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Abstract: An improved approach to automatic sketching of 

planar kinematic chain from its adjacent matrix is proposed in this 

paper. The basic loops of the graph, which correspond to the 

adjacent matrix of kinematic chain, are derived by means of 

breadth-first spanning tree, then these loops are standardized and 

configured according to some steps. Finally, the graph of 

kinematic chain is automatically sketched in terms of the 

configured loops. In addition, the comparison between the 

proposed approach and existing ones is made. Through some 

application examples, its effectiveness as well as completeness is 

verified, the corresponding computer prototype system is also 

implemented. 

I N T R O D U C T I O N  

In the mechanical creative design (Johnson and Ray, 1978) 

field, various methodologies (F. Buchsbaum and F. Freudenstein, 

1970; R. Ravisankar and T. S. Mruthyunjava, 1985; H. S. Yan, 
had been proposed for the computerization and 
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automatization of whole design process. However, the results of 

these methods, which are usually presented in numbers or symbols, 

are not visible for designers. As a result, designers have to take 

great pains to sketch the mechanisms manually: This problem is 

especially profound in the type synthesis process of higher order 

mechanisms, in which there are a large number of candidate 

solutions. Therefore, it is of great significance to develop an 

automated approach to mechanism sketching, which will enable 

designer to systematically visualize the link-joint relationship of 

the enumerated candidate mechanisms and improve the efficiency 

of computer-aided mechanisms design. 

In 1967, Freudenstein and Dobransky began to research on 

this problem, whereas their routine did not address the issue of 

non-crossing of links. After that, Woo (1972), Olsen et al. (1985), 

Hoetzal and Chieng (1990), Belfiore and Pennestri (1994) made 

some further study, while all those approaches proposed had 

respective defects, which limited the application in mechanism 

type synthesis. In 1996, Mauskar and Krishnamurty developed a 
new method, through which mechanisms with more than ten links Copyright © 2002 by ASME 

ttp://www.asme.org/about-asme/terms-of-use



Downl
and single or multi degree of freedom can be sketched successfully 

based on loop configuration. However, the way to generate loops 

and determine the relations between loops in their approach is too 

complex. In this paper, the idea of loop configuration is referred 

and an improved simple approach to generate and rearrange loops 

is proposed to improve the efficiency and completeness of 

automatic sketching. 

PROCEDURE OF THE PROPOSED APPROACH 

The goal of type synthesis process is to get the basic 

kinematic chains and the corresponding mechanisms that satisfy 

topological requirements, as well as the determination of distinct 

inputs, outputs and joint type based on functional requirements. 

Different methods had been proposed to realize the automation 

and computerization of type synthesis process, the results of them 

are usually presented by link-link adjacent matrix, which well 

indicate the inter-relationship between links of mechanism, or 

numerical representation of adjacent matrix such as standard code 

(Shin and Krishnamurt, 1994). To make these results visible, graph 

theory (Gibbons and Alan, 1985) is widely adopted. The approach 

proposed by Mauskar and Krishnamurty was based on 

configuration of independent loops, which can fully express the 

topological information of mechanism, and the kernel of it was the 

generation of loops and determination of the inter-relationship 

between loops. In this paper, the improved approach is also based 

on loop configuration. However, independent loops are generated 

from the corresponding Breadth-First Spanning Tree (BFST for 

short) of adjacent matrix, in addition, the inter-relationship 

between loops is derived from several simple rules. The procedure 

of the proposed approach is shown in Fig. 1. 

PRINCIPLE OF THE PROPOSED APPROACH 

Generation of Basic Loops 

According to the adjacent matrix Mnxn, an arbitrary link is 

selected as the root of spanning tree, then a BFST, in which nodes 

denote links and branches denote joints, is attained based on 

breadth-first algorithm. Let T be a BFST and e be an edge in T ,  

the cotree of T. then according to the graph theory, T and e form a 

loop and it is independent of other loops generated in the same 

way. Therefore, the basic loops of mechanism can be derived from 

corresponding adjacent matrix. For convenience, we number the 
branches in BFST according to principle of breadth-first, edges in 
2
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Fig.l  Flow chart of the proposed approach based on 

loop configuration 

the cotree are numbered after the branches according to the 

corresponding loop. In addition, we assume the direction of loop is 

counter-clockwise. For example, the kinermatic chain with ten 

links and thirteen joints is shown in Fig. 2(a), the corresponding 

adjacent matrix is shown in Fig. 2(b). Take link 1 as the root of 

BFST, we can get the corresponding BFST shown in Fig. 2(c), Fig. 

2(d) shows the four independent loops, which form the basis for 

mechanism sketches. 
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(a) Kinermatic chain 
(Standard Code-2570 10652896) 
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(b) Link-link adjacent matrix 
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(c) BFST whose root node is node I 

node sequence edge sequence 

Li: [1 7 2 9] [1 3 10 2] 

Lz: [9 5 10 6] [5 9 11 6] 

L:~: [1 7 8 3 10 5 9] [1 4 7 12 9 5 2] 

L 4 : [ 1  7 8 4 10 5 9] [1 4 8 13 9 5 2] 

(d) Independent loops 

Fig.2 Generation of basic loops of a ten bar mechanism with 

one degree of freedom 

Standardization of Basic Loops 

Definition 1: If the node sequence of a basic loop does not 

contain the root node of corresponding BFST, then this basic loop 

is called local loop. On the contrary, a basic loop with a node 

sequence that contains the root node is called global loop. 

Definition 2: If a basic loop is a local one, there must be 

one global loop that contains most common edges in it. Use other 

edges in the local loop to replace those common edges in the 

global loop, then the new loop formed is used to take the place of 

original local loop, this operation is called the standardization of 

local loop and the loop generated is called the standardized loop of 
original local one. 
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Since basic loops are independent from each other, the 

standardized loops are still independent from each other. 

Obviously, the standardization operation keeps the global loop 

unaltered. 

According to the loop configuration idea of Mauskar and 

Krishnamurty, it is the necessary condition of non-crossing 

sketching that all the loops must have a common node. The 

standardized loops are independent from each other, which also 

contain the root node of BFST, thereby the conditions of 

non-crossing sketching is satisfied. In order to decrease the 

complexity of computation, the less the number of local loops is, 

the better is the result. Therefore, before the loop configuration 

process, the corresponding local loops number of each node, when 

it is regarded as the root node of BFST, is calculated, and then all 

the nodes are reordered according to them and form a priority 

sequence of nodes. Note that the nodes whose degree is bigger 

than 2 may cause the standardized loops to have no common edge, 

so these nodes are deleted from the priority sequence of nodes 

firstly. 

For example, the loop L2 in the four basic loops shown in 

Figure 2(d) is a local loop; it has common edges (e5 and e9) to loop 

L3. After standardization operation, the four loops are LI: [13 10 

2], L 2 : [ 1 4 7 1 2 1 1 6 2 ] ,  L 3 : [ 1 4 7 1 2 9 5 2 ] ,  L4: [I 4 8 1 3 9 5 2 ] .  

Loop Configuration of Standardized Loops 

Loop configuration is a symbolic representation of the 

relationship between the independent loops in a mechanism. The 

relationship that loop L i is exterior to loop Lj can be expressed 

symbolically as Lj<Lj, and such relationship can be extended to 

mechanism with any number of loops. Let Le denote the most 

exterior loop current, then the relationship between the 

independent loops can be derived according to the following steps. 

Step 1: Select a node from the priority sequence of nodes 

as the root node of BFST, and then generate the corresponding 

standardized loops. 

Step 2: Select the loop that has the minimum number of 

edges as the first loop, viz. this loop is the most interior loop. 

Step 3: Search a loop from the loops that have been 

assigned a definite relationship with other loops, if Li has the 

maximum number of common edges to Le, then Le< Li and Lj 

becomes the new Le. If there are some loops that have the same 

maximum number of common edges to Le, select a loop whose 
3dge number is smaller than other ones as the new L~ Continue 3 Copyright © 2002 by ASME 
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this step until all the standardized loops have definite relation with 

each other. 

Step 4: ifLj< Li, mark the all the edges that in Lj but not in 

L~, then check whether the outer loops contain those edges or not. 

If yes, there must be cross between this group of standardized 

loops, go back to step l; Otherwise, the loop configuration attained 

in step 3 can be used to sketch non-crossing mechanism, stop. 

Step 3 can determine the relation between standardized loops. 

According to the character of BFST, the common edges between 

two non-crossing loops only locate at the two ends of loops, i.e. 

the edges that near the root node. Therefore, we can make use of 

the depth information of common edges and put the loop that have 

the smaller depth of common edge to internal loop. Therefore, the 

steps of loop configuration are reasonable. 

Step 4 is used to detect whether there are cross between loops. 

If Li<Lj< Lk and Lk contain edges that in Lj but not in Lj, it's clear 

that Li and Lk cross each other. 

For example, the loop configuration result of the four 

standardized loops shown in Fig. 2(d) is Lj <L2 <L3 <L4, and there 

is no cross between these four loops. 

Automatic Sketching According to Loop Configuration Result 

According to the result of loop configuration, it is easy to 

sketch the mechanism. Mauskar and Krishnamurty had discussed 

this method in detail, so it is omitted here. In their paper, they also 

addressed three potential issues, i.e. self-crossing, inter-loop 

crossing and link self-crossing. In the software system named 

SKETCH described in Section 6, links, joins can be dynamically 

draggled, and such problems are easy to be avoided. 

S O M E  A N A L Y S I S  A N D  D I S C U S S I O N  

Comparing with the approach proposed by Mauskar and 

Krishnamurty, the improved approach has the following 

advantages: 

(1) Optimal strategy is adopted in this improved approach 

and the complexity of calculation is decreased. In the paper of 

Mauskar and Krishnamurty, heuristics was used. A joint was taken 

as the common joint at random to construct incidence matrix, 

oriented loop matrix, and then to get the corresponding loop 

configuration result, if cross exists between loops, try another joint 

again. Obviously there are some redundant loop generation and 

configuration whose mean number is n/2-1, in which n denotes the 
number of independent loops. Furthermore, in the process of 4 
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identify the cross between loops, two rules are used to check every 

three loops, so the complexity of this process is 2 C n 3 and the 

complexity of their approach is O(n4). In this paper, however, 

priority sequence of nodes is attained firstly and some redundant 

calculations are avoided. Mostly, only one time of loop generation 

and configuration is enough. In addition, the complexity of 

cross-identifying process is C ~ ,  so the complexity of the 

approach in this paper is O(rtt 3) and greatly improved the 

computing efficiency, the comparison of computing complexity 

between the two algorithms can be seen in Fig. 3. 

lOOO 

8oo 

600 
E 

,E 4OO 

200 
/ New 

2 3 4 5 6 
Number of loops n 

Fig.3 The comparison of computing complexity between the two 

algorithms 

(2) The proposed approach has better completeness. In the 

paper of Mauskar and Krishnamurty, heuristics rather than definite 

rules were adopted in loop calculation of those loops that do not 

contain the common joint, i.e. the local loop defined in this paper. 

It works well when the number of independent loops is small; 

however, it may take the valid candidate groups of loops as invalid 

when the number of independent loops becomes lager. Such 

problem can be solved successfully with the standardization 

operation in this paper. As a result, the completeness of the 

improved approach is improved. 

In next section, an example is given to show the advantages 

of our approach. 

A N  E X A M P L E  O F  A U T O M A T I C  S K E T C H I N G  

The basic steps involved in the improved algorithm are 

illustrated with the aid of a 12 bar one degree of freedom 

mechanism. The input is its standard code 1313297,36832270, and 
the corresponding link-link adjacent matrix is shown in Fig. 4(a). 
Copyright © 2002 by ASME 
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(1) Take each node as the root node to construct the 

corresponding Breadth-First Spanning Trees, then count the 

number of local loops in each tree, and then a priority sequence of 

nodes in sort ascending is attained according to these numbers. In 

this example, priority sequence of  nodes is {2, 3 ,8 ,10 ,12 ,  4, 5, 6, 

7, 11, l, 9}, corresponding numbers of  local loops is {0, 0, 0, 0, 0, 

1, I, 1, 1, 1, 2, 2}. After delete the node whose degree is more than 

two, the priority sequence of  nodes at last is {2, 3, 4, 5, 6, 7, 1 }. 

(2) Take a node from the priority sequence above to generate 

basic loops. In this example, the BFST whose root node is node 2 

should be considered first, because the number of  local loops in 

this tree is zero, the basic independent loops in this tree do not 

need standardization operation. In order to illustrate the generality 

of the improved approach, node l,the corresponding local loops 

number of  which is two, is taken as the root node, the result of  

loop generation is Li[ 3 8 1 2 5 ] ,  L2[ 5 9 1 3 6 ] ,  L3[ 1 3 8 1 4 7 2 ] ,  

L4[I 3 8 1 5 9 5 2 ] ,  Ls[13 8 1 1 1 6 1 0 7 2 ] ,  Fig. 4(b) shows the 

Breadth-First Spanning Tree with the root node 1. 

(3) The standardization of  the five basic independent loops. 

In this example, the result of  standardization operation is: L1 [ 14  

1 2 1 4 7 2 ] , L 2 [ 1 3 8 1 5 1 3 6 2 ] , L 3 [ 1 3 8 1 4 7 2 ] , L 4 [ 1 3 8 1 5 9 5  

2], L5[I 3 8 1 1 1 6 1 0 7 2 ] .  

(4) Loop configuration. If any cross between standardized 

loops is detected, go back to step 2, take next node as root node, 

and continue. In this example, the result of  loop configuration is 

LI< L3 <L5<L4 <L2. In addition, there is no cross between all the 

standardized loops from L1 to L2. 

(5) Sketch the mechanism. From the result of  loop 

configuration above, the mechanism is sketched as shown on the 

left part of  Fig. 4(c). In paper of  Mauskar and Krishnamurty, node 

1 was taken as the common joint to all independent loops firstly, 

yet the result of  loop configuration was regard as an invalid result. 

In fact. it is valid by using the improved algorithm in this paper. 

Furthermore, if node 2 is regard as root node, the corresponding 

sketch (the right part of Fig. 4(c)) is same as the result in paper of 

Mauskar and Krishnamurty. Thus it can be seen that the higher 

completeness of the improved approach. 

P R O T O T Y P E  S Y S T E M  

Base on the above work, a prototype system named SKETCH 

is developed. Furthermore, the system has been tested for all of  
6-11 bar single/multi degree mechanisms and several 12 bar ones. 
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(a) Link-link adjacency matrix 
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4/ 2 /  X10 

1 . ~  First S p a n n ~ 7  

(c) Corresponding sketch of  the Breadth-First 

Spanning Tree with root node 1 (left) and 2 (right) 

Fig. 4 Result of  a 12 bar one degree of  freedom mechanism 

Fig. 5 shows several mechanism examples. Mechanisms that 

cannot be sketched without crossing can be identified as well, Fig. 

6 shows one such 10 bar mechanism. Fig. 7 shows the interface of  

the prototype system and the loop configuration result of  the 

mechanism in Fig. 6. 
Copyright © 2002 by ASME 
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Fig. 5 Examples ofsketched mechanisms 

and theirstandard code 

Fig. 6 An Example of a mechanism 

without non-crossing configurations 

Fig. 7 The interface of prototype system-SKETCH and the loop 

configuration result of the mechanism in Fig. 5 

CONCLUDING REMARKS 
An improved approach based on loop configuration is 
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proposed in this paper, which is simple and improves the 

efficiency and completeness. The results analysis and discussion 

as well as application examples shows that this method is valid 

and efficient in the sketching process of arbitrary number of links 

or degrees of freedom. It is expected to help designer select 

candidate mechanisms efficiently in the type synthesis process. 

Moreover, it will serve as a stepping-stone in the automation and 

computerization of the whole mechanism creative design process. 

This work is supported by the National Natural Science 

Foundation of China (Grant No.50075028). 
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