 
the percentage of components that are common across a 
product family (and hence penalizing families with a broader 
feature mix), the PCI measures and penalizes the differences 
that should ideally be common, given the product mix [16]. The 
PCI is given by:  
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where: 
  CCIi = Component Commonality Index for component i. 
           = ni * f1i * f2i * f3i 
  MaxCCIi = Maximum possible Component Commonality   
                     Index for component i. 

    = N 
  MinCCIi = Minimum possible Component Commonality  
                    Index for component i. 

   = ni * 1/ni * 1/ni * 1/ni 
   = 1/ni

2 
P = Total number of non differentiating components that can 

potentially be standardized across models. 
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N = Number of products in the product family. 
ni = Number of products in the product family that have 

component i. 
f1i  = Size and shape factor for component i. 
     = Ratio of the greatest number of models that share 

component i with identical size and shape to the greatest 
possible number of models that could have shared 
component i with identical size and shape (ni). 

f2i = Materials and manufacturing processes factor for 
component i. 

 = Ratio of the greatest number of models that share 
component i with identical materials and manufacturing 
processes to the greatest possible number of models that 
could have shared component i with identical materials 
and manufacturing processes (ni). 

f3i  = Assembly and fastening schemes factor for component i. 
 = Ratio of the greatest number of models that share 

component i with identical assembly and fastening 
schemes to the greatest possible number of models that 
could have shared component i with identical assembly 
and fastening schemes (ni). 

 
By substituting the values of CCIi, MinCCIi, and MaxCCIi, 

the following formula is obtained for the PCI: 
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(2) 

 

Equation 3 gives the lower and upper bounds of the PCI. 

1000 ≤≤ PCI  (3) 

 

When PCI = 0, either none of the non-differentiating parts 
are shared across models, or if they are shared, their 
size/shapes, materials/manufacturing processes, and assembly 
processes are all different.  When PCI = 100, it indicates that all 
the non-differentiating parts are shared across models and that 
they are of identical size and shape, made using the same 
material and manufacturing process, and the fastening methods 
are identical.   

The PCI value obtained for the family of computer mice is 
41.99, on a 0-100 scale.  This value provides the baseline for 
comparison after redesign. 

 

3.3. Phase 3: Product Family Redesign 
Optimization Using a Genetic Algorithm 

Two sets of runs are made, one for the assessment of the 
product family as a whole (i.e., optimization at the product 
family-level), and one for the analysis of the effect of the 
individual components on the commonality of the family (i.e., 
optimization at the component-level). 

 
Optimization at the product family level: the GA is run to 

maximize the value of the PCI for the family.  Since the 
parameters (i.e., crossover, mutation, maximum number of 
generations, population) for the GA are case-dependent, their 
values that gave the best results are not known a priori.  An 
experimental design is utilized to analyze the effect of the input 
parameters for the GA on the resulting PCI.  Sizing a GA 
population to ensure maximum computational leverage and 
 6
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accurate sampling has been considered empirically in several 
studies.  Goldberg [23] shows how to set population size in the 
context of recombinative mixing, disruption, deception, 
population diversity, and selective pressure to maximize 
computational leverage.  In the current study, we consider a 
low of 50 and a high of 200 as the population size.  Mutation 
settings obtained from experimental investigation as discussed 
in the GA literature are shown in Table 6.  For our experiment 
we have considered the lowest (0.001) and highest value (0.01) 
of the recommended mutation rate, Pm. 

 
 

Table 6. Commonly used constant settings of the mutation 
rate Pm in Genetic Algorithms 

 

Pm Reference 
0.001 De Jong [24] 
0.01 Grefensette [25]  

0.005-0.01 Shaffer et al. [26] 
 

 
In the GA literature, the crossover probability (Pc) is 

recommended to start around a value of 0.5.  In this paper we 
have used 0.4 and 0.6 as the low and high value for crossover 
probability.  After choosing the different values for the GA 
(crossover, mutation, population, maximum number of 
generations), the implementation is done in Microsoft Excel, 
using a dedicated plug-in developed by Pi Blue, namely, 
OptWorks Excel3.  The crossover method is 2 point: two points 
are selected on the parent strings.  Everything between the two 
points is swapped between the parents, rendering two children.  
The problem is formulated choosing the objectives functions 
and the design variables are defined, as shown in Figure 4 and 
Figure 5.   
 

 
 

Figure 4.  Problem formulation – objective function 
  

  
 

Figure 5.  Problem formulation – design variables 
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For example, if we consider the example shown in Table 7, 
the part “Back Panel” is present in each product, each having a 
different variant in size and geometry, but with a common 
material (plastic), a common manufacturing process (injection 
molding) and a common assembly and fastening scheme 
(screwing).  Hence, only the “Size and Geometry” factor is 
considered by the GA and can take any discrete values between 
1 and 5 (i.e., there are 5 different variants for “Size and 
Geometry”), while the other attributes, already common 
between all the products sharing the part, are not considered.  In 
this paper, this step is done manually by entering the constraints 
in the software.  Future work suggests the automation of this 
step in order to be applicable to larger-scale problems. 

 

Table 7. Example of part redesign 

 
 

The objective function is the PCI, and the objective is to 
maximize it.  Note that only the first three constraints proposed 
in Section 2.4 are taken into account: the results are used to (1) 
choose the appropriate parameters for the GA and (2) assess the 
design of the product family.  The results for the 16 runs are 
summarized in Table 8.  The best results are obtained in run 14 
and run 16, with a PCI value of 63.04, an increase of more than 
50% compared to the original value (41.99).  This value is far 
from the “ideal” value of 100, obtained only when all the non-
unique parts are used in all the products in the product family, 
and these parts have the same size and geometry, same 
material, same manufacturing processes, and same fastening 
and assembly schemes.   

 
Table 8. Details of experimental runs of GA 

 

 
 

In addition to the PCI value, two other parameters are 
considered in the comparison of these 16 runs: the number of 
generations to converge, and the number of function calls.  
Ideally, we would like to have the highest value for the PCI, 
 7

loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Us
while having the number of function calls and the number of 
generations to converge as low as possible.  The comparison of 
these three parameters (PCI, number of generations to converge 
and number of function calls) is summarized in Figure 6.  The 
values are standardized between 0 and 100, a higher value 
indicating a better performance.  While run 9 and run 11 
converge the fastest, their optimal value is 15% and 11% lower 
than the one obtained in runs 14 and 16.  The most satisfying 
run is run 14, where the number of function calls and the 
number of generations to converge is lower than for run 16, 
although the computational time is higher than in run 9 and 11. 

   

 
 

Figure 6. Comparison of the runs  
 

To confirm these results, an analysis of variance is run.  
The experiment is a 24 full-factorial design, and the results are 
shown in Figure 7.  The main factor that influences the PCI is 
the population size: the larger the population size, the higher 
the PCI.  While the other factors have less influence on the PCI, 
the main effects plot suggests choosing the crossover value at 
its high level (0.6), the mutation value at its low level (0.001), 
and the maximum number of generations set to its high value 
(5000).  This configuration was used in run 14, which confirms 
that these are the best settings for the GA parameters.   

 

 

 

Figure 7. Analysis of variance for the 16 GA runs 
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We then conducted an offline analysis of the results from 

run 14.  The assessment of the design is done using the graph 
plotted in Figure 8.  On this graph, the minimum number of 
changes to achieve the best commonality is clearly seen, as well 
as the rate at which this value is reached.  To achieve this ideal 
commonality, 63 changes are required, which represents 56.8% 
of the total number of possible parameters (111).  Note that the 
GA only gave PCI values for a high number of changes (50 and 
over).  If the designer is interested in fewer changes, the 
constraints (on the maximum number of changes) should be 
added to obtain the specific value.  In this research, only one 
design strategy was considered.  Future work suggests the 
comparison of this current design strategy with the new design 
of the computer mice, as well as comparison across products 
families (such as computer mice made by a different 
manufacturer for example). 
 

 
 

Figure 8. Maximum PCI versus number of changes based 
on the offline analysis 

 
Optimization at the component-level: the optimization is 

now run using the four constraints defined in Section 2.4.  The 
values for the genetic algorithm are chosen as the one in run 14.  
By specifying the maximum number of changes desired, the 
optimizer gives the best PCI that is achieved with this particular 
number of changes, as well as the corresponding changes.  The 
feasibility of the proposed solution(s) is not checked as 
discussed previously, but a ranked list of suggested 
recommendations is provided, helping designers choose the 
components that influence commonality the most.  The 
example shown in Table 9 is for a maximum number of 
changes set to 20.  The maximum PCI obtained is 49.57, an 
increase of 18.05% compared to the original PCI (41.99).  For 
example, it is recommended to make the size and geometry of 
the back panel in product 1, product 3 and product 6 common, 
using variant 3 (the original contains three variants for these 
three products).  This results in an increase in PCI of 2.36%.  
Note that several configurations were obtained for this value of 
the PCI; only one is represented here as example. While this 
solution is not necessarily entirely feasible, it helps the designer 
focus on the components that influence commonality the most. 
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Table 9. Example of redesign for the product family 

 
 

4. CONCLUSIONS 
The combined use of genetic algorithms and commonality 

indices to support product family redesign provides useful 
information for the redesign of a product family, both at the 
product-family level (assessment of the overall design of a 
product family) and at the component-level (which components 
to redesign, how to redesign them).  The reduction of the 
redesign space by providing a ranked list of components to 
modify during product family redesign helps the designer focus 
on critical components that he/she may not have easily 
identified without such a systematic approach.  This study has 
limitations however.  Future work suggests the use of more 
detailed commonality indices to assess the commonality within 
the family.  By including other factors such as component 
costs, manufacturing time, the effect of each component would 
be even more significant, and can help the designer resolve the 
balance between too much commonality (lack of individual 
performance and distinctiveness) and not enough commonality 
(higher costs).  Another research direction is the extension of 
this research to more product families.  Extending the proposed 
method to more commonality indices and more products will 
enable the development of a systematic and automatic way of 
providing recommendations on how to redesign a product 
family.  Finally, the feasibility of the proposed solutions should 
be considered.  Checking the feasibility of the solutions will 
reduce the redesign space even further by providing the 
designer with only feasible redesign suggestions. 
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APPENDIX A.  LIST OF POSSIBLE MATERIALS 

 

APPENDIX B.  LIST OF POSSIBLE MANUFACTURING PROCESSES 
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