
Taking into account velocity and acceleration bounds in nonholonomic

trajectory deformation

Mathieu Hillion and Florent Lamiraux

LAAS-CNRS

University of Toulouse

7 avenue du Colonel Roche

31077 Toulouse cedex 4, France

Email: florent@laas.fr

Abstract— This paper deals with the problem of autonomous
navigation for nonholonomic mobile robots. To avoid obstacles
while executing a planned motion, we use a nonholonomic
trajectory deformation method. Initially, this method did not
take into account the velocity and acceleration bounds of
the robot. The contribution of this paper is a significant
improvement of the method to take into account these kinematic
bounds. The idea consists in applying zero input perturbation
on intervals on which the kinematic bounds are not satisfied
and to reparameterize the trajectory in order to remove
bound overflows. Experimental results illustrate and validate
the improvement.

I. INTRODUCTION

This paper deals with autonomous navigation for nonholo-

nomic systems. Many mobile robots are subject to kinematic

constraints of rolling without slipping that make them non-

holonomic. Our objective is to navigate such systems in

cluttered environment. For that, we proceed in two steps.

First, we plan a collision-free trajectory that satisfies the

kinematic constraints of the system and then we follow

the planned trajectory. The first step has given rise to a

lot of research work in the 1990’s and a lot of trajectory

planning algorithms for nonholonomic systems are today

available [1], [2], [3], [4], [5]. In the second step, we need to

cope with map and localization errors and with unexpected

obstacles that can make the planned trajectory in collision.

To perform this task, we use a nonholonomic trajectory

deformation method proposed by [6]. We have implemented

and integrated this iterative method on-board a nonholonomic

mobile robot towing a trailer. This method locally modifies

the input function of the trajectory using a potential field

over the configuration space of the robot, until collisions have

disappeared. The method manages nonholonomic constraints

and keeps the initial and end configurations of the trajectory

unchanged. The main weakness of this method, as described

in [6], is that it does not take into account the velocity and

acceleration bounds of the mobile robot. This can lead to

trajectories that the robot cannot follow correctly.

Our contribution in this paper is a significant improvement

of the nonholonomic trajectory deformation method that

takes into account velocity and acceleration bounds. The

idea consists in keeping unperturbed the input functions

on intervals where they exceed their bounds and in locally

re-parameterizing the trajectory in time in order to keep

velocities and accelerations within their bounds.

The problem of time parameterization of a path in order

to take into account acceleration and velocity bounds has

first been addressed in the context of minimum time path

following for manipulator arms [7], [8], [9], [10]. This

problem is known to be computationally complex. This

complexity forbids us to integrate such computations at each

iteration of the trajectory deformation algorithm. Instead,

we propose to deal with velocity and acceleration overflows

iteratively as soon as they appear.

II. THE TRAJECTORY DEFORMATION ALGORITHM

In this section, we recall some definitions from [6] in order

to recall the main components of the trajectory deformation

method. We refer the reader to this paper for details about

the method. Here we give only what is necessary to the

understanding of our work.

A nonholonomic systems is a locally controllable system

the velocities of which are subject to linear constraints. As

a consequence, the velocity of a nonholonomic system is a

linear combination of control vector fields:

q̇ =

k
∑

i=1

uiXi(q) (1)

where q is the configuration and k is the number of control

variables of the system. We denote by n the dimension of

the configuration space of the system.

A trajectory q(s) of a nonholonomic system is therefore

defined by an initial configuration q0 and a vector-valued

input function defined over an interval [0, S]:

u : [0, S] → Rk

s → u(s)

The main principle of the trajectory deformation method

consists in adequately perturbing the input function of the

current trajectory in order to make this trajectory move

away from obstacles perceived during motion execution. In

other words, at each iteration of the algorithm, an input
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perturbation v : [0, S] → Rk and a small positive real

number τ are defined and input u is replaced by u + τv:

∀s ∈ [0, S], u(s)← u(s) + τv(s) (2)

The relation between input perturbation and trajectory defor-

mation η : [0, S]→ Rn is given by the linearized system:

η′(s) = A(s)η(s) + B(s)v(s)

where η′ is the derivative of η, A(s) and B(s) are matrices

depending on the current trajectory. Thus, for small values

of τ , the trajectory corresponding to the new input defined

by (2) is given by:

q(s)← q(s) + τη(s) + o(τ)

where o(τ) is a negligible term w.r.t. τ .

A. Finite-dimensional subspace of input perturbations

The space of input perturbations v of the current trajec-

tory is an infinite-dimensional space. To make computations

easier, the choice of v is restricted over a subspace spanned

by elementary input perturbation functions e1, ..., epk where

p is an integer called Fourier order, defined as follows: for

any i, 0 ≤ i ≤ p− 1 and any j, 1 ≤ j ≤ k,

eik+j(s) =



























0
...

0

sin
(

(i+1)π
S

s
)

0
...

0



























(3)

where the non-zero component is at the j-th line of the

vector.

Let us notice that functions el’s are equal to zero at 0 and

at S. This implies that the velocity remains unchanged at the

beginning and at the end of the deformation interval. Thus,

applying the deformation algorithm over a sub-interval of a

given trajectory does not affect the continuity of the velocity

along the whole trajectory.

III. VELOCITY AND ACCELERATION BOUNDS

A. Problem statement

In our framework, the input variables of a nonholonomic

system are velocities: linear and angular velocities for a uni-

cycle for instance. We assume in this section that system (1)

is subject to velocity and acceleration bounds: for any i,
1 ≤ i ≤ k,

ui min ≤ ui ≤ ui max (4)

ai min ≤ u̇i ≤ ai max (5)

We assume that for any i between 1 and k, ui min < 0,

ai min < 0, ai max > 0, and ai max > 0.

An admissible trajectory is thus now defined by an input

function u that complies with the above inequalities: for any

s ∈ [0, S],

umin ≤ u(s) ≤ umax (6)

amin ≤ u′(s) ≤ amax (7)

where u′ is the derivative of u, umin, umax, amin, and

amax are k-dimensional vectors the components of which

are respectively the ui min, ui max, ai min, ai max and by

convention, inequality between two vectors means inequality

for each component.

As mentioned earlier, at each iteration, input perturbation

is spanned by the el’s defined by (3):

v =

pk
∑

l=1

λlel (8)

where λ = (λ1, ..., λpk)T is a vector of real coefficients

chosen in such a way that the trajectory deformation moves

away from obstacles. Without getting into details about the

choice of λ, we can notice that step (2) and equations (6)

and (7) define inequality constraints on vector λ: for any

s ∈ [0, S],

umin ≤ u(s) +
∑pk

l=1 τλlel(s) ≤ umax

amin ≤ u′(s) +
∑pk

l=1 τλle
′

l(s) ≤ amax

Each component of the above vector inequalities define an

infinite collection of linear inequalities over τλ indexed by

s. Unfortunately, characterizing the set of τλ satisfying these

inequalities is a complex operation that we cannot perform

at each iteration of the trajectory deformation algorithm.

To manage velocity and acceleration overflows, we pro-

ceed in two steps. Firstly, we detect for each component of

the input function the intervals over which a kinematic bound

is saturated and we require the corresponding component of

the input perturbation to be equal to 0 over these intervals. To

achieve this requirement, we redefine the elementary input

perturbations el’s as explained in the next section. Secondly,

we uniformly re-parameterize the deformation interval in

order to lower velocities and accelerations down.

B. Overflow Limitation

Given a current trajectory of input function u, we define

for each input variable ui, 1 ≤ i ≤ k, the subset Ii

of interval [0, S] over which input function component ui

satisfies inequalities (6-7). We assume that this subset is the

finite union of ni disjoint intervals that we denote by:

Ii =

ni
⋃

j=1

[σij , ρij ]

where σij and ρij are the upper and lower bounds of each

sub-interval. We denote by N the total number of intervals:

N =

k
∑

i=1

ni

We are now going to redefine elementary input perturbations
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Algorithm 1 Definition of el

/* initialization */

ωmin ←∞; l← 1
/* for each sub-interval */

for i in [1..k] do

for j in [1..ni] do

ωij ← π/(ρij − σij)
αij ← 1 /* multiple of basis pulsation */

end for

end for

while l ≤ k ∗ p do

/* find smallest pulsation */

for i in [1..k] do

for j in [1..ni] do

if ωij < ωmin then

ωmin ← ωij /* store smallest pulsation */

imin ← i; jmin ← j /* and corresponding

interval*/

end if

end for

end for

el ← 0
i← imin; j ← jmin;

eli(s)← sin (ωij(s− σij)) for s ∈ [σij , ρij ]
αij ← αij + 1
ωij ← αijπ/(ρij − σij)
l← l + 1

end while

el’s by filling each sub-interval with sin functions of increas-

ing frequencies, following Algorithm 1. The output of this

algorithm is a collection of pk input perturbation functions

el, 1 ≤ l ≤ pk, satisfying the following properties:

1) for any s ∈ [0, S] and any integer i, 1 ≤ i ≤ k, if

ui(s) or u′

i(s) is saturated (i.e. does not satisfy (6-7)),

then for any l, 1 ≤ l ≤ pk, eli(s) = 0 (eli is the i-th
components of el);

2) for any l, 1 ≤ l ≤ pk, el is continuous over [0, S],
el(0) = el(S) = 0.

These two properties imply that any linear combination (8)

does not change the components of the input function and

their derivatives over intervals where they are saturated.

This first step ensures us that only small velocities and

acceleration overflows can occur. However, after several

iterations, it may happen that all inputs are saturated over

the whole interval [0, S]. To overcome this limitation, we

perform a each iteration of the deformation algorithm a

re-parameterization of the trajectory as described in the

following section.

a) Example: to illustrate the above algorithm, we con-

sider a nonholonomic system with two inputs (k=2), one of

which u2 does not satisfy the kinematic bounds. Figure 1

shows the elementary input perturbations el’s for p = 4
corresponding to this example. It can be easily checked that

any linear combination of the el’s will not affect u2 on both
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Fig. 1. In this figure, we illustrate algorithm 1 with a two input (k =

2) nonholonomic system. Input u1 and its derivative (not displayed here)
satisfy the kinematic bounds along the whole interval. Input u2 (top) goes
above u2 max and below u2 min on two intervals; u′

2
satisfy kinematic

bounds. Therefore, n1 = 1, n2 = 3. p is set to 4, so that the 8 input
perturbations el have the following properties: only one component of each
el, 1 ≤ l ≤ 8 is non uniformly equal to 0 and the pulsation of the non
zero coordinate of the el increases with l. The middle and bottom picture
display the non uniformly zero coordinates of the el’s.
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intervals where the kinematic bounds are not satisfied.

C. Re-parameterization

As mentioned in the introduction, computing the

minimum-time parameterization of the current trajectory to

take into account velocity and acceleration bounds is a

computationally complex task. In this section, we propose

a simpler solution.

Let us define an increasing re-parameterization function:

ϕ : [0, S] → [0, S̄]
s → ϕ(s)

where S̄ is a positive real number and let us denote by

q̄(s) = q(ϕ−1(s))

the current trajectory re-parameterized by ϕ. The relation

between the derivatives of both trajectories is given by:

∀s ∈ [0, S], q̄′(ϕ(s))ϕ′(s) = q′(s)

From (1), we can easily deduce that the re-parameterized

trajectory satisfies the nonholonomic constraints and corre-

sponds to input function ū defined over [0, S̄] by:

ū(ϕ(s)) =
1

ϕ′(s)
u(s) (9)

The relation between the derivatives of the input functions

before and after re-parameterization is thus given by:

ū′(ϕ(s)) =
1

ϕ′(s)2
u′(s)−

ϕ′′(s)

ϕ′(s)3
u(s) (10)

1) Boundary conditions: let us recall that we want the

input function to remain unchanged at both end of the

deformation interval. This requires that

ϕ′(0) = ϕ′(S) = 1 (11)

A current trajectory being given, the input function u of

which does not satisfy (6) and (7) , the problem is thus now

to find a function ϕ satisfying (11) and such that the new

velocities and accelerations defined by (9) and (10) satisfy

constraints (6) and (7):

umin ≤
1

ϕ′(s)u(s) ≤ umax (12)

amin ≤
1

ϕ′(s)2 u
′(s)− ϕ′′(s)

ϕ′(s)3 u(s) ≤ amax (13)

Although (12) defines a set of 2k constraints over ϕ′ for each

value of parameter s, constraints (13) are much more difficult

to deal with since ϕ′ and ϕ′′ are obviously not independent.

2) Our solution: let us define ϕ as follows:

ϕ(0) = 0

ϕ′(s) =
1

√

1− as(S − s)
for s ∈ [0, S]

where a < 4
S2 is a real parameter. From this expression, we

can easily derive that:

1

ϕ′(s)2
= 1− as(S − s) (14)

ϕ′′(s)

ϕ′(s)3
= a(

S

2
− s) (15)

From expression of ϕ′ above, we can state that:

(1− as(S − s))u(s)2 ≤ u2
max

(1− as(S − s))u(s)2 ≤ u2
min

⇒ (12)

where u2 denotes the vector the components of which are

the components of u squared. The counterpart is true if and

only if umin = −umax.

Thus, if for any s ∈ [0, S] and any integer i between 1

and k,

a ≥
ui(s)

2 −min(u2
i max, u2

i min)

ui(s)2s(S − s)
(16)

Inequalities (12) are satisfied over [0, S].

Let us now rewrite inequalities (13) using expressions (14)

and (15):

amin ≤ (1− as(S − s))u′(s)− a(S
2 − s)u(s) ≤ amax

which is equivalent to:

u
′(s) − amax ≤ a

(

s(S − s)u′(s) + (
S

2
− s)u(s)

)

≤ u
′(s) − amin

Each of these inequalities define an interval for parameter

a. We need now to choose a in the intersection of all these

intervals and those defined by (16).

For that, we collect lower and upper bounds for a by

evaluating the above inequalities for each sample value of

s along the deformation interval of the current trajectory.

Let us denote by αmin and αmax the corresponding lower

and upper bounds of a.

Two situations may occur. Either αmin ≤ αmax and the

set of parameters a that satisfy the kinematic bounds is not

empty. In this case, we choose

a = αmin

in order to minimize the length (time of execution) of

the interval of definition of the reparameterized trajectory.

It can also happen that αmin > αmax and no value of

parameter a can satisfy all the kinematic constraints. In

this case, we choose a = 0. This corresponds to skipping

the reparameterization step. Thus, if the initial trajectory

satisfies the kinematic bounds, bound overflow will occur

when updating the trajectory at step (2). In this case, on

intervals where the kinematic bounds are not satisfied, the

bound overflows will not increase. By choosing τ sufficiently

small in (2), we can make sure that bound overflow will be

upper bounded by a positive number. By defining a security

margin on the kinematic bounds, we can make sure that the

bounds will always be satisfied everywhere.

IV. EXPERIMENTAL RESULTS

In this section, we propose two experimental results. The

first one illustrates influence of the two steps we have added

to the nonholonomic trajectory deformation method. The

second one shows the result of the new method for a mobile

robot towing a trailer in a real environment.
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Fig. 2. On the left, the initial trajectory: the unicycle mobile robot goes
straight into an obstacle. On the right, the angular velocity u2 is uniformly
equal to 0, the linear velocity linearly increases, stays constant and linearly
decreases.

Fig. 3. On the left, the final trajectory after a few iterations of the trajectory
deformation algorithm without taking into account the kinematic bounds:
the unicycle mobile robot avoids the obstacle. On the right, the angular
velocity u2 is not anymore uniformly equal to 0 and the linear velocity has
increased on most of the interval.

A. Point-wise unicycle

We consider in this example a point-wise unicycle mobile

robot going through an obstacle (Figure 2).

The configuration space of this system is of dimension 3.

A configuration is represented by a vector (x, y, θ) where

(x, y) is the position of the center of the robot and θ the

orientation. The control vector fields of this mobile robot

are respectively the linear and angular velocities:

X1(x, y, θ) =





cos θ
sin θ

0



 X2(x, y, θ) =





0
0
1





We deform the initial trajectory three times in order to

get away from the obstacle, keeping the initial and end

configuration of the trajectory unchanged.

The first time, we do not manage velocity and acceleration

bounds. The second time, we apply zero input perturbations

over intervals where constraints are not satisfied anymore

(Section III-B). The third time, we do the same as in the

second time, but moreover, we re-parameterize the trajectory

at each iteration of the trajectory deformation process.

In these experiments, the kinematic bounds are the follow-

ing:

−1.5 ≤ u1 ≤ 1.5

−1.5 ≤ u2 ≤ 1.5

−1 ≤ u′

1 ≤ 1

−1 ≤ u′

2 ≤ 1

Fig. 4. Input functions are perturbed only on intervals where they are
not saturated. As a consequence, kinematic bound overflows remain small.
However, at the end the linear velocity or acceleration are over their bounds
on almost the whole interval.

Fig. 5. Input functions are perturbed only on intervals where they are
not saturated and the trajectory is re-parameterized at each iteration of
the trajectory deformation algorithm. As a consequence, at the end of
the process all input functions are within their bounds and the interval of
deformation is a little longer: 10.8 instead of 9.4.

B. Without taking into account kinematic bounds

In this first experiment, we deform the trajectory without

taking into account the kinematic bounds, as described in [6].

The algorithm is iterative and applies small input perturba-

tion at each step. Figure 3 shows the trajectory obtained after

40 iterations. The obstacle is avoided but the linear velocity

is beyond the maximal value over most of the interval of

definition.

C. Keeping input functions unchanged when they are satu-

rated

In this experiment, we apply the trajectory deformation

algorithm as explained in Section III-B. Elementary input

perturbation are sinus functions of multiple frequencies,

distributed over intervals where the input function compo-

nents are within their bounds. Figure 4 shows the trajectory

and the input functions after 40 iterations. The kinematic

bound overflow remains small. However, at the end of the

deformation process, the linear velocity (or acceleration) is

saturated on the whole interval.

D. Keeping input functions unchanged when they are satu-

rated and with re-parameterization

In this last experiment, we apply the same technique as

in the former section, but moreover, we re-parameterize the

trajectory at each iteration as explained in Section III-C. Fig-

ure 5 shows the resulting trajectory and input function. The

kinematic bounds are satisfied everywhere both in velocity

and acceleration. As a consequence, the interval of definition

of the trajectory is longer at the end of the deformation

process than at the beginning.
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E. Mobile robot towing a trailer

In this experiment, we have applied the improved trajec-

tory deformation algorithm to a unicycle mobile robot towing

a trailer. The input function of this system is two-dimensional

(k = 2) and corresponds to the linear (u1) and the angular

(u2) velocities of the unicycle. The kinematic bounds of the

system are given by the following inequalities:

−0.45 ≤ u1 ≤ 0.45

−0.15 ≤ u2 ≤ 0.15

−0.2 ≤ u′

1 ≤ 0.2

−0.15 ≤ u′

2 ≤ 0.15

Figure 6 shows the result of the experiment. The initial

trajectory is in collision. After 7 iterations of the improved

trajectory deformation algorithm, the trajectory is collision-

free and satisfies almost everywhere the kinematic con-

straints. Notice that the interval of definition of the trajectory

is longer at the end than at the beginning. This is due to the

constraints on the angular velocity and acceleration: to avoid

obstacles, the robot needs to turn more than in the initial

trajectory. The kinematic constraints relative to the rotation

requires robot to slow down. That is why, the trajectory takes

more time.
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Fig. 6. The trajectory deformation algorithm taking into account kinematic
bounds. The robot is a differentially driven mobile robot towing a trailer. The
two inputs of the system are the linear and angular velocities of the unicycle.
The top left picture shows the initial trajectory, in collision with obstacles
of the environment. The top right picture shows the deformed trajectory
after 8 iterations. The middle picture shows the input functions components
u1, u2 and their derivatives u′

1
, u′

2
along the initial trajectory. The bottom

picture shows the same functions corresponding to the end trajectory. Let
us notice that only the beginning of the trajectory is deformed and that the
kinematic bounds remain satisfied.
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