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1. Introduction     

The detection of robust image features of high distinctiveness forms a ubiquitous problem in 
digital image processing. Robust image features are the first step and the key to reliably 
detect patterns or objects in images, which subsequently leads to object classification and 
semantic interpretation of the objects in a given image. 
The ideal situation for object recognition and classification is to find unambiguous traits of 
patterns or objects that are to be processed. For anyone delving into this matter, the subject 
presents itself as a challenging task. Besides the often not obvious object traits, there are a lot 
of other issues that have to be taken into account. For instance, lighting conditions can vary 
as well as the objects’ scales and rotations; image noise or partial occlusion also is likely to 
occur. Unless one conducts experiments under laboratory conditions, where some of these 
problems might be ruled out, all these issues have to be addressed properly. So the 
challenging task is to find image features that are distinct and robust under the varying 
conditions just stated before. 
An obvious method for detecting objects is to examine their shape and, as an abstraction of 
it, their contours. Contour matching usually works well, if the distinct object classes have 
strong variations in their shape (like the shape of any automobile is quite different 
compared to the shape of a human). The contour can be represented by a classic chain-code 
(or its many derivates). For the matching process both contour representations undergo a 
transformation to achieve scale and rotation invariance and are then compared to each 
other. The comparison can either be done directly on the transformed image coordinates or 
on measures deduced from the earlier representation (i.e. the moments, distances, 
polygonal, or Fourier descriptors yielded from the contour points). 
Besides those methods, one popular approach is to detect certain local interest points at 
distinctive locations in the image, such as corners, blobs, or T-junctions. The interest point 
detector is supposed to be repeatable under varying viewing conditions (e.g. different 
lighting or different viewing angles). Having found distinctive interest points in an image, 
the interest points are examined more closely regarding their neighbourhood. Taking the 
neighboring pixels into account forms an image feature or image descriptor, which has to fulfill 
certain criteria regarding distinctiveness, robustness against noise, detection errors, and 
image deformations. These image features can then be matched to features computed from 
other images. Matching features indicate a high likeliness of correspondence between the 
two images. Hence patterns or objects in one image can be detected in other images 
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employing this method. An advantage of this method is that detection of interest points 
takes place at one of the first stages of the image processing pipeline: in scale-space. All the 
interest point detectors and image descriptors discussed in section 3 will exploit the scale-
space representation of an image. Hence a short review of scale-space computation is 
provided in the following section. 

2. Structural information and scale-space representation of an image  

In this section a short review about scale-space construction on digital images is given. One 
of the most thorough and comprehensive researches on the topic of scale-space 
representation was done in (Lindeberg, 1994). In his work, Lindeberg first states the 
principle problem about detecting the characteristic structure of objects in images regarding 
the scale level the image was taken. A good example is the structure of a tree that varies 
over different scaling levels. At a very coarse level, the observer may only recognize a green 
blob-like structure of the treetop, whereas at finer scales, branches and leaves may be 
noticeable. As the scale-space is a continuous and infinite space, this can go as far as the tree 
may degenerate to a single unnoticeable green spot or to a level where leaf-fibres can be 
examined. Which scale intervals are best suited totally depends on the image processing 
task at hand. A method for automatic scale selection for characteristic image features in this 
regard is presented in (Lindeberg, 1998). 
Scale-space representations span a broad range of applications in image processing (i.e. 
feature detection, feature classification, shape computation, or even stereo matching). In this 
work, though, we are mainly interested in exploiting scale-space for object recognition. It 
will be shown that scale-space representations of images allow for effective extraction of 
distinctive image features, which can be matched with features from other images in the 
context of object recognition. To compute these distinctive features one has to transform the 
image into scale-space first, so that the interest point detectors and image descriptors 
introduced in section 3 can build upon this representation. The multi-scale representation of 
a digital image is well-known and widely used in image processing in forms of quad-trees, 
image pyramids, or (the relatively more recent) wavelets. The scale-space is just a special 
type of a multi-scale transformation. 

2.1 Scale-space construction of continuous signals 
The scale-space of a digital image is directly related to the scale-space in signal processing, 
whereas the scale-space representation of a one-dimensional signal is defined by embedding 
this signal into a one-parameter family of derived signals computed by convolution with a 
one-parameter Gaussian kernel with increasing width (Witkin, 1983). In (Lindeberg, 1994) a 
proof is provided that the Gaussian kernel is a unique choice for scale-space processing. The 
Gaussian kernel alone fulfills all necessary requirements for scale-space computation like 
basical linearity, spatial shift and scale invariance, and preserving the constraint that no new 
structures (maxima or minima in the image) will be created. It is also shown that the scale-
space abides by the laws of a mathematical semi-group. The formal mathematical notion for 
constructing the scale space is as follows: Let  stand for the original signal. Then, 

the scale space representation  is defined by  and 

  (1) 

where  is the scale parameter, and  is the Gaussian kernel. The 

kernel itself is defined by 
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  (2) 

 is the standard deviation of kernel g. It is a natural measure of spatial scale in the 

smoothed signal at scale t. 
Another equivalent way to construct the scale-space L is by solving the differential heat 
diffusion equation 

  (3) 

with initial condition , which is the well-known physical formula describing how 

a heat distribution L evolves over time t in a homogeneous medium with uniform 
conductivity, given the initial heat distribution stated above. From Eq. (1)-(3) multi-scale 
spatial derivates can be defined by 

  (4) 

where  denotes a derivative of some order n. 

The main goal of the scale-space construction is that fine scale information (i.e. amplitude 

peaks or noise at high frequencies) shall vanish with increasing scale parameter t. Witkin 

(Witkin, 1983) noticed that new local extrema cannot be created, if the scale-space is 

contructed in the above described manner. Because differentiation and convolution are 

commutative,  

  (5) 

this non-creation property holds for any nth degree spatial derivative. This feature enables 
detection of significant image structures over scales and is exploited by the algorithms 
described in section 3. 
An important statement in (Koenderink, 1984) is that without a priori knowledge of specific 

image structures, the image has to be processed at all scales simultaneously. In this regard the 

images forming the scale-space are strongly coupled and not just a set of unrelated derived 

images. 

2.2 Scale-space construction of discrete signals 
Because digital image processing deals with discrete signals, the equations presented above 

need to be adapted. The interesting question here is how this adjustment needs to be 

performed so that the scale-space properties are preserved. It turns out that there is only one 

way to construct a scale-space for discrete signals. For an in-depth look into the derivation 

of the following formula see (Lindeberg, 1994). Given a signal  the scale-space 

representation  is given by  

  (6) 

where  is a kernel named the “discrete analogue of the Gaussian kernel”, 
which is defined in terms of a modified Bessel function given by . 
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It can be shown that the discrete scale-space family  of a discrete signal 

 must satisfy 

  (7) 

  (8) 

in one and two dimensions for constants  and .  and  denote two 

discrete approximations of the Laplace operator. They are defined by 

  , 

 . 

The function subscripts are the indices at which position in the image an intensity value 
shall be taken. With , the two-dimensional scale-space representation of a digital 

image is given by convolution with a one-dimensional Gaussian kernel along each direction. 
What remains to say is that the spatial derivatives of the Gaussian kernel can be 
approximated by differences of Gaussian (DoG) kernels at different spatial locations. 

2.3 Image features from scale-space representations 
To exploit scale-space for image feature detection, one has to deal with differential 
geometry. Some methods are required for further processing the output of the Gaussian 
derivative operators to gain meaningful and distinct image features. It is mandatory to base 
the analysis on image descriptors that do not depend on the actual coordinate system of the 
spatial and intensity domain, because a single partial derivative contains no useful 
geometric information. So it is required that the scale-space representation shall be invariant 
with respect to translation, rotation, and scale changes. Unfortunately complete affine 
invariance (i.e. non-uniform rescaling) is harder to achieve. This issue is also addressed in 
(Lindeberg, 1998).  
Scale-space representation of an image is especially well-suited to detect sub-pixel edges, 
junctions and blob-like structures. For this, it is helpful to define a local orthonormal 
coordinate system for any point of interest in the image. A useful definition would be that 
for any Point , normal (x,y) image coordinates are translated into a (u,v) coordinates with 

the v-axis aligned along the gradient direction and the u-axis perpendicular to it (which also 

aligns with the tangent orientation). This leads to and 

 for example, where 

  (9) 

In terms of Cartesian coordinates, the local directional operators can be expressed by  

  (10) 

Note that , because of  being parallel to the tangent at point . 
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With these definitions edge detection in scale-space can be computed by a non maximum 
suppression in the gradient direction. The following conditions need to be fulfilled: 

  (11) 

With Eq.(9) and (10) it is possible to convert these statements back to Cartesian coordinates. 
Junction detection is expressed in terms of curvature of level curves in gray level images. In 
derivative terms the curvature can be expressed by 

  (12) 

The curvature is usually multiplied by the gradient magnitude  raised to some power k. 

This provides stronger responses at edges. In (Brunnström, 1992) k=3 is chosen leading to  

  (13) 

A point  has to fulfill the following conditions to be considered a junction-point: 

  (14) 

Blob detection can be performed by calculating the zero-crossings of the Laplacian, where 

  (15) 

All the introduced feature detectors in section 3 first do a scale-space transformation and 
then employ Eq. (11)-(15) to detect interest points. At these points the local image 
descriptors are then computed and used for the later matching process. 

3. Technology review of interest point detectors and image descriptors 

Usually the computation of distinctive image features is split into two phases. First, interest 
points are computed at locations that are considered to be promising for the later descriptor 
calculation. A reliable (and in this regard reproducible) interest point detector is crucial for 
the feature determination. Then, after the locations of the interest points have been 
determined, for each such point a local image descriptor is computed by processing the 
neighbouring intensity values of the current interest point’s location. This yields a set of 
image features that are supposed to be distinctive to the objects in the image. These features 
can then be used in object recognition or object tracking by matching features yielded from 
one image to those from another.  

3.1 Interest point detectors 
Classic interest point detectors used simple attributes like edges or corners. Among these, 
the probably most widely used, is the Harris corner detector (Harris, 1988). It is based on 
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eigenvalues of the second-moment (also called auto-correlation) matrix. Unfortunately, this 
detector lacks scale-invariance.  
Lindeberg tried to extend the Harris corner detector experimenting with the determinant of 

the Hessian matrix as well as the Laplacian to detect blob-like shapes (Lindeberg, 1998). He 

also examined methods for automatic scale selection for image feature computation.  

(Mikolajczyk & Schmid, 2004) refined this method exploiting a combination of the Harris 

detector to determine the location, and the Laplace matrix for scale selection of an image 

feature. It is basically a combination of the Harris corner detector with the automatic scale 

selection methods proposed by Lindeberg. This yields the desired scale-invariance. Their 

image descriptors proved to be highly distinctive, scale invariant, rotation invariant, and 

highly tolerant against illumination effects. 

(Lowe, 2004) mainly focused on speeding up this computational costly processing by 
replacing the Laplacian of Gaussian (LoG) by a Difference of Gaussian filter (DoG). In 2004 
he presented his method called SIFT (scale invariant feature transform) to the public. SIFT 
features embody the same tolerance to (uniform) changes in scale, rotation, and illumination 
effects. This also qualifies SIFT as an ideal candidate for pattern and object recognition.  
The main difference between SIFT and the feature detector described in (Mikolajczyk & 

Schmid, 2004) is that the former interest point detector aims at blob-like structures and the 

latter at corners and highly textured points in images. Thus it can be concluded that the two 

interest point detectors generate complementary feature. 

One basic problem with these sophisticated interest point detectors is that they are 

computationally complex and hence cannot match hard real-time constraints (i.e. analyzing 

a video stream of a constant 25fps online). This problem was addressed in (Bay et al., 2006). 

The group showed that SIFT could be speeded up further almost without losing any of its 

matching quality. Their work is based on certain approximations (and simplifications) of 

Lowe’s work and was coined “speeded up robust features” (SURF). For instance, the research 

group proved that the approximation of the LoG by a DoG filter can be pushed even further 

to a difference of means (DoM) filter. This filter can be implemented very efficiently exploiting 

integral images, thus achieving constant runtime behavior. Also the components of the 

resulting feature vector are cut in half, which provides faster matching speed between 

different feature vectors. 

Usually some interpolation steps are applied over scale-space to accurately locate the 

interest points before the image descriptor is computed. In (Mikolajczyk & Schmid, 2004) an 

iterative approach is taken based on displacement calculations using Eq. (16) by starting at 

the initially detected point for affine normalized windows around this point. In (Lowe, 2004) 

a 3D quadratic function is fitted to local sample points to interpolate the location of the 

maximum. This is employed by using the Taylor expansion introduced in (Brown & Lowe, 

2002).   

A common drawback to all these interest point detectors is their strong responses at edges 

or contours. This can be mitigated to a certain degree by selecting the scale at which the 

trace and the determinant of the Hessian matrix assume a local extremum. 

3.2 Image descriptors 
Image descriptors are computed from the location around the previously detected interest 
points.  
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(Mikolajczyk & Schmid, 2004) use Gaussian derivates computed in the local neighborhood 
of each interest point. They convolve these derivatives on small image patches normalized 
with a matrix U of the form  

  (16) 

with  denoting the (scale-space adapted) second moment matrix of the Harris corner 

detector and k denoting the step width of this iterative algorithm.  is the initial 

concatenation of square roots of the second moment matrices. To gain invariance to rotation, 
the derivatives are aligned at the direction of the gradient. The gradient orientation at each 
interest point is averaged with the gradient orientations in the neighborhood and goes into 
the descriptor. 
 

 

Fig. 1. SIFT feature matches applied to a self recorded scene. The blue sugar box on the left 
side of the image was found in the right complex scene. The SIFT matching software yielded 
16 matches (shown as white lines). Note that only 3 matches would have sufficed to 
correctly identify an object. Also note the partial occlusion and difficult lighting conditions 
under which the images were taken. The digital camera used to record both images was a 
Canon Powershot A75 with 3.2 megapixels. The camera was set to automatic mode. The 
images also underwent a lossy JPEG compression. 

Lowe determined his descriptor components by computing the gradient magnitude and 
orientation for each sample point neighboring the interest point. These values are weighted 
by a Gaussian window. The samples are then accumulated into orientation histograms, 
which summarize the contents of 4x4 subregions around the interest point. Over each such 
subregion the 8 predominant gradient orientations are computed. These values make for the 
image descriptor. Hence the descriptor consists of 128 components. A visual example of the 
image feature matching with our own implementation of the SIFT operator is shown in Fig. 1. 
The SURF descriptor is determined by the following steps. First, a square region is 
constructed around the interest point and aligned along the dominant orientation obtained 
by haar wavelet filter responses at the interest point. The side length of the wavelet is four 
times the scale level at which the point was detected. The dominant orientation is estimated 
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by calculating the sum of all responses within a sliding window covering an angle of . 

Then, the horizontal and vertical responses over these windows are summed and contribute 
to the components of the vector of the estimated orientation. The size of this sliding window 
needs to be determined experimentally (see Bay et al., 2006). The square region size around 
the interest point is of size 20s (s denoting the scale parameter). The region is split into 4x4 
subregions like in (Lowe, 2004). For each such subregion a few simple features (again 
employing the directional Haar wavelet responses) at 5x5 regularly spaced sample points 
are computed. Finally, the responses are accumulated over the regions and provide a first 
set of entries to the image descriptor. Also the sum of the absolute response values is 
calculated. This yields a four-dimensional vector for each subregion of the form 

, with  denoting the Haar wavelet response in x-direction 

and  respectively. Such vectors form a single descriptor vector for all four subregions. 

Hence the resulting descriptor vector is of size 64 – half the size of a SIFT-descriptor. 
There are yet some derivations the introduced image descriptors, i.e. (PCA-SIFT, U-SURF, 
GLOH etc.) that are not discussed here. These derivates mainly vary in the way how the 
final descriptor computation is done aiming at lesser component numbers than the original 
version to speed up object matching.  

4. Performance evaluation of local image features 

This section is contributed to a short overview of the performance of local image features 
regarding their object recognition ratio and their computational speed when implemented on 
modern computers. Also the issue of exploiting image features for object classification is 
addressed at the end of this section.  
In (Leibe & Schiele, 2003) a systematic comparison between contour based, shape based, and 
appearance based approaches regarding their effectiveness for object recognition is 
performed. For their evaluation they constructed an own database of small objects, coined 
the ETH-80 database. It consists of 80 objects from 8 self chosen categories (i.e. fruit and 
vegetables, animals, human-made small objects, and human-made big objects). For each 
category 10 objects are provided that span in-class variations while still clearly belonging to 
that category. The test mode is of the form leave-one-object-out-crossvalidation, which 
means that the object recognition system is trained with 79 objects (randomly taken out of 
the 8 categories) and tested against the one remaining object. The measurements were 
performed over object sets taken of each category and the results were averaged. 
The algorithms used for testing were 

• a simple colour histogram driven approach, 

• texture based methods over scale-space (which directly corresponds to the image feature 
detectors from section 3.1-3.2); these are split into a rotation variant method (first order 
derivatives in x and y direction) and a rotation invariant method (gradient magnitude 
and Laplacian over 3 scales – also see (Love, 2004)), 

• global shape: PCA-based methods either based on one single global eigenspace for all 
categories or separate eigenspaces for each category, 

• and local shape using the contours of each object represented by a discrete set of sample 
points; these points are later matched with points from other images with a dynamic 
programming and a one-to-one point matching (using a greedy strategy) approach. 
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The results found in (Leibe & Schiele, 2003) show that contour-based (local shape) methods 
perform best, with an average object recognition ratio of 86.4%. Second place were global-
shape based PCA variation with 83.4% and 82.9% respectively, but with the texture 
histograms only slightly behind with 82.2%. As expected, colour histograms performed 
worst with just 64.9%. Yet, nothing is stated about the different runtime behaviour of the 
different methods, because this paper deals with quantitative evaluation of the recognition 
ratio. It can reasonably be assumed that the global and local contour matching algorithms, 
besides showing the best recognition ratio are also the most costly ones to compute. 
Leibe & Schiele also examined combinations for the above described methods. Cascading 
object recognition systems were constructed using different permutations of these 
algorithms. They showed that certain combinations could raise the overall object recognition 
ratio up to 93%. In section 5.1 we show our own approach for a cascading object recognition 
system aimed to fulfil certain real-time constraints, yet preserving high recognition ratios.  
(Mikolajczyk et al., 2005a) evaluated interest region descriptors among themselves and how 
they perform in different situations; they concentrated especially on all kinds of affine 
transformations, blurring, and JPEG compression artefacts. They concerned with all the 
image feature detectors described in section 3 and their common variations and also 
proposed their own extension to the SIFT operator. In their results section they conclude 
that the gradient orientation and location histogram (GLOH) – a variation of the original SIFT 
operator – performs best regarding object recognition ratio, closely followed by SIFT. We 
also employ SIFT features for our cascading object recognition system (see section 5.1). 
Another highly noteworthy contribution is presented in (Mikolajczyk et al., 2005b), where 
local image features are examined regarding their applicability on object classification. The 
interesting question here is, whether the image features, which perform well in scenarios 
like pattern matching and object recognition, contain useful information that can be applied 
as features for object classification. They pursue a cluster-driven approach of image features 
for classification. They computed the distribution of features in the cluster and defined a 
similarity measure between two clusters by  

  (17) 

with N and M denoting the numbers of features in clusters k and l;  and  represent the 
cluster centres;  and  denote the variances, and v an experimentally determined 
threshold value.  
Mikolajczyk et al., evaluated image feature detectors employing Hessian-Laplace and Salient 
region, Harris-Laplace, SIFT, PCA-SIFT, and GLOH detectors. The challenging object 
classification task was to detect pedestrians crossing a street in an urban scenario. Again, the 
GLOH descriptors exploiting regions around interest points found by Hessian-Laplace 
obtained the best results; salient region detectors also performed well. Hence, it can be 
concluded that scale-space image feature detectors are also applicable to object classification 
beyond their originally intended domain (pattern and object matching). 

5. Extending local image features for real-time object recognition  

All the previously described image features from section 3 show excellent robustness on 
object recognition under real-world conditions. Regarding object recognition by matching 
features of different images, the image features prove to be 

www.intechopen.com



 Computer Vision 

 

224 

• scale-invariant, 

• rotational invariant, 

• partially affine invariant (non-uniform scale changes are problematic), 

• highly tolerant against changes in illumination, and 

• insensitive to noise (to a certain reasonable degree). 
Yet, one important issue has not been fully addressed: the real-time processing of image 

features or feature matching respectively. In many scenarios, online computation of image 

features for real-time object matching is desirable. In this regard it is common to imply that a 

constant video stream needs to be analyzed in real-time, which in this case would mean that 

the image feature computation software had to cope with 25fps in camera-like image 

resolutions. The high robustness of the scale-invariant image features comes at the prize of 

high computation-time, which renders them applicable only partially to these scenarios.  

Constructing the scale-space and finding reliable interest points is one of the bottlenecks in 

this case; another is the component size of the image descriptors, which have to be used for 

the later matching process.  Many extensions to the image features have been applied to 

address this problem and especially the latest of these, the SURF operator, aims at better 

runtime speed. The idea in (Bay et al., 2006) is to simplify the costly difference of Gaussian 

(DoG) filter, which is used during scale-space computation, to a difference of means (DoM) 

filter. The DoM is just a simple box filter. Bay et al. showed that this approximation of the 

DoG filter is permissible, because the DoG filters, which are supposed to be infinite, are 

actually cropped when they are applied to the image. Thus DoG filters are, when it comes to 

applying them in discrete digital image processing, an approximation of the theoretical DoG 

filters themselves. The DoM filter has the nice property that it can be computed very 

efficiently employing integral images. An integral image is defined by  

  (18) 

After  is constructed, it takes just four additions to calculate the DoM filter of any size at 

any point. This is a major saving of computation time compared to the full application of a 

Gaussian filter at any point.  

Bay et al. also reduce the length of the image descriptor to 64 components in contrast to the 

128 components of the SIFT operator. This saves time when feature matching is applied, 

because during the matching process each image descriptor from one image has to be 

compared (usually by employing some common metric, i.e. the Euclidian distance) to each 

descriptor of the image that is to be matched.  

These measures mitigate the problem of time consuming computations and in fact the SURF 

operator with all its optimizations only needs 33% the time of the SIFT operator to perform 

its tasks.  

5.1 Cascading object recognition approach 
Yet, we seek even better run-time performance than the optimized SURF operator. The 

SURF operator still cannot satisfy the hard real-time constraints stated in the last section. So 

we came up with a cascading approach for object recognition. The precondition to our 
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approach is that a priori knowledge of the objects to be recognized can be assumed, which is 

the case in many classic object recognition and classification scenarios. In particular you 

need to know with which objects the system is supposed to deal with to construct sensible 

training data sets for an initial teaching of the system.  

The main idea of our contribution is to employ a two-stage cascading approach: a fast decision-

tree based pre-classifier, which sorts out the objects to recognize with a recognition ratio of 

66%-75% accuracy, and a later performed image feature matching exploiting SIFT and SURF 

operators. The recognized objects from the first stage need not be processed by the costly 

operators anymore. The time savings go directly into equation 

  (19) 

with  denoting the overall system processing time,  the time for pre-computation 

(system initialization etc.),  the time for the SIFT/SURF matching process, and  the dead-

time of the system (consumed e.g. by memory management and other administrative tasks). 

 is the ratio of correctly classified objects from the earlier pre-processing stage. Considering 

the fact that , applying the pre-computation yields better overall timing.  

We use the Coil-100 image database1 as a testbed for our algorithms. This library consists of 

100 different, small, everyday use objects, which have about the same size. Each object is 

rotated around the Y-axis 72 times at a 5° angle each step, thus covering the full 360 degree, 

which yields 7,200 object view images in total. Each image has a size of 128x128 pixels. The 

methods and results presented in the following sections all refer to this database. 

5.2 Decision tree construction 
Decision trees are a classic tool rooting in artificial intelligence and are mainly used for data 

mining purposes. Decision trees in our work are exploited to classify objects. For an in-

depth look into the structure of general decision trees and methods to generate them the 

reader is referred to (Quinlan, 1983), who was the first to introduce decision trees in his 

work and (Russel, 2003), who provides a quick and practice oriented overview of decision 

trees. 

We use a fast classification method in the first stage for our object recognition software 

exploiting binary decision trees. Decision trees, once trained, provide means to classify large 

amounts of objects (several thousands) in just a few milliseconds. The idea is to recursively 

divide the feature space into sets of similar sizes and feed these sets to nodes into the 

decision tree. To classify an object, the object features are matched with the class feature sets 

each node holds. Each node decides whether an object belongs to one (or none) of its two 

class-feature sets. The decision made by the node determines the next sub-tree, which has to 

deal with the classification. This process is repeated until a leaf-node is reached. The feature 

represented by this leaf node yields the class the object belongs to. Because the tree needs 

not necessarily be built up completely, whole class or feature sets can be represented by leaf 

nodes. 

We pursue a simple colour cluster driven approach to train the decision tree based 

classificators. The training data sets are taken out of the Coil100 image database. Although 

                                                 
1 http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php 
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yielding high performance, the training of the decision trees proved to be difficult regarding 

classification quality, which is at 66% of correctly classified objects on average. This is 

mainly due to the simple colour based features we use. To gain the features, we apply Alg. 1. 

 

 
 

Each node divides the center of gravity set (and so the associated class set) into half. This 

way we achieve a runtime complexity of  with N denoting the number of 

classes and M the number of objects to classify. 

The problem of low classification quality can be mitigated by moving to decision forests (see 

Zhao, 2005). Decision forests integrate more than one decision tree into their decision 

process. These trees are trained with varying datasets which may lead to different 

classification results. Among all the trees in the forest a quorum is made and the decision 

taken which should be correct most likely; usually this is done by proclaiming the largest 

subset of trees, which made the same decision, the winning subset using their decision as 

the classification result. Applying this method raises the correctly classified objects rate to 

75%, but also increases the runtime complexity to  with k denoting the 

number of trees in the forest.  

The rate of correctly classified objects in this stage may seem to be quite low compared to 

other more sophisticated classificators found in literature, but it is important to note that we 

employ the pre-stage system only to speed up the later main-stage object recognition 

process. Every correctly recognized object at the end of this phase means, that no costly 

image transformation, and no exhaustive search through an image feature database 

comparing all the descriptor vectors with each other needs to be performed. Hence a 

classification rate of 66% to 75% means an overall time reduction of the entire system at 

almost the same rate. As we will show next, this will get us closer to the desired real-time 

behavior of the object recognition system.  
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5.3 Performance evaluation 
The two-stage image feature matching approach yields a very efficient object recognition 

method providing highly accurate results. The pre-processing of the algorithm drastically 

reduces the search-space at minimal computational costs of a few milliseconds. 

A typical feature match of a Coil-DB image with the SIFT feature database performs at 75ms. 

Applying the pre-processing, which yields 75% of correctly classified objects, which is the 

average rate for well trained decision forests in our implementation, the processing time 

reduces to 21ms. This time reduction is correlated linearly to the rate of correctly classified 

objects of the pre-processing phase and follows Eq. (19). 

 
 

feature distance correct positive false positive 

40,000 49.30% 0.00% 

60,000 65.38% 0.09% 

80,000 85.66% 1.74% 

100,000 95.10% 8.85% 

120,000 97.55% 31.78% 
 

Tab. 1. Results of the object recognition process employing SIFT image features. 

Tab. 1 shows some results regarding the object recognition ratio applying SIFT. It clearly 

shows the high accuracy and reliability employing SIFT features. The matching parameter 

denotes the threshold that is taken for feature comparison. Features are compared to each 

other using the squared Euclidian distance over the 128 dimensional feature vectors. Only 

feature distances that are below this threshold are considered to be equal enough to yield a 

match. As it can be seen, at a certain value of the threshold (in this particular case 100,000) 

we yield a rate of correctly classified objects of 95%. Increasing the threshold value any 

further increases the false positive rate of the matched features drastically (from 9% to 32%) 

yet improving the correct positive rate at only 2%. We averaged our results over several 

objects that were taken out of the Coil-100 database randomly. The images we used were to 

be found in a subset of the database that consisted of all objects and object views from an 

angle of 60°. Angles between 60° and 90° cannot be reliably matched with the SIFT operator 

anymore. Values beyond 90° are impossible to use with SIFT, because the object views now 

show their backside of the object whereas the reference object view shows its front side. For 

SIFT this is equivalent to a total occlusion of the object. The optimal feature distance for a 

concrete image set is determined experimentally and changes according to different 

environments. 

Exchanging the SIFT with the SURF operator the values from Tab. 1 stay almost the same 

(with only slight deviations), except for the even better run-time performance of the system. 

We could verify that the SURF operator is indeed almost 3 times faster than SIFT as stated in 

(Bay et al., 2006). The overall computation time of 21ms reduces to 10ms, if SIFT is replaced 

by SURF in the main-processing stage. 
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We also took our own image sets with standard CMOS cameras at standard sizes of 320x240 

pixels. The object recognition system is capable of processing at a rate of 11fps (SIFT) and 

16fps (SURF). This gets us closer to the desired real-time behaviour of 25fps, yet exploiting 

all the benefits of the SIFT and SURF operators. 

6. Conclusion and future work 

In this chapter we gave an overview about current object recognition methods exploiting 

scale-space transformation and showed an extension to the very reliable and accurate 

methods SIFT and SURF. We focused on speeding up these two operators even further 

targeting at real-time behaviour (at least 25fps for 320x200 pixel sized images). We used a 

pre-processing step exploiting decision trees to sort out as much data as possible in an early 

stage, trying to employ the costly SIFT and SURF matching process only at falsely 

recognized objects. We showed that this method is capable of further reducing overall 

computation time by the formulas given in section 5.1.  

We intend to use this hierarchical approach for use in an analysis by synthesis system (Todt, 

2008). This system is supposed to reliable detect real-world objects from synthetic three 

dimensional scene models, which are generated by a photo-realistic 3D lumigraph renderer 

for the synthesis part. The generation of this renderer uses the recently appeared PMD 

cameras (see Stommel & Kuhnert, 2006; Kuhnert et al., 2007). Because this is an iterative 

computational process approximating, the best synthesis parameters for a given real-world 

object, one faces hard real-time constraints. We are confident, that our approach presented 

in this paper embodies the potency to fulfil these constraints. 

We also plan on implementing this object recognition system on our mobile outdoor robot 

AMOR (see Kuhnert & Seemann, 2007; Seemann & Kuhnert, 2007) for passive object 

tracking purposes. It is supposed to support the active laser scanner sensors in tracking a 

vehicle that drives in front of AMOR. This is done by analyzing a constant video stream 

taken from a camera on the front side of the robot. Hard real-time constraints apply here as 

well. 

There are still many optimizations remaining, e.g. software parallelization exploiting 

modern multi-core processors has yet to be implemented. The filter operations in particular 

are excellent candidates for this approach, because there are no data dependencies. This also 

leads to purely GPU based image filter algorithms (see Staudt, 2008). Modern graphic cards 

have shown high potential in processing large streams of independent data. We hope in 

implementing these optimizations, the costs for image feature computation can be reduced 

even further and that we get closer to the above stated real-time behaviour. 
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