
A General  Formulat ion  of  the Theory  
of  Wire R o p e s 1  

Steven A. Velinsky. 2 The author claims to have developed a 
simple and well-organized approach towards the formulation of 
wire strand and rope problems. He considers both the geometric 
nonlinear theory as well as the linearized theory, and while stating 
the ease in programming his theory, no numerical results are pre- 
sented. The continued interest in wire strand and rope behavior 
exemplifies the importance of these elements. However, the author 
has missed a whole body of literature over the last ten years which 
has previously provided generalized theories for wire strands and 
ropes, and has done so in a much more usable form. In general, 
the theory of wire rope has been well developed by Costello and 
his associates, whose references are too numerous to mention, and 
they have examined a wide variety of problems from linear and 
nonlinear response of wire strands and ropes under static and 
dynamics loads to the response of viscoelastic ropes to the response 
of strands and ropes comprised of wires with various types of 
cross-sectional geometry. Typical of these works are the develop- 
ment of the basic theory and their use in the examination of specific 
wire rope problems. A few of the papers will be discussed to 
follow which have already accomplished fat" more than the paper 
under discussion. 

First, as noted above, Jiang (1995) presents both the geomet- 
rically nonlinear and linear theories. Velinsky (1985) has al- 
ready presented a general nonlinear theory for wire ropes and 
additionally, and of principal importance, through examination 
of a wide variety of complex configurations, he has shown that 
the geometrically nonlinear theory provides no value over the 
linear theory for the normal load range of wire ropes. This 
paper (Velinsky, 1985), thus further verified the linear theory. 
It might be added that the deviation from the linear theory is 
only of significance for strains that would be well beyond the 
linear elastic region for the rope material, and thus the material 
model would fail at loads far lower than that in which the linear 
geometric theory is no longer valid. As such, the first part of 
the Jiang paper provides no valuable contribution. 

Costello and his associates use the wire rope axial and rota- 
tional strain to describe the deformation behavior of the total 
rope. Jiang in Eq. (18) of his paper also uses these parameters. 
One aspect should be noted, however, and that is that Jiang's 
rotational strain, qS, is not dimensionless. 

Jiang states as one of his primary contributions is his showing 
that the strand structure can be characterized by seven stiffness 
and deformation constants. This is not a new idea. Velinsky (1988) 
stated, "We note that the global behavior of a strand can be 
completely described by the following strand quantifies: the stiff- 
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ness constants, $1, Sz, $3, and $4, the effective strand radius, R*, 
the strand effective Poisson's ratios, ue, and Ue~, and the strand 
bending stiffness, A*." Velinsky has eight constants, and the rea- 
son is that the strand size is necessary which Jiang has omitted. 
It should also be noted that Jiang uses a different notation which 
is much less intuitive, but represents essentially the same parame- 
ters. It should also be stressed that these strand describing coeffi- 
cients are all constants only for the linear theory (e.g., the stiffness 
varies with load for the nonlinear theory). 

The Velinsky (1988) paper not only generalizes the analysis 
of strands of both Seale (close packed) and resting lay types, but 
also: examines the detailed geometry of these configurations, 
develops a design methodology for the configurations including 
methods for selecting the appropriate wire sizes, and examines 
the sensitivities of various strand properties to the design param- 
eters. Velinsky's generalization recognizes that three indepen- 
dent variables, the wire axial strain, the change in helix radius 
and the change in helix angle, exist for each wire lay and re- 
quires the solution of three simultaneous linear equations for 
each lay. His formulation is performed in a dimensionless man- 
ner in order to quantify a class of strand configurations rather 
than a specific size and geometry. Furthermore, he examines 
parameters that describe global strand behavior which support 
the fact that optimal designs must exist. 

Velinsky (1989) later extended the generalized approach of his 
1988 paper to examine complex wire rope design. The Velinsky 
1989 paper develops the general analysis for wire strand core, 
independent wire rope core, and fiber core types of wire ropes. 
The total rope analysis requires only the eight parameters for each 
strand, and a similar set of three linear equations are necessary for 
the deformations of each strand lay. Furthermore, as in the earlier 
paper, the theory is exercised in examining the sensitivities of 
various total rope properties to numerous strand and rope design 
parameters. In addition to total rope properties, Velinskky also ex- 
amines the sensitivities of rope design parameters on individual 
wire stresses. The Velinsky formulation is easily programmed in 
a general manner (and has been), and is easily exercised as exhib- 
ited by the large amount of results that have been presented. 
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Author's Closure a 
Dr. Velinsky first criticizes that the paper presented "no nu- 

merical results" and "missed a whole body of literature over 
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the last ten years." The original version of the paper did present 
considerable numerical examples and analyses, which, however, 
were dropped during the revision following reviewers' instruc- 
tions that the paper was overlong. As a matter of fact, the 
published paper was still three pages over the limit, after consid- 
erable simplifications including the Introduction. As Dr. Velin- 
sky points out, the relevant literatures are too numerous to men- 
tion. The author cannot see any reason to provide a complete 
publication list, in addition to those needed to be cited, espe- 
cially in such an overlength situation. Dr. Velinsky then men- 
tions a 1985 paper of his, and concludes that the "nonlinear 
theory provides no value over the linear theory." The author 
disagrees with such a point of view. It is well known that almost 
all larger deformation problems encounter the possibility of 
plastic deformation. The elastic nonlinear theory, however, re- 
mains an important branch of mechanics. In general, Dr. Velin- 
sky denies any contribution of the paper and only advocates his 
own accomplishment in this field. The author has no intention 
of making any comments on his claims, but believes that readers 
are professionals and have the best judgement. 

Bifurcation of  Orthotropic  Solids 4 

A. Chattopadhyay s'7 and H. Gu ~'7. DeBotton and Schu- 
gasser (1996) recently presented an exact solution for bifurca- 
tion of orthotropic solids. In the paper, the following equilib- 
rium equations were used. 

V ' [ ( ~ r  + £ ) ' V ( x  + u) = 0 (1) 

An assumption was made for plane-strain conditions that £j~ 
= - p  is the only nonvanishing component of the initial stress 
in Eq. ( 1 ). Therefore, the remaining equilibrium equations can 
be derived by ignoring the product terms ~r. Vu and their deriv- 
atives. 

Octal 0~12 02u, 
- - + - - - p - - = 0  
Oxl Ox2 Ox~ 

&ri2 0022 02u2 
- - + - - - p - - = 0  
Oxl Ox2 Ox~ 

(2) 

However, it is our purpose to point out that their approach 
contains a fundamental error resulting from ignoring the pri- 
mary prebuckling displacements, which normally provide the 
same order of contributions as prebuckling stresses at the buck- 
ling state. Of course, these prebuckling displacement contribu- 
tions are not included in simplified plate-type theories for sim- 
plicity. For an exact elasticity solution, which is the motivation 
of DeBotton and Schugasser's work, these terms should be 
included to ensure a rigorous analysis procedure. 

If the superscript ( )0 is used to denote the prebuckling 
terms, the primary prebuckling state of for an orthotropic half- 
space whose material axes are parallel to the geometric axes 
can be truly simulated by 

0 -01 = --]3, 0"02 = 0"02 = O. (3)  

Using the constitutive equation for this orthotropic half-space, 
the derivatives of prebuckling displacements are derived as fol- 
lows: 
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0U(I ) C22 0.~ Ci2 
(~Xl -- C11C22 - Ci2 p '  Ox~ 2 - C11C22 - C22 p 

O u  ° _ O u  ° 
0. (4 )  

OX 2 OX I 

Including these displacement contributions, the buckling equa- 
tions can be finally stated as 

+Ou°l~ o'i2 1 - p - - = O  
Oxl aN 1 OX 1 /1 OX 2 OX I /1 OX} 

0 OU~'~ 0 [ 0 . 2 2 ( l q .  - ] a; l +az ox j 

02U2 
- P Ox--7 = o (5 )  

and the buckling equation can also be expressed in terms of 
displacements as follows: 

( l  C22 ) [  02Ul 02.1 
C11C22_ C~2 p Cl, Ox-----~ q- C66 OOx----~- 

02/X2 ] 02"1 
+ (C12 + C66) OxjOx2_] - p Ox--Tl = 0 

( <2 )[ 02., 
1 @ ~11C22 -- c~2P (Ci2 + C66 ) OXl~)X--~-; 

02u2 ~ 02u2 ] 02u= 
+C<,~ O x - - - ~ + c = - ~ J - p ~ - = O .  (6) 

The prebuckling displacement contributions in these two 
equations can be written as 

C22 [ 02u__.__2 02u____2 
AI = -- Cl1C22 - c ~ 2 P L  CII 0x~ "1- C66 Ox~ 

02/'/2 ] 
"~ (Ci2 q-- C66 ) OXlOX2.] 

Ci2 [ 02ul 
/~2 -- C11C£2- ~ C22 p (Ci2 q- C66) OXlOX~ 2 

C 02u2 O'-u2] 
+ 66 Ox 2 + C22 Ox 2]  • (7) 

Therefore, their effects in the buckling analysis can now be 
discussed. 

Orthotropic Material With Cn > C22 
In this extreme case, the values of the material properties are 

assumed to be 

C= C= 
CH > C = ,  Ci2~- , G,6 

3 2 

The prebuckling displacement contributions in the buckling 
equations are thus simplified as follows: 

02Ul C22 02b/l C22 02u2 02.1 ~ - - p  
Ai ~ --p Ox 2 2C1~ p 0x22 C~ p OxlO& Ox 2 

C22 02.1 C22 02.2 C22 02u2 
A 2 ~ - - p  q- - - p  - -  q- ~ 0. (8) 

3Cl l O& Ox2 6Ci i Ox 2 -f~H P -~x~ 
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