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Abstract 

In large distribution systems, distribution centers (DC) deliver some merchandize to their retail stores 

in size-specific packages, also called ship-packs.  These ship-packs include cases (e.g., cartons 

containing 24 or 48 units), inners (packages of 6 or 8 units) or eaches (individual units).  For each 

Stock Keeping Unit (SKU), a retailer can decide which of these ship-pack options to use when 

replenishing its retail stores. Working with a major US retailer, we have developed a cost model that 

balances DC handling costs, store handling costs and inventory-related costs at both the DC and the 

stores, and therefore can help to determine the optimum warehouse ship-pack for each SKU.  We 

implement our model for a sample of 529 SKUs, and show that by changing ship-pack size for about 

30 SKUs, the retailer can reduce its total cost by 0.3% - 0.4%.   Interestingly, we find that most of the 

cost savings occurs at the DC level.  

Keywords: ship-pack, distribution system, retail, replenishment, inventory optimization 

 

I.  Introduction 

There has been considerable research effort spent on optimizing inventory levels in a two-echelon 

distribution system (Hopp and Spearman, 1996). However, one important factor is often ignored: the 

choice of pack size that is to be shipped from the distribution center (DC) to the retail stores for a 

particular item (Wagner 2002; Van Zelst et al. 2006).  

This research is motivated by such a real problem of choosing the right ship-pack quantity for a 

major US-based retailer (which we refer to as Beta hereafter). The ship-pack quantity can typically 

be one of three choices: an “each” or individual unit, an “inner” (a packaged set of eaches, on the 

order of 6 to 8 units), or a case (e.g., a box of 24 units). The DC incurs a greater handling cost when 

it replenishes with eaches or inners rather than full cases for two reasons. First, warehouse associates 

need to spend time cutting open cases so as to replenish the picking area for either inners or eaches. 

Second, each replenishment order from the store entails more work picking the packages. However, 
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replenishing with cases could pose many problems for stores as well as DCs. First, the store 

inventory holding cost may increase since the order amount has to be a multiple of the case quantity, 

which could result in more store inventory. Second, this additional inventory may occasionally 

exceed the available shelf space at a store.  When this happens, a store must put the extra units in a 

backroom or high-level shelf.  This practice results in extra handling and additional labor cost, and 

can also increase the chances of pilferage and damage. Finally, the DC sees larger demand variability 

when stores are replenished in cases, and as a consequence, the DC has to carry more safety stock. 

Thus, it is of both the DC’s and the stores' interest to find the optimal ship-pack that balances the DC 

handling cost, the store handling cost and the inventory-related costs at both the DC and the stores.  

This constitutes the main goal of this study. 

In this research, we develop a cost model that can be used to evaluate and optimize the costs 

associated with a warehouse ship-pack in the two-echelon distribution system.  Our cost model has 

the following contributions. First of all, it is store-specific.   Currently, Beta uses an Excel model that 

is based on an EOQ formulation to determine the optimal ship-pack; this model calculates the cost at 

an “average” store, namely a store with the average demand rate, and thus, ignores the wide variation 

in demand rates across the retail stores served by a DC.  We improve upon this model by developing 

a comprehensive model that generates ship-pack recommendations that account for the individual-

store demand characteristics for all of the stores within the distribution system.  Our model is also 

capable of including weekly forecasts over a planning horizon, say 26 or 52 weeks. Lastly, based on 

inputs from Beta, we include extra-handling cost at the store level that is absent in their current 

calculation.  This extra-handling cost accounts for the labor required first to find storage space for 

items that cannot fit onto store shelves and then later to retrieve them.  As far as we know, such a 

cost has never been considered in the literature on inventory replenishment.  In sum, the contribution 

of this research lies in the level of detail that we incorporate into the model, based on the business 

practices at Beta.   

This paper is organized as follows. After literature review (section II), we introduce our research 

setting at Beta (section III).  We then model the total cost in this system (Section IV), and with the 

data provided calculate the optimal ship-pack decisions for 529 SKUs, as well as total cost savings 

expected (section V). We then extend our model to consider the optimal inner-pack size choices 

(section VI). Finally, we conclude (section VII).  
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II. Literature 

The economic order quantity (EOQ) problem is a century-old research topic that traces its root to a 

1913 article by Ford Whitman Harris in Factory: The Magazine of Management (Erlenkotter, 1990). 

Today, the EOQ formula has become a pervasive textbook formula which every supply chain student 

has to learn. Traditional EOQ model assumes instant and infinite availability of products, 

deterministic and constant demand, constant fixed order cost and no shortages allowed (Hopp and 

Spearman, 1996). Three basic components are incorporated in the model: a fixed order or setup cost, 

a holding cost and a variable order or unit production cost. Later variations of the EOQ model have 

relaxed some of the assumptions. The Economic Production Lot size (EPL) model assumes a finite 

and fixed production rate; the Wagner-Whitin model relaxes the assumption on constant demand rate; 

and a variant of EOQ allows shortages and considers a back-order cost.  

Although a great deal of academic literature exists on the EOQ model and its variants, very few 

studies have been done relating to pack size restrictions. Wagner (2002) acknowledges that the pack 

size could affect the order quantity in the real world. Silver et al. (1998) suggest a simple way of 

dealing with the pack sizes based on the form of the total cost curve in classical EOQ model. Since 

the total cost curve is convex, the best integral multiple of the pack sizes must be one of the two 

possible values surrounding the optimal continuous Q. However, a critical factor is ignored in the 

classical EOQ model: the handling cost of dealing with different case packs (including the individual 

unit which is essentially a case pack of one) both in the DC and the stores.  

Van Zelst et al. (2006) recognize shelf stacking process as the largest driver of the store operational 

cost. Moreover, the paper also demonstrates that the case pack size is the most important driver for 

stacking efficiency and concludes that increasing the case pack size could increase the stacking 

efficiency. However, Broekmeulen et al. (2007) later develop a regression model to show that high 

case pack sizes tend to cause shelf space shortages. Ordering behaviors from store managers are also 

significantly affected by the case pack size. The larger the case pack size for an SKU is, the more the 

store managers tend to deviate from system generated orders (van Donselaar et al. 2006). Thus, it is 

difficult to decide the best case pack size even at the store level. 

Besides analysis that focuses on the impact of the case pack size on the retail level, some papers have 

extended such studies onto the DC level. A few papers show that pack size constraints could cause a 

bullwhip effect in the supply chain system, which consequently increases the total system cost 
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(Geary et al. 2006, Lee et al., 1997a). This is in line with our modeling that larger ship-pack size 

induces larger demand variances at the DC level. Yan et al. (2009) address the problem of whether 

large case packs should be split prior to the retail level. They consider a two-echelon supply chain 

with a single distributor and multiple retailers under a periodic review inventory system. Assuming 

retail demand from an equicorrelated multivariate Poisson distribution, Yan et al. designed a factorial 

experiment with eight parameters including the number of retailers, the average retailer demand, 

heterogeneity of the retailer demand, the spatial correlation between retailer demands, the delivery 

pack size, the inventory safety factor, the review period at the retailer level and the critical protection 

period at the distributor level. Each parameter has three values that represent low, medium and high 

levels respectively. It is worth noting that the three pack sizes experimented are 1, 6 and 24, since 

these three pack sizes are also the most common among Beta’s SKUs. Through simulation and 

ANOVA analysis, they find that of the eight parameters, the pack size has the most significant effect 

on amplifying demand variance up the supply chain, and it is also one of the most significant factors 

that result in larger stock-on-hand and back-orders at retailer level. Thus, the recommendation is to 

split packs at the distributor level. However, the paper ends on a cautionary note that soft costs such 

as breakage, pilferage and increased labor costs should be considered by management before any 

decision is made. It also suggests future research to include such financial implications, which is 

what this project does. 

III. Research Setting: A Two-Echelon Distribution System with (R,s,S) Policy 

Beta is a major retail company with over 1,500 stores in the United States that are supplied by a 

handful of regionally-located DC’s. It carries approximately 12,000 SKUs.  Each store is assigned to 

a DC; the SKUs carried by a store are replenished either from a DC or directly from the vendor (or 

supplier) by a flow-through policy. Under the flow-through policy, goods from the vendor are 

received at the DC and then directly sent to respective picking locations, from which store orders are 

fulfilled. Thus, the stores receive virtually everything from the DC.   

As the choice of ship-pack quantity is made at each DC, we focus on a single two-echelon 

distribution system as depicted in Figure 1. For Beta each DC serves between 200 and 400 stores.   
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Figure 1: Two-echelon distribution system with single warehouse and multiple retailers 

 

Each store is replenished on a regular weekly schedule. Low volume stores are replenished once a 

week on a fixed day; higher volume stores are replenished two to five times a week, also on fixed 

days.  Beta follows the ��, �, �� inventory control policy. At each review period	�, the inventory 

control system checks the Inventory Position (IP) of all Stock Keeping Units (SKUs) at the store. If IP 
 � (the reorder point ROP) for an SKU, then an order will be placed for that SKU to bring its 

inventory level to at least 	� (the order-up-to-level OUTL).  

IV. Cost Model 

1. Notation and Assumptions 

Our goal is to develop a cost model that captures the relevant cost components affected by the ship-

pack size for an SKU in the two-echelon distribution system. With such a cost model, we can 

determine the total system cost for an SKU for each choice of ship-pack, i.e., eaches, inners and 

cases. Then the ship-pack with the lowest total cost is the optimal decision. More specifically, since 

we consider a single DC and multiple non-identical retailers, we will model the expected cost for an 

SKU for a store as a function of the ship-pack quantity, then sum up the costs for all stores plus an 

additional DC inventory cost to obtain the total system cost. 

In general, there are three major categories of costs to consider based on our observation and analysis 

of the existing operations: the DC handling cost, the store handling cost and inventory-related costs.  
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• DC Handling Cost: As introduced earlier, the picking and replenishing activities at the DC 

differ substantially for full cases (FCs) and for break packs (BPs, including eaches and inners). 

Within the DC there are three types of handling: receiving, replenishment and picking.  The receiving 

activity entails the handling associated with receipt of pallet loads from the vendor into reserve 

storage at the DC; the handling cost here does not depend on the ship-pack quantity and is not 

included in the model. The DC replenishment cost is the handling cost associated with replenishing 

the picking area in the DC from the reserve storage area.  The replenishment cost for cases is much 

less than that for break packs:  the cost to replenish break packs entails not just moving smaller 

quantities, but also the need to open cases and empty their contents into the picking racks.  The DC 

picking cost is the handling cost for filling the store orders; picking break packs is less efficient on a 

per unit basis and hence more costly than picking cases.   

• Store Handling Cost: The store handling cost includes the normal receiving cost, plus any 

extra handling cost.  If an item does not fit onto the shelf during the regular shelf-stacking process, 

then it has to go to a top-tier shelf or to the backroom. Either way extra labor is needed to retrieve 

that item and put it back onto the shelf at a later time. .  

• Inventory-related Costs:  A larger ship-pack quantity will tend to result in larger order 

quantities by the stores. As with the EOQ model, a larger order quantity results in more inventory at 

the store but fewer orders and less fixed ordering cost.  A larger ship-pack quantity can also induce 

the bullwhip effect in the supply chain, as shown by Yan et al. (2006). As a larger ship-pack quantity 

makes the replenishment orders from the stores less frequent and larger, the total demand seen by the 

DC (equal to the sum of the demand processes from the stores) will be more variable; thus we expect 

the DC to need more safety stock for a fixed service level.  

More specifically, we model six cost elements for an (SKU	�, store	�) pair: (1) the DC replenishment 

cost of SKU � attributed to store	�, (2) the DC picking cost of SKU � attributed to store	�, (3) the 

normal receiving cost at store	�, (4) the extra handling cost at store	� if there are units that do not fit 

onto the shelf, (5) the average inventory cost of SKU � at store	�, and (6) the fixed order cost of SKU � for store	�. The total system cost for SKU � includes the summation of all the expected (SKU	�, 

store	�) costs across all stores together with (7) the expected DC inventory cost of SKU	�.  

Before we explain how we model each cost component, let us first introduce the notation and 

assumptions used in the model (Table 1): 
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�,�,�  forecast of demand of SKU � at store � in week � (units) ��  unit cost of SKU k ($ per unit) 

 � fixed order cost ($ per order) ���,�,���
   expected number of ship-pack �� to be shipped from DC to store � for SKU 

k in week t ��������   total number of retail stores ��,�,���
   the order quantity for store i, SKU k in week t in ship-pack �� (units) ���,�,���
   expected order quantity for store i, SKU k in week t in ship-pack �� (units) � ���,� the pack size for ship-pack sp of SKU	� (units per pack) ���!����   cost of replenishing ship-pack sp at DC ($ per case) ������  cost of picking ship-pack sp at DC ($ per line or per case), depending on sp, 

where sp = case, inner, each. A line corresponds to a store replenishment 

order.  "#$%�,�,�  order-up-to-level for store i, SKU k in week t (units)   "#$%
&'��,�  order-up-to-level for store i, SKU k (in days of demand)    (&)�ℎ�!+�,�,�  the shelf capacity for store i, SKU k in week t (units) , �,�  a random variable to denote the inventory position of SKU � at store i when 

the store replenishes the SKU (units) �" �,�   re-order point of SKU k for store i (units)1  -.  normal receiving cost at store ($ per unit) /)��&-.	  extra handling cost at store ($ per unit) /)��&#����   expected number of extra units that need to go to mid/top section or the 

backroom at store (units) ,..�� store inventory carrying cost (% per year) ,..01 DC inventory carrying cost (% per year) 201,���, � + %�   random variable to denote the demand at the DC over time interval (t, t+L) 

where L is the replenishment lead time for the DC for SKU � 2�4��56,���, � + %�   random variable to denote the demand for the system over time interval (t, 

t+L), i.e., the total demand across all stores served by the DC in our two-

echelon distribution system 7  the safety factor used in the DC 

Table 1: Notation 

Our costing model of optimal ship-pack size is based on the following assumptions:  

ASSUMPTION 1. The fixed order cost K is assumed to be constant regardless of SKUs or stores. 

However, our model can be easily modified to account for different fixed order costs if necessary. 

                                                           
1 The �" �,�is not defined for week � because it is not subject to change over time according to Beta’s practice. 
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ASSUMPTION 2. We distinguish the relevant costs for the two types of a break packs, i.e., inners 

and eaches. Thus, there are three possible values for both the DC replenishment cost and the picking 

cost. When sp = inner or each, ������ is on a per line basis. A line refers to a physical aisle where 

products are stored in the break-pack form. When we say per line basis, we assume the picking cost 

is independent of the number of ship-packs a warehouse associate takes from the picking area but 

depends on the number of orders; the physical act of going to the aisle and locating the desired item 

constitutes the major portion of the cost for one store replenishment order, while taking one item or 

two does not matter much. This assumption works well when the number of ship-packs picked, be it 

eaches or inners, is relatively small. When the number picked (eaches or inners) is large, cases will 

clearly be a superior choice. Thus, we believe this assumption is good enough. When sp = case, the 

picking cost is proportional to the number of cases picked.  

ASSUMPTION 3. Based on input from Beta, we assume that the following relationship between (&)�ℎ�!+�,�,� and "#$%�,�,� holds: 

 (&)�ℎ�!+�,�,� = 1.25 × "#$%�,�,� (1)  

It seems counter-intuitive that the shelf capacity changes with time. However, one way of 

interpreting a changing shelf capacity is that stores will allocate more space for a particular SKU 

when demand increases, for example, when a sales promotion is on. Our model can also be easily 

modified to accommodate a fixed time-independent (&)�ℎ�!+�,� for store � and SKU	�.   

Beta provided both the functional form and the coefficient of 1.25 for modeling the shelf capacity.  

Our understanding is that (1) is a rule of thumb at Beta, which represents the average relationship 

between the order-up-to level and the shelf space, averaged over stores and over items.  Beta deemed 

that this assumption was fine for our purposes, asserting that the effort required to collect store-

specific and/or SKU-specific coefficients exceeded any possible benefits.  

 

ASSUMPTION 4. We assume the inventory position (, ) of an SKU when a store makes a 

replenishment order is a random variable that follows a discrete uniform distribution with the lower 

bound being zero and the upper bound equal to the ROP. Thus, it is equally likely for ,  to be any 

integer in [0, ROP]. This assumption allows for a relatively simple way to determine the expected 

number of ship-packs	���,�,���
.  
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ASSUMPTION 5. We assume that demand within each week occurs at a constant rate; this rate can 

change from week to week. We rely on this assumption to calculate the average store inventory.   

ASSUMPTION 6. We assume the lead time for the store replenishment is zero. We only need this 

assumption for estimating the extra units that cannot fit on the shelf; this assumption results in an 

over-estimate of the extra units, as we ignore any store demand during the lead time. 

ASSUMPTION 7. The transportation cost is assumed to be constant regardless of the ship-pack 

choices; with this assumption we do not need to include transportation costs in the model. This 

assumption is based on Beta’s fixed schedule for the store deliveries and therefore a fixed cost for the 

overall transportation cost. 

2. Model Formulation 

Our model has seven cost components. Below we formulate each in detail. 

(1) Fixed Order Cost  

The expected annual fixed order cost for SKU � and store 	� is as follows: 

 >�)�
	"�
��	.��� = � ?@×0A,B,CD�A,B,CEF , (2)  

where	
�,�,� is weekly demand, and 	�G �,�,��� 	is the expected order quantity. We annualize this cost by 

multiplying by 52.  

To compute	�G �,�,���
, we need to first determine 	�H �,�,���

, the expected number of ship-pack �� to be 

shipped from the DC to each store, since	�G �,�,��� =	���,�,��� × � ���,�. We estimate this quantity by the 

following expression:   

 

 ���,�,��� = /�I"#$%�,�,� − , �,�� ���,� 	 K�, (3)  

where L. M	is the integer ceiling function operator.  In other words, it equals the expected number of 

ship-packs to bring the inventory position up to at least the order up to level		"#$%�,�,�..  Here the 

expectation is taken over the possible values for the inventory position at the time of order. By 
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Assumption 4, we assume that the , �,� at the time of the order follows a discrete uniform 

distribution in the interval [0,	�" �,�].  "#$%�,�,� is calculated based on "#$%
&'��,�.  More 

specifically, for store i, SKU k and week t, 

 "#$%�,�,� = NOPQ0R4�A,BS ∗ 
�,�,�. (4)  

(2) DC Replenishment Cost  

The total replenishment cost attributed to store � is the replenishment cost per case multiplied by the 

total number of cases replenished at the DC attributed to store	�. 
 

 DC	Replenishment	Cost	 = 	���!���� 52 × 
�,�,�� �1R�5,�  (5)  

 

(3) DC Picking Cost 

When the ship-pack is each or inner, the picking cost is equal to the picking cost per line multiplied 

by the number of orders for the SKU for the store, whereas when the ship-pack is case, the picking 

cost is simply the picking cost per case times the total number of cases picked for the SKU for the 

store. 

 

 

DC	Picking	Cost	
= ������ ×

efg
fh52 × 
�,�,����,�,��� , �+	�� = �&�ℎ	��	�����
52 × 
�,�,��&�� ,								�+	�� = �&��																			 

(6)  

 

(4) Store Receiving Cost 

For each unit received at the store, a normal store receiving cost is incurred. So the expected normal 

receiving cost is the normal handling cost multiplied by the annual demand. 
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 Store	Receiving	Cost	 = -. × 52 × 
�,�,� (7)  

 

(5) Store Extra Handling Cost 

The store extra handling cost is equal to the extra handling cost per item times the expected number 

of extra units times the expected number of orders per year. 

 Store	Extra	Handling	Cost	 = /)��&-. × 	/�/)��&#����� × 52 × 
�,�,����,�,���  (8)  

 

To determine the expected number of extra units that do not fit onto the shelf during regular shelf-

stacking process, i.e.,	/�/)��&#�����, we need to know the shelf space allocated for the SKU at the 

stores. The shelf space is estimated as described in the Assumption 3.  

 

/�/)��&#����� = /qmaxq0, , �,� + ��,�,��� −(&)�ℎ�!+�,�,�ss 
= / tmax t0, , �,� + uNOPQA,B,CvwxA,ByxDEF,B	 z × � ���,� −(&)�ℎ�!+�,�,�{{  

(9)  

 

Again , �,� follows a discrete uniform distribution in the interval [0,�" ]. 

(6) Store Inventory Cost 

To derive the expected inventory level at a store, let us first illustrate the store inventory dynamics 

with a constant demand rate in Figure 2.  For simplicity, the subscripts are dropped in the figure. We 

use , | and , @ to represent the inventory position at the two successive store replenishment orders. 

The shaded area is the store inventory.   
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Figure 2: Store inventory illustration 

The expected store inventory is 

 

 

/������	��}�����'� = /�minq, �,�| , , �,�@ s + |@ t, �,�| + uNOPQA,B,CvwxA,B~yxDEF,B	 z ×
� ���,� −minq, �,�| , , �,�@ s{ ) 

= /�|@minq, �,�| , , �,�@ s + |@ t, �,�| + uNOPQA,B,CvwxA,B~yxDEF,B	 z × � ���,�{� . 
 

(10)  

Then	
 

 

E�Store	Inventory	Cost�= ,..�� ×	��
× / �12minq, �,�| , , �,�@ s + 12 q, �,�| + ��,�,��� s� 								
= ,..�� ×	�� × �12���,�,��� + 14�" �,�
+ 2�" �,�� + 3�" �,�@ + �" �,�12q�" �,� + 1s@ � 

(11)  
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Appendix 1 provides details for the derivation of the above equation. 

(7) DC Inventory Cost 

We model the safety stock needed by the DC as being proportional to the standard deviation of the 

lead-time demand, namely: 

 7��&��201,���, � + %�. (12)  

 

To find �&�q201,���, � + %�s, we use the following inventory balance equation. 

 

201,���, � + %� = 2�4��56,���, � + %� + � , �,��� + %���6y���5
��|

− � , �,������6y���5
��| 	

(13)  

That is, the demand seen by the DC over a time interval equals the demand at all of the stores over 

this interval plus any change in the inventory position at the stores between time t and time t+L.   

To simplify the equation, let 

 , ��� = � , �,������6y���5
��|  (14)  

 

We use the above equation to approximate the variability of demand over the lead time L at the DC. 

Namely, we develop the approximation from: 

 �&��201,�� = �&��2�4��56,�� + �&��, �� + %� − , ����	 (15)  

 

Here we assume the system demand over the lead time is independent of the change in ,  for the 

stores. It is reasonable because % is likely to be much larger than the replenishment frequency at the 

stores. For Beta L is typically in the range of 2 to 12 weeks. Since we can approximate �&��2�4��56� 
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from their purchase projections, we assume it is known and given. This leaves us the job to compute 

the variance of the difference in	, . We take the following steps: 

 

�&�q, �� + %� − , ���s
= �&�q, �� + %�s + �&�q, ���s − 2.�}q, �� + %�, , ���s 

≅ 2�&��, ����. 
(16)  

 

Here we assume that , �� + %� is independent of , ���. The larger the lead time is, the more 

accurate the above approximation is2. Moreover, we assume that at each store the inventory position , � is uniformly distributed between (),	) + 	��,�,���
) for some value of x; we don’t need to specify x as 

it does not affect our model. We also assume that the inventory positions for any pair of stores are 

independent of each other. 

Thus, we have  

 �&�q, ���s = ∑�&� �, �,����� = ∑D�A,B,CEF �
|@ . (17)  

Recall that ���,�,���
 is the expected order quantity for store i, SKU k in week t in ship-pack �� (table 1). 

Hence,  

 �&�q201,�s ≅ �&�q2�4��56,�s + 2∑���,�,��� @
12  (18)  

We see for (18) a realization of the bullwhip, as the demand variability seen by the DC is an 

amplification of that at the stores; the extent of the bullwhip grows with the order quantities at the 

stores. 

In summary, the DC inventory cost is given by the following equation: 

                                                           
2 If  , �� + %� were positively correlated with , ���,	the approximation in equation (16) results in an upper bound 

on.	�&�q, �� + %� − , ���s, which then yields an upper bound on the DC’s inventory costs.  
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2._,�}.���	�,�����
= ,..01 ×	�� × 	7 × ��&�q2�4��56,�s + ∑���,�,��� @

6  

(19)  

 

(8) Total System Cost 

The expected annualized cost for week t for an SKU for store k is the summation of all the cost 

components described in equations (1) -(13): 

 

 

											.����,�,����� = � ?@×0A,B,CD�A,B,CEF  

  +	���!���� ?@×0A,B,C1R�5   

  +	������ × �
?@×0A,B,CD�A,B,CEF , �+	�� = �&�ℎ	��	�����
?@×0A,B,C1R�5 , �+	�� = �&��																			  

  +	,..�� ×	�� × /�|@minq, �,�| , , �,�@ s + |@ q, �,�| + ��,�,��� s�  
  +	-. × 52 × 
�,�,�  
  +	/)��&-. × 	/�/)��&#����� × ?@×0A,B,CD�A,B,CEF  , 

 

(20)  

Where 

 ���,�,��� =	���,�,��� × � �, (21)  

 ���,�,��� = /��NOPQA,B,CvwxA,ByxD ��, (22)  

and 

 /�/)��&#����� = /�maxq0, , �,�,� +���,�,��� −(&)�ℎ�!+�,�,�s� (23)  
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Finally, the annualized total system cost in week � is the summation of the expected cost of all stores 

plus a DC inventory cost, i.e., 

 Total Cost = 2._,�}.����,����� 	+ ∑ .����,�,�������6y���5��| , (24)  

where numStore denotes the total number of stores the DC serves.	
With the objective function in place, we can then formulate the following minimization problem. 

 

(,��� ∈ {�&�ℎ, �����, �&��}			$��&!	����
= 2._,�}.����,����� 	+ � .����,�,�������6y���5

��|  

(25)  

 

The optimal solution to the above problem is valid for only week	�. When a multiple-week planning 

period is in question, we can extend the problem into the following form. Let ������� be the 

number of weeks in the planning period.	We minimize the average total annual cost. 

 (,��� ∈ {�&�ℎ, �����, �&��}		∑ �2.w������B,C���� + ∑ .����,�,���6y���5��| ���� ��6¡55���| �������  (26)  

	
That is, we find the optimal ship-pack that is the most economic decision for the entire planning 

period from week 1 to week	�������.In the context of Beta, their desire was to determine the best 

ship-pack quantity for each SKU and for each DC for a planning period of up to 26 weeks; they 

would then revisit this decision two to four times a year. 

Additional complexity arises when we allow multiple ship-pack changes during the planning period. 

For example, if we allow the warehouse to change its ship-pack each week, then the solution will be 

a vector of length	�������, whose elements are the optimal ship-pack corresponding to each week. 

However, due to the physical and practical constraints in the warehouse, it is more appropriate to 

limit the number of ship-pack changes throughout the planning period. The algorithm that finds such 

a solution will be discussed in more detail in the results section. 

V. Data and Results 
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Beta provided us with the required cost parameters, including the DC and store handling rates, the 

fixed order cost and the inventory carrying cost. We also obtained a sample dataset for SKUs from 

three product families for the set of stores supplied by one DC.  Before we show the model output, let 

us first have a look at the data, which will help us better understand the results presented later. 

The sample dataset contains a total of 529 SKUs, three of which have a case quantity of one. Beta 

terms such circumstance “case of 1”, and no ship-pack analysis is necessary. Thus, we are effectively 

dealing with 526 SKUs. Moreover, 369 out of the 526 SKUs have an inner quantity of one, meaning 

there is no inner pack for these SKUs; hence the ship-pack quantity choice is between an each and a 

case. 

The sample data includes 52 weeks of sales forecasts. We have identified three representative annual 

demand patterns. Figure 3(a) and 3(b) exhibit seasonal demands, with single and multiple peaks 

respectively, whereas Figure 3(c) shows relatively stable demand throughout the entire year. In each 

case we plot the total demand forecast for a single SKU, cumulated over all the stores that carry the 

SKU in the sample.  In total, about one fifth of the total SKUs in our data set exhibit the single peak 

pattern; only 3% exhibits the double peak pattern; and the remaining 77% has relatively stable 

weekly sales forecasts. 

 

Figure 3(a): Weekly sales forecast for SKU 01 

 

Figure 3(b): Weekly sales forecast for SKU 02 
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Figure 3(c): Weekly sales forecast for SKU 03 

 

The demand variance across stores is large, but this is not surprising because there are low-, medium- 

and high-volume stores for the major retailer. A closer look reveals that the coefficient of variation 

(CV) of sales volume across stores for the given SKUs vary from 0.3 to 3.5. Figures 4(a) and 4(b) 

show the frequency histograms of the annual demands by stores for two SKUs. Both graphs show 

that store annual demands vary greatly. In Figure 4(a), the number of low-volume stores (< 30 units 

per year) is roughly equal to that of the mid-volume (between 30 and 60 units per year) ones. There 

are two stores having extremely large annual demand such that the bar shows in the “more” column 

and a handful of stores with annual demand greater than 100 units. In Figure 4(b), about half of the 

stores are in the mid-volume range, one third are low-volume while the remaining one sixth are high-

volume stores.  

      

(a) SKU 1      (b)  SKU 2 

Figure 4: Distribution of annual demand by stores  
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As mentioned earlier, we consider two types of break-packs (inners and eaches).  There is some 

uncertainty about the DC replenishment cost for inners, relative to that for eaches and for cases.  

Thus, we perform a sensitivity analysis on this assumed cost. Since the replenishment costs for 

eaches and cases, given by Beta, are $0.7789 per case and $0.1716 per case, respectively, we 

consider three values for that for inners: the first is exactly in the middle between that for eaches and 

that for cases (0.4753 = 0.7789 − ¥.SS¦§v¥.|S|¨
@ ), the second cost is closer to that for eaches 

(0.6271 = 0.7789 − ¥.SS¦§v¥.|S|¨
© ), and the last cost is equivalent to that for eaches itself, i.e., 

$0.7789 per case.  

In Table 2 we report the total cost savings compared to the cost from the current ship-pack choices 

for a 52 week period for roughly 350 stores for 526 SKUs.  We present the total cost savings as a 

percentage in the following three scenarios: (1) restricting one ship-pack change at week 1; (2) 

restricting to one ship-pack change in any week in the planning horizon; and (3) no restriction at all.  

 

Inner 

replenishment cost 

($ per case) 

Percentage Saved 

One Change at 

week 1 

One change in any 

week 
No Restriction 

0.4753 0.32% 0.32% 0.34% 

0.6271 0.28% 0.29% 0.30% 

0.7789 0.35% 0.35% 0.37% 

Table 2: Cost savings in percentage for three inner replenishment costs 

 

From this table, we see that by implementing changes in ship-pack sizes, the retailer can expect a 

cost reduction of between 0.3% to 0.4%.   

Also, the savings percentages are not very sensitive to restrictions on ship-pack change. Basically 

one can save 0.02% more if no restrictions are enforced on when and how often to change the ship-

pack, and almost zero improvement if we relax only the timing constraint. Since coordinating these 

changes for a single point in time is by far the most practical, we will concentrate our analysis on 

results for which we limit the ship-pack change to the beginning of the planning period from now on.  
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Table 3 summarizes the ship-pack change recommendations with one change allowed at week 1, 

namely the changes that provide the cost savings in column 2 of Table 2.  

 

 

 

 

 

Inner replenishment cost $ per 

case 
0.4753 0.6271 0.7789 

Each to Each 383 387 391 

Inner to Inner 102 98 88 

Case to Case 10 10 10 

subtotal 495 (94%) 495(94%) 489(93%) 

Case to Each 3 3 3 

Case to Inner 0 0 0 

Each to Case 5 6 6 

Each to Inner 15 10 6 

Inner to Case 0 0 1 

Inner to Each 8 12 21 

subtotal 31(6%) 31(6%) 37(7%) 

Total 526 526 526 

Table 3: Summary of ship-pack change recommendations for three inner replenishment costs 

 

In short, it shows that for 94% of the 526 SKUs, Beta is already operating with the optimal ship-pack, 

whereas only 6% of the SKUs, or slightly more than 30 SKUs, require some sort of action.  A closer 

look at the results reveals that out of the 30-plus changes required, changing just half of those SKUs 

will provide 80% of the cost savings estimated in Table 2.  This means that the cost savings are not 

only tangible, but also quite doable involving a modest set of changes.  
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The effects of the DC replenishment costs for inners are also shown from Table 3.  As the cost of 

replenishing inners increases, the number of SKUs recommended for eaches (from each to each, or 

inner to each) and for cases increases (from each to case, or inner to case), while that recommended 

for inners (from inner to inner, or each to inner) decreases.   

The next question is: Who benefits most from the optimized ship-pack, the retail stores, the DC, or 

inventory-related operations?   In the context of Beta this was a very important question as the 

implementation of any changes would impact three organizations: Distribution, Store Operations, and 

Supply Chain, each with their own performance measures. From our model analysis, we can group 

costs into three major categories (see equations 20-24):  distribution costs (the DC replenishment cost 

and DC picking cost), store costs (store-level handling and extra handling cost), and inventory costs 

(store and DC inventory costs). We analyze the cost saving from the three major categories of cost in 

our total cost function, as shown in equation (24).  The results are shown in Figure 5, where the 

vertical bars show the absolute savings for each cost component (exact figures blinded) while the 

diamond dot shows the percentages. The answer seems clear.  The DC saves the most from ship-pack 

optimization.  In our calculation, the DC-level cost (Distribution) is reduced by 2.9%, compared to 

only 0.08% and 0.03% savings for store costs and inventory-related costs, respectively. 

 

Figure 5: Savings breakdown for inner replenishment cost = $0.4753 

 

VI. Extension: Calculating Optimal Inner-pack Size 

Having calculated the potential cost saving from changing ship-pack size, we explore the possibility 

of further optimizing on the inner-pack sizes. Finding an optimal case configuration is motivated by 

two factors. First, we observe there is a lack of inner packs for many SKUs and hence maybe an 
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opportunity. Second, Beta might negotiate with vendors to modify their case configuration to include 

a more economical inner pack, e.g., change the size of an existing inner from (say) 6 units to 8 units. 

In effect, for each SKU we desire to find the best size for the inner for a given case quantity. 

 

We modify our Warehouse Ship-Pack Cost Model into an Optimal Case Configuration Model. The 

new model determines the best ship pack size that the DC should replenish its stores. We assume a 

given case quantity and set it as the upper limit of the pack size, and the lower limit is naturally one, 

an each. Moreover, we also assume that the inner need be a divisor of the case quantity.  

 

The steps of finding the optimal case configuration are described below (we drop the SKU index for 

ease of presentation). 

1. Given a case quantity	� �1R�5, we can find all the divisors, e.g. if the case quantity is 12, 

then the possible inner quantities are 2, 3, 4 and 6, plus an each of size 1. 

2. Based on the inner quantity, we approximate the inner replenishment cost by linear 

extrapolation between each replenishment cost and case replenishment cost. The exact formula used 

in the model is shown below.    	
 ���!�����5� = 	���!��5R1ª 	t1 − � ����5� − 1� �1R�5 − 1 { + 	���!��1R�5 ∗ � ����5� − 1� �1R�5 − 1 	 (27)  

 

3. We calculate the annual costs for all possible inner quantities; the smallest one is the 

preferred inner quantity. 

 

For some SKUs, this analysis can help to identify a preferred inner –size.  We show one such 

example in Figure 6 for a certain SKU.  
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Figure 6: Annual cost over possible inner pack quantities  

 

Here we obtain a nice (discrete) convex curve for this SKU. In this example, an inner pack of 12 is 

the optimal choice. In fact, it reduces the annual cost by 3.44% from the current ship-pack of 24 units. 

 

However, not every SKU has such a strictly convex shape. Figure 7 shows, for another SKU, a 

decreasing trend over the feasible range. In this example the best ship-pack is a case of 12 units; 

actually we might be better off by increasing the case pack size. 3 

 

Figure 7: Annual cost over possible inner pack quantities for SKU 05 

 

We run the Optimal Case Configuration Model for all 526 SKUs and find that 171 SKUs would 

benefit from a more economical inner pack. By changing to the optimal inner packs, the total cost of 

these 171 SKUs is reduced by 1.30%. For these 171 SKUs, the distribution of the optimal inner pack 

                                                           
3 One could easily modify the Optimal Case Configuration Model to consider different case-size quantities.  We 
have not done this and leave it for further research.  One complication is that changing case quantities can be much 
more expensive than changing the inner-size, due to the construction and staging of applet loads – which depend 
critically on the size and shape of a case. 
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quantity (IPQ) against the current IPQ is shown In Figure 8. Clearly an IPQ of 2 or 4 is the most 

popular choice according to the results (the two highest bars in Figure 8). 

 

 

Figure 8: The distribution of optimal IPQ against current IPQ. 

 

 

 

VII. Discussion and Conclusion 

In this collaborative project with Beta, we establish a cost model that can be used to optimize 

warehouse ship-pack in the two-echelon distribution system. The three major contributions of this 

model are the inclusion of store-specific demands, the inclusion of multiple weekly forecasts, and the 

consideration of extra-handling costs at store level for larger pack size. We determine the optimal 

ship-pack for the DC given weekly forecasts of store-specific demands over a multi-week planning 

horizon.    Implementation-wise, we have developed for Beta a decision tool that connects to their 

Microsoft Access database, and can be readily run for any planning period and any DC with its 

assigned stores. 

 

To combat the large heterogeneity of sales volume across stores, Beta is also considering “dual-

slotting” in their warehouses.  That is, the DC would set up two picking modules (or slots), instead of 

the current one picking module, for an SKU; one module would store a larger ship-pack (ie, a case or 

49

1

6

2 3

9

1
4

10

42

3
12 1 0

2
5

3

10

2 1
3 2 1

3
5

0

10

20

30

40

50

60

No Inner

Pack

3 4 6 8 10 12 24

Fr
e

q
u

e
n

cy

Current inner pack quantity

Opt IPQ=2

Opt IPQ=3

Opt IPQ=4

Opt IPQ=5

Opt IPQ=6

Opt IPQ=8

Opt IPQ=9

Opt IPQ=12



25 
 

inner), while the other would store a smaller ship-pack (ie. an inner or each). We therefore have built 

into our model the capability to determine the best two ship-packs the company should choose for 

dual-slotting. In fact, with three choices available, there are only three possible combinations. For 

each of the three combinations, the algorithm will determine for each store and each week the 

optimal ship-pack and calculate the corresponding total cost. Then the three values are compared and 

the best combination is selected.  Our computation results indicate that compared with optimal 

single-slotting, optimal dual-slotting can further decrease total costs by another 0.3% - 0.5%. 

 

Two major assumptions in our model are that the demand rate is constant and known, and that the 

Inventory Position (IP) at stores at the time of order is uniformly distributed. For the latter 

assumption we have examined the actual distribution of the IP, and found that for many SKUs a 

geometric or triangular distribution might provide a better empirical fit. Nevertheless, in terms of 

choosing the optimal SPQ, we found the impact from using an alternate distribution was minimal so 

we adhered to uniform distribution for simplicity. 

 

Some future research questions are to determine the impact of  stochastic demand on the ship-pack 

choice, to incorporate the capital investment of ship-pack changes as well as the capital investment of 

the dual-slotting, to examine more closely the costs associated with changes to the case configuration, 

and to incorporate  DC replenishment costs and store receipt costs differentiated by SKU. 

  

In summary, in this collaborative project with Beta we establish a cost model that can be used to 

optimize warehouse ship-pack in a two-echelon distribution system. By exercising the model for one 

regional DC, we find that Beta can reduce its distribution operating and inventory holding costs by 

0.3% to 0.4%.  To get some perspective on the potential, consider an example. Suppose the retailer 

has annual revenues of $10 billion, with inventory turns of ten times a year. Then we estimate the 

annual inventory holding and distribution handling costs to be in the range of $100 to 200 million. A 

0.3% reduction in distribution and inventory holding costs translates to an annual savings of 

$300,000 to $600,000. This savings can be further enhanced by the possible consideration of dual-

slotting and case configuration. 
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Appendix 1: Derivation of Equation (11) 

 

					/ t|@minq, �,�| , , �,�@ s + |
@ q, �,�| + ��,�,��� s{ = / �|@minq, �,�| , , �,�@ s� + / �|@ , �,�| � + /(|@��,�,��� )  

Clearly, /q, �,�| s = «NxA,B
©  and / �|@��,�,��� � = |

@���,�,���
. 

Since , �,�|  and  , �,�@  both follow discrete uniform distribution in the interval [0, �" �,�], we can 

derive a formula which involves only the �" �,�. We assume the two variables are independent, so 

there are all together q�" �,� + 1s × (�" �,� + 1)  possible pairs for q, �,�| , , �,�@ s . Out of the 

q�" �,� + 1s@pairs, only one pair will have the minimum value as �" �,� , i.e. when both		, �,�|  

and		, �,�|  are equal to �" �,�, and there are three pairs with the minimum value as (�" �,� − 1), five 

pairs with the minimum value as (�" �,� − 2), and so on. In summary, there are (2� + 1) pairs with 

the minimum value as	(�" �,� − �). Using the definition of the expectation, i.e.,	/()) = )� ��®()�), 
we can calculate the minimum of q, �,�| , , �,�@ s as follows: 

/ �|@minq, �,�| , , �,�@ s� = |
@�∑ (@�¯|)q«NxA,Bv�s°±²A,BA³´

q«NxA,B¯|s� � = @«NxA,Bµ ¯�«NxA,B� ¯«NxA,B
|@q«NxA,B¯|s�   

Thus,  

/ �12minq, �,�| , , �,�@ s +
1
2 q, �,�| + ��,�,��� s� 

								= 1
2���,�,��� + 1

4�" �,� +
2�" �,�� + 3�" �,�@ + �" �,�

12q�" �,� + 1s@  


